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1. Introduction

This very stimulating article reminded us of the following remark in a review article by 

Wand and co-authors (Ruppert, Wand, and Carroll 2009):

Interplay with Computer Science is one of the most exciting recent developments in 

semiparametric regression. We anticipate this to be an increasingly fruitful area of 

research.

Bringing message passing to bear on semiparametric regression, as Wand has done here, is 

very much in the spirit of such interplay. The notion of message passing is ubiquitous in 

some areas of computer science, such as distributed computing and object-oriented 

programming. More specifically, within the field of artificial intelligence, the influential 

problem-solving model of Hewitt (1977) is based upon message passing, while Pearl (1982, 

1988) proposed the passing of messages among neighboring nodes as a way to update 

beliefs efficiently in large Bayesian networks.

Against this backdrop it is unsurprising that, whereas variational message passing (VMP) is 

formulated quite differently in the three papers that Wand cites (Winn and Bishop 

2005;Minka 2005; Minka and Winn 2008), in each case the authors find it natural to portray 

the algorithm as passing messages among the nodes of a network. But for readers like us 

with a mainstream statistics background, a message passing scheme such as that described 

by Wand comes across, at least at first, as uncomfortably mysterious (see Wainwright and 

Jordan 2008, p. 36).

We begin by posing three questions that arose for us as we read Wand’s article. The first 

crystallizes our unease with the very notion of message passing, and addressing this key 

question will pave the way toward answering the other two.

1. As presented by Wand, following Minka (2005), VMP works by iteratively 

updating two types of messages: messages mθi→fj (θi) from variables (stochastic 

nodes) to factors, and messages mfj→θi (θi) from factors to variables. What, 

exactly, is the statistical meaning of these messages?
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2. How is the VMP algorithm related to the traditional approach to mean field 

variational Bayes (MFVB)?

3. Wand’s message updates are given in (W7)–(W9) (here and below, to avoid 

confusion with our own equation numbers, we use (Wx) to denote Wand’s 

equation (x)). How do these reduce to natural parameter updates, as presented 

from Section 3.2 onward?

In the following sections, we attempt to answer these questions and thereby, we hope, to 

shed some light on VMP.

2. A Closer Look at Messages

To address Question 1, we consider first the variable-to-factor messages and then the factor-

to-variable messages.

Variable-to-factor messages

Recall that the form of the messages in Wand’s presentation of VMP flows from the factor 

graph representation. In an article popularizing this representation, Kschischang, Frey, and 

Loeliger (2001) developed a generic sum–product algorithm in which messages are passed 

back and forth between factors and variables, as in Wand’s presentation of VMP. Bishop 

(2006, p. 408) noted that one can eliminate the variable-to-factor messages in the sum–

product algorithm, and reformulate it with only factor-to-variable messages. We find it 

helpful to reformulate VMP in a similar way.

Let us first recall Wand’s generic algorithm. In Section 3.2, following Minka (2005), he 

presents an iteration loop for VMP that could be stated as (1) choose a factor; (2) update 

messages from neighboring stochastic nodes to that factor; (3) update messages from that 

factor to neighboring stochastic nodes. While the schedule for updating factors may be 

flexible in some applications (Winn and Bishop 2005, sec. 3.5), for our purposes we can 

assume the factors are updated serially in a fixed order. Thus, a single iteration of the VMP 

algorithm might be written as a loop over j, with each step comprising two subloops:

Loop A. For j = 1, …, N:

1. For each i′ ∈ Sj, perform the update

(1)

This is just (W7), but with Sj′ (defined in (W5)) replacing the equivalent 

“neighbors (j′).”

2. For each i ∈ Sj:

a. Define the density in (W9), which is proportional to
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(2)

b. Update the factor-to-variable message mfj→θi (θi) by (W8), which we 

repeat for convenience, again using Sj in place of “neighbors(j)”:

(3)

where the expectation is with respect to the density in (2).

The messages on the right-hand side of (1) emanate from factors other than fj, and thus are 

not updated within the current step of the loop over j. Therefore, the density (2) is 

unchanged if we substitute the right-hand side of (1) for mθi′→fj (θi′) in (2). Doing so 

renders the first subloop redundant, so that a single iteration of VMP can be rewritten in the 

following mathematically equivalent form.

Loop B. For j = 1, …, N:

For each i ∈ Sj,

a. Define the density proportional to

(4)

b. Update the factor-to-variable message mfj→θi (θi) using (3), with the expectation 

taken with respect to the density in (4).

If the jth factor depends on more than two of the θi (i.e., |Sj| > 2) then Loop A may save 

some computation by performing the multiplication (1) just once, whereas Loop B must do 

the same multiplication, in (4), |Sj| − 1 times. We suspect the savings would typically be 

small, since |Sj| ≤ 2 for most j and the multiplication reduces to the summing natural 

parameters (see Section 4). At any rate, the conceptual simplicity that Loop B achieves by 

doing away with variable-to-factor messages will facilitate our development in Sections 3 

and 4.

Factor-to-variable messages

As Wand notes, in MFVB we seek component densities  (here and below, 

unlike Wand, we include subscripts for these densities) such that 

Reiss and Goldsmith Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimizes the Kullback–Leibler divergence  over all 

product densities . By (W10), in the VMP implementation of MFVB, we 

have

(5)

upon convergence. Alternatively, one can view  as quantities that are 

being updated throughout the iterative algorithm (Minka 2005 does this). We can then view 

the factor-to-variable messages as (proportional to) iteratively updated subcomponent 

densities, where component  is divided into subcomponents for each factor fj of which 

θi is an argument.

To summarize: we understand the variable-to-factor messages as a bookkeeping device with 

no independent statistical meaning, such that VMP can be formulated without them; and we 

interpret the factor-to-variable messages as factor-specific subcomponents of each 

component density as in (5). One could, then, jettison the message passing metaphor 

altogether, and replace the notation mfj→θi (θi) by  or .

3. Relating VMP to Traditional MFVB

We can now answer Question 2 posed in the Introduction. As explained in, for example, 

Ormerod and Wand (2010) and Goldsmith, Wand, and Crainiceanu (2011), the traditional 

MFVB algorithm initializes  and then updates these iteratively via 

coordinate descent steps

(6)

for i = 1, …, M.

By (5), (4) reduces to , and thus the VMP update (3) can be rewritten as

(7)

This is a factor-specific analogue of the usual MFVB update (6): the ith component  is 

replaced by its jth-factor-specific subcomponent mfj→θi (θi), the joint density p(θ, D) by its 

jth factor fj(θSj), and the product of  over all i′ ≠ i by one restricted to those in Sj 
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(this last is not a real difference, since taking the product over all i′ ≠ i in (7) would be 

equivalent).

The traditional MFVB algorithm cycles over all i (the variables) to update the component 

densities. VMP, on the other hand, cycles over j (the factors), and within each factor, cycles 

over i ∈ Sj to update subcomponent densities.

4. Reduction to Natural Parameter Updates

We now turn to Question 3. Throughout his Sections 3 and 4, Wand exploits conjugacy (as 

defined for factor graphs in Section 3.2.2) to simplify a number of special cases of the VMP 

algorithm, and in particular, to reduce updates (W7)–(W9) for the messages to updates for 

the natural parameters of the messages. The following is our attempt to make explicit what 

Wand’s treatment assumes implicitly.

In the exponential family case, it is natural to write the factor-to-variable messages in the 

form

(8)

for a natural parameter ηfj→θi. But since these messages are not really defined—only their 

updates are, by (3)—there is a hint of vagueness in the definition of ηfj→θi. It seems to us 

that the key to avoiding such ambiguity is to start by defining the jth factor density as an 

exponential family density respect to θi, for each i ∈ Sj: namely

(9)

where ηfj\θi does not depend on θi. For instance, consider the factor fj(σ2, a) = p(σ2|a) in 

Wand’s linear regression example. In Section S.2.1 of the supplement, the logarithm of this 

factor is written in the two forms:

where T(·) denotes the inverse chi-squared sufficient statistic vector,

(10)

Inserting (9) into (the log of) (3) yields
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This update equation serves as the justification both for writing factor-to-variable messages 

in the form (8) and for updating their natural parameters by

(11)

The density in Loop A is proportional to (2), which can be expressed as

(12)

with ηfj↔θi′ generalizing the notation that first appears in (W22). Eliminating variable-to-

factor messages as in Loop B above, (12) becomes

(13)

(cf. (4)). If, as suggested in Section 3 above,  is defined using (5) throughout the 

iterations rather than just at convergence, then (13) can be rewritten as

This obviates the need for the notation ηfj↔θi′, which is equivalent to .

We can thus summarize the natural-parameter-updating version of VMP as follows. First, we 

must obtain the right side of (11), a function of , for each i, j. Then, 

after initializing all the natural parameters ηfj→θi, each iteration of the algorithm is a 

modified, more concrete version of Loop B:

Loop C. For j = 1, …, N:

For each i ∈ Sj,

a.
Compute  for each i′ ∈ Sj\{i};

b. Plug these into the right side of (11) to update ηfj→θi.

5. Bayesian Linear Regression Revisited

The remarkably simple Loop C can be visualized using a less snazzy alternative to a factor 

graph: an N × M table of natural parameters for the factor-to-variable messages, with a row 

for each of the variables θ1, …, θN and a column for each of the factors f1, …, fM. Table 1 
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illustrates this for the linear regression example of Wand’s Section 3 (here, like Wand, we 

dispense with the subscripts in ).

In this case, only the second and third columns require updates (see (W21)), so each 

iteration consists of updating these two columns in turn. Consider updating the third column, 

that is, the natural parameters for the messages from p(σ2|a) to σ2 and a. By (11), these 

updates are expectations of (10) with respect to densities proportional to (13); formulas for 

these expectations are as given in (W24), using information in Wand’s Table S.1. Given 

these update formulas, in Loop C we simply add the natural parameters in the third row of 

Table 1 and insert the result (ηq* (a), or ηp(σ2|a)↔a in Wand’s notation) into the formula for 

ηp(σ2|a)→σ2 to update this natural parameter; and then, similarly, we add up the natural 

parameters in the second row of Table 1 and insert the result into the formula for updating 

ηp(σ2|a)→a.

6. Summary and Conclusion

In this comment, we have sought to build on the pedagogical component of Wand’s 

achievement: that is, rendering VMP intelligible to statisticians who, like us and unlike 

Wand, have not spent years painstakingly reformulating and extending the methodology. Our 

main proposal, Loop B, is a modified VMP algorithm that is equivalent to the original, 

mathematically if not computationally, but does away with the variable-to-factor messages. 

This modification offers a reduced notational load, a clearer connection to the traditional 

implementation of MFVB, and a streamlined account of the reduction from message updates 

to natural parameter updates.

Of course, while explaining VMP to statisticians is an important contribution in itself, Wand 

has gone a great deal further. He has masterfully laid the groundwork for VMP-based 

semiparametric regression, which should be a huge step forward for flexible modeling with 

large datasets. Good on him (as they say Down Under) for this major contribution. We look 

forward to further advances in this area by Wand and coworkers, and by others who will 

draw inspiration from this landmark article.
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