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ABSTRACT
Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in
vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases
including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such
as depression, Alzheimer’s or Parkinson’s disease. However, limited bioavailability and inability to
detect curcumin in circulation or target tissues has hindered the validation of a causal role. We
established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide
(LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism
underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by
curcumin supplementation precluding the need for curcumin absorption. In view of the causative role
of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this
review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier
and, despite negligible absorption, can beneficially modulate these diseases.
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Introduction

Curcumin is regarded as a natural anti-inflammatory,
anti-oxidant and anti-neoplastic agent and has been
used for a very long time in Indian and Chinese medi-
cine. However, due to poor bioavailability of orally
administered curcumin, there is skepticism regarding
its causal role. Due to negligible levels of curcumin in
circulation and significantly lower concentrations at
target cell types than used in cell culture studies to
demonstrate its direct effects, considerable efforts
are currently being directed towards increasing the
absorption of curcumin. In this review, we provide
insights into a novel and alternate mechanism of
action for curcumin. Increased levels of circulating
bacterial lipopolysaccharide or LPS are causally linked
to the development of diet-induced metabolic diseases
(diabetes and atherosclerosis), chronic inflammatory
diseases (chronic kidney disease, arthritis), several
neurological diseases (Alzheimer’s, Parkinson’s) and
cancers. Gut bacteria are the source of LPS and it is
translocated to systemic circulation due to disruption
of the intestinal barrier function. Studies from our lab-
oratory and those from several others are reviewed
herein to demonstrate that curcumin beneficially

modulates the different layers of the intestinal barrier
and significantly reduces plasma LPS levels. Given the
causal link between systemic LPS levels and develop-
ment of multiple diseases, curcumin-dependent resto-
ration of intestinal barrier function represents a novel
mechanism underlying the observed beneficial effects
of curcumin.

What is curcumin?

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione), also called diferuloylmethane, is
principal curcuminoid of the Asian spice turmeric
(Curcuma longa), a member of the ginger family. It was
first isolated by Vogel and Pelletier in 1815 as a “yellow
coloring-matter” from the rhizomes of turmeric.1 While
turmeric is extensively used as a spice in India, pure
curcumin is commonly used as a dietary supplement,
in cosmetics and as a coloring agent. Although the use
of turmeric in Ayurvedic medicine has been described
and the therapeutic use of Curcuma was recorded as
early as 1748,2 Oppenheimer published the first article
describing the use of curcumin in human disease in
1937.3 It was subsequently shown to exhibit antibacte-
rial activity in 19494 and since then curcumin is
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demonstrated to have multiple beneficial properties
including anti-inflammatory and antioxidant activities
leading to hypoglycemic as well as wound-healing
effects.5 Consistently, several preclinical studies have
demonstrated the therapeutic potential of curcumin
against a wide range of human diseases (Reviewed by
Aggarwal and Harikumar).6 However, the health bene-
fits of curcumin/turmeric7 have gained tremendous
popularity in the last 5–10 years leading to sales in
North America exceeding $20 million in 2014. Curcu-
min/curcuminoids have also been approved by the US
Food and Drug Administration (FDA) as “Generally
Recognized As Safe” (GRAS) and Curcumin is available
as a supplement in several forms including capsules,
tablets and energy drinks. Numerous clinical trials have
been conducted thus far to indicate the therapeutic
potential of curcumin against a wide range of human
diseases and some of these are summarized in Table 1.

The curcumin “paradox”

Despite demonstrated benefits of curcumin in both
pre-clinical and clinical studies, poor bioavailability
due to negligible absorption and almost undetectable
levels in systemic circulation have led to the
recent characterization of curcumin as a highly
improbable lead for therapeutic development.29 From
a medicinal chemistry standpoint, the essentials for

the development of a natural product as prototypical
“lead” compound for therapeutic discovery and devel-
opment are: less than 1 mM potency at its desired tar-
get(s), evidence of selectivity and tractable mechanism
(s) of action, good bioavailability and chemical stabil-
ity. Unfortunately, due to its poor bioavailability and
consequently the inability to demonstrate direct effects
on target tissues, orally administered curcumin fails to
meet these traditional requirements for future thera-
peutic development. Yet the observed beneficial effects
of curcumin in both pre-clinical studies as well as clin-
ical trials summarized in Table 1 cannot be overlooked
and rather point to the need to explore “unconven-
tional” mechanism(s) of action of curcumin. Follow-
ing are the important considerations in defining these
“unconventional”mechanisms:

� Given that sufficient curcumin concentrations
persist in colonic mucosa, intestine is likely an
important site of curcumin action and consis-
tently the most encouraging clinical results of
curcumin administration are currently limited to
people with colorectal cancer.

� Structure-activity relationship studies in vitro as
well as in vivo using a DSS-induced colitis model
successfully identified the role of the methoxy
groups in the anti-inflammatory activity of cur-
cumin providing evidence for beneficial actions
of curcumin in the gut.30

Table 1. Targeting various diseases by curcumin supplementation. A large number of clinical trials have been conducted to evaluate the
beneficial effects of Curcumin supplementation and have been summarized by Gupta et al.86 Listed below are some of the recent trials
for modulation of targeted diseases.

Target Disease Dose/Formulation of Curcumin Clinical Findings Ref.
#

Obesity 1 g/day for 4 weeks Reduced IL-1b, IL-4, VGEF 8

500 mg/day for 12 weeks Reduced LDL and lipid peroxidation 9

Metabolic syndrome 2 g/day for 12 weeks Reduced LDL, TG 10

45–180 mg/day No effect 11

Diabetes Meriva� (200 mg/day) for 4 weeks Improved blood flow in skin and retina 12,13

200 mg/day for 9 months to pre-diabetics Prevention of diabetes development 14

500 mg/day for 15–30 days Reduction in oxidative status 15

Fatty liver disease Meriva� (1 g/day) for 8 weeks Reduced BMI, waist circumference, and improved liver function 16

70 mg/day for 8 weeks Reduced liver fat, improved liver function 17

Cancer 6 g/day with docetaxel for 6 cycles Reduced PSA in this resistant population 18

2 g/day with radiotherapy Reduces radiation dermatitis (Breast cancer patients) 19

Dose escalation up to 8 g/day with docetaxel Increased tolerance to docetaxel and reduced cancer (metastatic breast
cancer)

20

Theracurmin (200 mg – 8 g) with Gemcitabine Plasma levels in ng/ml range, reduced inflammation and some protection but
curcumin well tolerated at these high doses (Abdominal fullness, diarrhea)

21

Depression 2 g/day along with anti-depressives Reduced cytokines but increased brain derived-neurotropic factor; improved
depression scores

22

500 mg/day Curcumin with Fluoxetine Faster recovery 23

Arthritis Theracurmin (150 mg/day) for 8 weeks Reduced knee pain score 24

Fexofytol� (42 mg/day) for 3 months Reduced pain and plasma cartilage specific marker 25

Meriva� (200 mg/day) for 3–8 months Reduced arthritis score and plasma CRP; reduced use of painkillers 26,27

Curcumin (500 mg/day) with diclofenac Higher improvement in pain scores 28
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� Curcumin-drug pharmacokinetic interactions
are also almost exclusively in the enterocytes,
owing to extensive first pass metabolism and
poor curcumin bioavailability suggesting that
enterocytes are the likely target cell type for cur-
cumin action for the increased efficacy of co-
administered drugs.31

� Curcuminoids are metabolized by gut bacteria to
produce active colonic metabolites that may
exert local or even systemic effects.32

� Chronic inflammation underlies majority of the
disease conditions where curcumin is shown to
be effective and intestinal barrier dysfunction
with subsequent release of bacteria/bacterial
products into the systemic circulation is one of
the major pathways involved in the etiology of
this inflammatory condition. By virtue of sus-
tained high concentrations in the gut and action
on enterocytes, curcumin may exert its effects
by modulating intestinal barrier function and
thereby affecting chronic inflammatory diseases.

With gut as the site of action, the issue of poor bio-
availability of curcumin becomes moot and opens up
the novel avenue of mechanistic exploration centered
on the role of intestinal barrier function in the devel-
opment of multiple diseases attenuated by curcumin
administration.

“Layers” of the intestinal barrier and their
modulation by oral supplementation with
curcumin

Intestinal barrier consists of multiple layers including:
1) luminal intestinal alkaline phosphatase (IAP) that
dephosphorylates bacterial endotoxin lipopolysaccha-
ride (LPS) to detoxify it; 2) the mucus layer that pro-
vides a physical barrier preventing interactions
between gut bacteria and intestinal epithelial cells; 3)
the tight junctions between the epithelial cells that
limit the paracellular transport of bacteria and/or bac-
terial products to systemic circulation; and 4) the anti-
bacterial proteins secreted by the intestinal epithelial
cells (Figure 1).

Layer 1 or the Intestinal alkaline phosphatase (IAP)

IAP is part of the luminal first line of defense33 and
catalyzes the removal of one of the two phosphate
groups from the toxic lipid A moiety of LPS producing
monophosphoryl-LPS that still binds to TLR4 but

predominantly acts as an TLR4 antagonist.34 There-
fore, IAP is central in maintaining the critical homeo-
stasis that exists between the host and the luminal
microbial environment underscoring the importance
of exploring supplementation with exogenous IAP to
alleviate pathological conditions where host/microbial
homeostasis is perturbed such as colitis or chronic
inflammation. Consistently, Tuin et al have reported a
decrease in IAP in patients with inflammatory bowel
disease35 and we have demonstrated a significant
reduction in IAP activity in response to high fat high
cholesterol containing western type (WD) diet result-
ing in increased translocation of luminal LPS into the
systemic circulation.36 Furthermore, oral supplemen-
tation with curcumin led to a two-fold increase in IAP
activity and attenuated the circulating LPS levels dem-
onstrating the direct effect of curcumin in modulating
this first “layer” of the intestinal barrier.36 Improving
intestinal barrier function by targeted enhancement of

Figure 1. The four layers of the Intestinal barrier. (1) Intestinal
alkaline phosphatase (IAP) secreted by the intestinal epithelial
cells constitutes the first or the luminal layer and it detoxifies
LPS; (2) Loosely attached outer mucin layer and the firmly
attached inner mucin layer form the second layer of the barrier
and are involved in restricting entry of pathogenic bacteria
thereby preventing direct contact of bacteria with the intestinal
epithelial cells; (3) Intestinal epithelial cells with tight junctions
regulate the transcellular or paracellular transport from the
lumen to the systemic circulation (4) Paneth cells located in the
crypts produce antibacterial proteins the block any bacteria that
have penetrated the overlying layers of the barrier.
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IAP activity is increasing being recognized as a viable
approach for modulating chronic inflammatory dis-
eases and in vivo “proof-of-concept” is currently being
sought in our laboratory by developing intestine-spe-
cific IAP transgenic mice expressing heat stable, chi-
meric human alkaline phosphatase containing the
catalytic domain of human placental alkaline phos-
phatase that imparts enhanced catalytic efficiency.37

Layer 2 or the mucus layer

The intestinal mucosal layer or the second layer of the
intestinal barrier serves as the major defensive wall
between the luminal content and the epithelial cells
and in the absence of this barrier, intestinal epithelial
cells can be in direct contact with luminal bacteria
leading to enhanced intestinal inflammation. It mainly
consists of water (»95%) and glycoproteins (1 to
10%), as well as electrolytes, antibodies, and nucleic
acids38 and exists as a stratified firmly attached layer
close to the epithelial cells and a loose outer layer
which contains the commensal bacteria that prevent
the entry of pathogenic bacteria into the outer as well
as inner mucus layer. Increase in the number of
mucus-residing commensal bacteria, by pro- or prebi-
otic interventions is thought to improve the barrier
function of the mucosal layer.39 The amount and com-
position of the mucus layer reflect a balance between
mucus secretion, and its erosion and degradation by
bacteria.40 Depletion of mucus layer either by
increased degradation or deficient synthesis will,
therefore, have a profound effect on this layer of the
intestinal barrier. Consistently, Muc2¡/¡ mice have
increased bacterial adherence to the intestinal epithe-
lium, enhanced susceptibility to colitis and disrupted
intestinal barrier function.41 Mucin production is
affected by both the increase in numbers of terminally
differentiated goblet cells and the increase in Muc
gene expression within these cells.42 Dietary compo-
nents, especially the dietary fiber type and content
affect mucin secretion by the goblet cells.43,44 In con-
trast, WD with reduced fiber content disrupts the
mucin layer exposing the intestinal epithelial cells to
the luminal contents and this effect is attenuated by
curcumin supplementation (unpublished observa-
tions). It is noteworthy that Junior et al reported cur-
cumin mediated increase in the quantity of acid
mucins in the intestine45 and Xun et al showed that
dietary addition of curcumin was more effective than

quinocetone in improving intestinal mucosal barrier
integrity, morphology, and immune status of weaned
pigs.46 Collectively, these data provide strong evidence
for maintenance of the integrity of the mucus layer by
curcumin.

Layer 3 or the epithelium

Intestinal epithelium is a single layer of cells that acts
as a highly selective barrier preventing the passage of
harmful luminal contents such as foreign antigens,
microorganisms and their toxins while allowing the
translocation of essential dietary nutrients, electrolytes
and water from the intestinal lumen into the systemic
circulation. This selectivity of transport is mediated by
regulation of two major mechanisms: transepithelial/
transcellular and paracellular transport pathways.
Amino acids,47 electrolytes,48 short chain fatty acids
and sugars49 are routinely transported via the transcel-
lular pathway through the epithelial cells and predom-
inantly regulated by selective transporters. Transport
through the space between epithelial cells is called the
paracellular transport and is regulated by intercellular
complexes localized at the apical-lateral membrane
junction and along the lateral membrane.50,51 Three
components, namely desmosomes, adherens junctions
and tight junctions, establish the contact between the
adjacent epithelial cells.52 The adhesive junctional
complexes consist of transmembrane proteins that
link adjacent cells to the actin cytoskeleton via cyto-
plasmic scaffolding proteins. Along with desmosomes,
these are important in the mechanical linkage of adja-
cent cells.53 The tight junctions, on the other hand, are
responsible for sealing the intercellular space and reg-
ulating selective paracellular transport.54 These multi-
protein complexes facilitate the passage of ions and
solutes through the intercellular space but prevent the
translocation of luminal antigens, microorganisms
and their toxins underscoring their importance in
maintaining the integrity of this layer of the intestinal
barrier. Consequently, integrity of epithelial cell layer
and tight junction proteins is often referred to as the
intestinal barrier despite the important contributions
of other three “layers”.

Multiple proteins are involved in the assembly of
these tight junctions forming fibrils that cross the
plasma membrane to interact with proteins from the
adjoining cell (Figure 2). These fibrils between the cells
consists of at least two types of tetraspanning
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membrane proteins, occludin, members of the clau-
din family, immunoglobulin-like molecules such as
junctional adhesion molecule A (JAM-A) and CAR.
On the intracellular side of the membrane, the car-
boxyl terminal ends of these proteins interact with
other tight junction proteins such as ZO-1, ZO-2 and
ZO-3. Intracellularly, these proteins associate with a
ring of actin microfilaments (For detailed review of
the organization of tight junction proteins see
references 55 and 56.) The appropriate expression
and organization of these proteins as well as organiza-
tion/contractility of the actin microfilaments regulate
paracellular transport. Furthermore, these tight junc-
tions open and close in response to a variety of stimuli
including dietary components and luminal microbial
factors. One such pathway that is relevant to intestinal
barrier dysfunction and the disease process is the zonu-
lin pathway. Analogous to bacterial toxin (zonula
occludens), inappropriate upregulation of zonulin
secretion from the intestinal epithelial cells into the
lumen increases paracellular permeability57,58 and fecal
levels of Zonulin are used as a clinical measure of intes-
tinal permeability. Therefore, interventions that modu-
late expression and/or organization of these tight
junction proteins are likely to influence paracellular
transport of luminal bacteria or bacterial products into
the systemic circulation.

Studies from our laboratory have shown that expo-
sure to curcumin increased the expression of ZO-1
and Claudin-1 in human intestinal epithelial Caco-2
cells, thereby improving the barrier function and
reducing paracellular permeability.36 Detailed exami-
nation of the signaling pathways involved demon-
strated that curcumin attenuated activation of p38
MAPK involved in the phosphorylation of tight junc-
tion proteins resulting in disruption of their normal
arrangement. Furthermore, curcumin also reduced
bacterial endotoxin (LPS) or inflammatory cytokine
(IL-1b)-induced disorganization of ZO-1, claudin-1
and claudin-7 as well as actin filaments in intestinal
epithelial cells leading to attenuation of paracellular
transport.59 Consistent with the data from our labora-
tory, Martinez et al showed that curcumin preserves
the tissue content of claudin-3 and occludin in the
colonic mucosa.60 Tian et al also proposed that curcu-
min protects the intestine from ischemia/reperfusion
injury through restoration of the epithelial structure,
promotion of the recovery of intestinal permeability,
as well as enhancement of ZO-1 protein expression.61

Collectively, these data provide strong evidence for
curcumin-mediated beneficial modulation of the layer
3 of the intestinal barrier.

Layer 4 or the antibacterial peptides

In addition to providing a single cell layer physical
barrier, the specialized secretory cells of the intestinal
epithelium or the Paneth cells62 secrete antimicrobial
peptides63 that play an important role in host defense
against the gut microbes. Thus, secreted anti-bacterial
peptides constitute the “fourth” layer of the intestinal
barrier. The most abundant anti-microbial peptide in
human intestine is a-defensin, a member of the
defensing family of peptides. Both a- and b-defensins
are bacteriocidal with activity against Gram-negative
as well as Gram-positive bacteria. Thus, Paneth cell
derived antimicrobial peptides regulate the composi-
tion of gut microbiota and a shift in the favor of
inflammation rather than homeostasis can result in
chronic inflammation. Consistently, disruption of
Paneth cell function underlies the susceptibility to
chronic inflammatory Crohn’s disease providing a
direct link between disruptions of this layer of intesti-
nal barrier function to disease development. Guo et al
have demonstrated that curcumin increases the
expression of anti-microbial peptides64 providing

Figure 2. Organization of the tight junctions. Membrane span-
ning proteins Occludin, Claudins, Junctional adhesion mole-
cules (JAMs) and CAR form the fibrils connecting two
adjacent cells. The intracellular domains of these proteins are
associated with ZO-1, ZO-2 and ZO-3 and also connected to
the actin microfilaments. This organization of these tight
junction proteins is crucial to maintaining the paracellular
transport and is disrupted by changes in expression or phos-
phorylation of these proteins as well as disorganization of
actin microfilaments.

TISSUE BARRIERS e1425085-5



evidence for curcumin-mediated modulation of this
fourth “layer” of the intestinal barrier.

Taken together, considerable evidence exists to
demonstrate the direct modulation of all four layers of
the intestinal barrier by curcumin and underscore the
recognition of curcumin-mediated improvement of
intestinal barrier function as the likely mechanism of
the beneficial effects of curcumin despite its poor sys-
temic bioavailability.

Diseases linked to intestinal barrier dysfunction
and effects of curcumin supplementation

The barrier function of the intestine is critical for nor-
mal homeostasis of the gut and breakdown or dys-
function of this barrier is a critical determinant in the
etiology of intestinal inflammation and a number of
gastrointestinal diseases such as inflammatory bowel
disease,65 Crohn’s disease66 and ulcerative colitis
(extensively reviewed recently67 and not the emphasis
of the present review that is focused on establishing
curcumin-mediated improvement of intestinal barrier
dysfunction as the mechanism underlying its systemic
effects). However, it is noteworthy that breach of the
intestinal barrier in these diseases leads to activation
of immune cells in the lamina propria by interaction
with gut bacteria derived lipopolysaccharide (LPS)
resulting in the secretion of pro-inflammatory media-
tors that perpetuate local inflammation.

In addition to the obvious effects of intestinal bar-
rier function in modulating the local intestinal
inflammation, dysfunctional intestinal barrier is
increasingly being shown to underlie the develop-
ment of a variety of diseases and pathological condi-
tions where systemic LPS plays a causative role.
Fiddian-Green first described the role of enhanced
translocation of bacterial toxins or bacteria during
cardiac surgery contributing to morbidity and mor-
tality and recommended interventional measures to
reduce this breach of intestinal barrier to improve
outcomes.68 While ischemic injury to the intestine
was considered to be the underlying trigger, in recent
years the role of exogenous or dietary triggers is
increasingly being recognized. High fat high choles-
terol containing western type diets responsible for
the obesity epidemic and metabolic syndrome have
been shown to increase intestinal permeability result-
ing in release of LPS into systemic circulation leading
to metabolic endotoxemia.36,69,70 Consistently,

continuous infusion of low-dose LPS to mimic meta-
bolic endotoxemia leads to the development of
T2DM and atherosclerosis emphasizing the causal
relationship between intestinal barrier dysfunction
and development of metabolic diseases.71 Disruption
of LPS signaling by deletion of its membrane recep-
tor TLR4 prevents diet-induced weight gain as
well as development of metabolic disorders.72,73 Fur-
thermore, deletion of LPS-TLR4 signaling partner
MyD88 specifically in intestinal epithelial cells pro-
tected the animals from diet-induced obesity.74,75

Even in humans, obese phenotype is associated with
endotoxemia76,77 establishing the critical role of gut
derived LPS in the development of metabolic diseases
and emphasizing the importance of intestinal barrier
function that regulates the release of LPS into
circulation.

The presence of gut-derived bacteria LPS in sys-
temic circulation, is also identified as a causal or com-
plicating factor in diverse diseases such as autism,78

Alzheimer’s disease79 as well as asthma.80 Increased
intestinal permeability with high levels of circulating
LPS and low levels of LPS binding protein are also
seen in patients with Parkinson’s disease.81 Abnormal
intestinal permeability similarly plays a critical role in
the pathogenesis of several autoimmune diseases.82 By
demonstrating the presence of significantly higher lev-
els of circulating gut bacterial products in subjects
with juvenile idiopathic arthritis, Fotis et al reinforced
the concept that the intestine is a source of immune
stimulation in arthritis.83 Consistent with this hypoth-
esis, Ciccia et al demonstrated increased zonulin
expression, damaged intestinal mucosal barrier as well
as gut vascular barrier in patients with ankylosing
spondylitis.84 Furthermore, they hypothesized that
modulation of monocyte behavior by these bacterial
products and zonulin may be the mechanism underly-
ing the disease development. It is also noteworthy that
metabolic endotoxemia, caused by impaired barrier
function and low-grade chronic inflammation is
thought to contribute to the onset and progression of
osteoarthritis in obese patients.85

In addition to contributing to the above-mentioned
diseases, obesity associated risk for development of
certain cancers is also related to the chronic pro-
inflammatory state resulting from the breach of the
intestinal barrier.86 Endotoxin tolerance leading to a
compensatory hypo-inflammatory state is thought to
underlie immune-escape of cancer cells directly
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linking circulating LPS to likely development of multi-
ple cancers.87 Increased levels of portal vein LPS are
causally linked to the development and progression of
hepatocellular carcinoma.88 Similarly, LPS-induced
TLR4 signaling is a factor in immune evasion by gli-
oma cancer stem cells.89

Taken together, multiple diseases ranging from
metabolic diseases such as diabetes and atherosclerosis
to autoimmune as well as neurological disorders and
cancer are causally linked to the presence of increased
levels of systemic LPS and any intervention that
reduces translocation of gut-bacteria derived LPS into
the circulation by maintaining the integrity of the
intestinal barrier is likely to attenuate the development
of these diseases. Oral supplementation with curcumin
represents one such strategy and studies from our lab-
oratory have demonstrated curcumin mediated reduc-
tion in plasma LPS levels induced by consumption of
western diet that led to significant reduction in the
development of atherosclerosis and glucose intoler-
ance.36 As summarized in Figure 3, western diet affects
the different “layers” of the intestinal barrier and oral

supplementation with curcumin attenuate these effects
resulting in decreases release of LPS from the lumen
into the systemic circulation. Increased infiltration of
activated macrophages into the adipose tissue or the
arterial wall underlie the development of T2DM90 and
atherosclerosis,91 respectively. Therefore, curcumin-
dependent reduction in plasma LPS and subsequent
decrease in macrophage activation thus represent the
mechanism underlying the anti-diabetic and anti-ath-
erosclerotic effects of curcumin despite its negligible
bioavailability.

Chronic inflammation also underlies the develop-
ment of chronic kidney disease and in 5/6th nephrec-
tomy model of this disease we demonstrated
significant reduction in tissue inflammation with cur-
cumin supplementation92 and identified the involve-
ment of phospholipases as well as cyclooxygenases.93

However, given the absence of significant levels of bio-
available curcumin at the tissue site, we further estab-
lished curcumin-mediated modulation of intestinal
barrier function as the underlying mechanism.94 Fur-
thermore, nephrectomy and western diet-induced
changes in gut microbiota, intestinal barrier function
as well as increase in plasma LPS levels were equally
modulated by supplementation with curcumin or
LPS-binding non-absorbable antibiotic polymyxin
underscoring the importance of curcumin dependent
reduction in plasma LPS as a key event in its observed
systemic effects.95

Based on the accumulating evidence of the role of
gut-derived LPS in the pathogenesis of multiple dis-
eases and the direct action of curcumin on intestinal
barrier function59 critical to the translocation of bacte-
rial LPS into systemic circulation, it can be concluded
that the observed beneficial effects of curcumin as
exemplified by the clinical trials shown in Table 1 are
largely related to curcumin mediated improvement of
intestinal barrier function.

Other intestine-specific effects of curcumin

While we have defined some of the intracellular sig-
naling mechanisms by which curcumin modulates
intestinal barrier function,59 other studies have shown
that curcumin also protects intestinal damage. Kanter
et al showed that curcumin treatment has a protective
effect against intestinal damage induced by bile duct
ligation (BDL) where curcumin treatment inhibits
BDL-induced oxidative stress, apoptosis, and cell

Figure 3. High fat high cholesterol containing Western diet (WD)-
mediated disruption of intestinal barrier function and its systemic
consequences. WD decreases the activity of intestinal alkaline
phosphatase (IAP), disrupts the mucin layers and increase inflam-
mation of intestinal epithelial cell layer by enhancing infiltration
of macrophages. Collectively, these effects lead to increased par-
acellular permeability and lead to an increase in circulating LPS
levels. Systemic and tissue macrophages are activated in
response to this metabolic endotoxemia and lead to a chronic
inflammatory state that underlie the development of multiple
diseases including chronic kidney disease (CKD). Infiltration of
activated macrophages in adipose tissue or artery wall lead to
the development of Type 2 Diabetes (T2DM) or atherosclerosis,
respectively.
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proliferation.96 Curcumin reduced the expression of
pro-apoptotic Bax and stimulated anti-apoptotic Bcl-2
to attenuate 5-fluorouracil-induced apoptosis of intes-
tinal epithelial cells. Consequently, curcumin signifi-
cantly reversed chemotherapy-induced weight-loss,
increase of serum endotoxin and damage to intestinal
mucosa structure and Yao et al hypothesized that the
clinical administration of Curcumin may improve
chemotherapy-induced intestinal dysfunction, thus
increasing the clinical efficacy of chemotherapy.97 The
beneficial effects of curcumin on tumorigenesis in
colorectal cancer have been shown to be associated
with the maintenance of a more diverse colonic micro-
bial ecology.98 Curcumin facilitates the recovery of
damaged colonic mucosa in inflammatory bowel dis-
ease by activation of dendritic cells to enhance the

suppressive functions of regulatory T- cells.99 Curcu-
min also exerts the effects on irritable bowel syndrome
through regulating neurotransmitters, BDNF and
CREB signaling both in the brain and peripheral intes-
tinal system.100 Curcumin attenuates CCL4-induced
liver cirrhosis by reducing the degradation of hepatic
LDLR that detoxifies intestinally derived LPS.101 It is
also noteworthy that increased translocation of LPS
from the intestine is also related to intestinal lipid
absorption as well as secretion of chylomicrons and
curcumin reduces cholesterol absorption by reducing
NPC1L1.102 Oh et al recently elucidated the unsolved
mechanism of the anti-cancer effect of curcumin by
identifying IL-2 as a direct molecular target since IL-2
is a crucial growth factor for both regulatory and effec-
tor T cells.103 Curcumin is taken up by the intestinal
epithelial cells104 and Bartik et al showed that curcu-
min binds to intracellular vitamin D receptor in intes-
tinal epithelial cells and facilitates colon cancer
chemoprevention.105 It needs to be emphasized that
interaction between vitamin D and HDAC is associ-
ated with the regulation of epithelial barrier func-
tions106 and it is likely that by enhancing vitamin D
signaling, curcumin regulates barrier function.

Conclusions and future perspectives

Gut dysbiosis is increasing being recognized as an
important determinant in the development of several
diseases. While considerable efforts are being directed
towards detailed analyses of the changes in the bacte-
rial diversity, the mechanisms by which these changes
affect the “host” and initiate the development of
related diseases are not completely defined. Under
normal conditions, an intact intestinal barrier thwarts
the translocation or bacteria or bacterial products into
the systemic circulation of the “host” preventing the
deleterious consequences. As reviewed herein, increase
in circulating levels of gut bacteria-derived LPS under-
lies the development of a large number of diseases
underscoring the importance of targeted improvement
of intestinal barrier function as a viable therapeutic
strategy. Oral supplementation with curcumin may
represent one such strategy.

Despite demonstrated beneficial effects of curcumin
supplementation in several clinical trials, extremely
poor bioavailability of curcumin has hindered the
establishment of a causal relationship. We have herein
described an alternate mechanism of curcumin action

Figure 4. Mechanism(s) of action of curcumin in systemic LPS lev-
els. Oral supplementation with curcumin increases the activity of
intestinal alkaline phosphatase (IAP) enhancing luminal deactiva-
tion of LPS. De-phospho LPS acts as a TLR4 antagonist further
reducing LPS-TLR4 interaction and downstream signaling result-
ing in reduced secretion of pro-inflammatory cytokine IL-1b. As a
result LPS or IL-1b mediated activation of MAPK and subsequent
phosphorylation and expression of tight junction proteins is
attenuated. These modulatory effects of curcumin prevent the
disruption of tight junction organization and decrease LPS-medi-
ated increase in paracellular permeability. Additionally, curcumin
is taken up by the intestinal epithelial cells and via binding to the
vitamin D receptor initiates intracellular signaling events leading
to an increase in the expression of tight junction proteins that
reduce paracellular permeability. Luminal LPS is also translocated
bound to chylomicrons and curcumin decreases cholesterol
absorption by reducing the expression of apical cholesterol trans-
porter NPC1L1 resulting in attenuated chylomicron secretion.
This pathway may represent yet another mechanism by which
curcumin can decrease systemic LPS levels. All events negatively
or positively regulated by curcumin are indicated by “-“ or “C”
sign in the green circles, respectively.
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focused on its intestine-specific effects especially its
role in maintaining the barrier function. Figure 4 sum-
marizes the different aspects of this novel role of cur-
cumin. Curcumin is effectively taken up by the
intestinal epithelial cell by an as yet unidentified
mechanism.104 Within these cells, curcumin initiates
or modulates several signaling pathways that ulti-
mately lead to preventing the disruption of intestinal
barrier function induced by external dietary factors or
endogenous events such as ischemia/reperfusion
injury. The resulting attenuation of luminal bacteria
or bacterial products such as LPS underlies the
observed beneficial effects of curcumin. By reducing
the chronic inflammatory state via its action at the
intestinal level, curcumin is well positioned to affect
other non-metabolic diseases such as arthritis, cancer
and other neurological disorders. It is, therefore,
imperative to focus future studies on further charac-
terization of the intracellular pathways modulated by
curcumin to improve intestinal barrier function to not
only increase our current understanding of its role in
modulating such diverse disease processes but also to
identify novel intracellular pathways for therapeutic
targeting.
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