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ABSTRACT
Phosphorylation is a dynamic post-translational modification that can alter protein structure, localization,
protein-protein interactions and stability. All of the identified tight junction transmembrane proteins can
be multiply phosphorylated, but only in a few cases are the consequences of phosphorylation at specific
sites well characterized. The goal of this review is to highlight some of the best understood examples of
phosphorylation changes in the integral membrane tight junction proteins in the context of more general
overview of the effects of phosphorylation throughout the proteome. We expect as that structural
information for the tight junction proteins becomes more widely available and the molecular modeling
algorithms improve, so will our understanding of the relevance of phosphorylation changes at single and
multiple sites in tight junction proteins.
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Introduction

Tight junctions form the paracellular epithelial barrier
to ions and solutes and thus separate tissue spaces and
enable directional transcellular absorption and secre-
tion.1 Many proteins have been localized to tight junc-
tions,2 but the critical barrier components include
transmembrane proteins that physically form the seal-
ing contacts, including members of the claudin (cldn),
tight junction-associated MARVEL proteins (TAMPS)
and junctional adhesion molecule (JAM or CTX, for
cortical thymocyte marker in Xenopus)3 family of pro-
teins. The transmembrane proteins bind to scaffolding
proteins, including ZO-1, -2 and -3 among others,
that interact with cytoskeletal elements to regulate
junctional integrity. Much information is available on
in vitro binding interactions between these protein
components,4-10 but there is considerably less infor-
mation available on how these binding interactions
might be regulated in vivo. One mechanism likely to
modulate protein-protein interactions is phosphoryla-
tion status.

Most proteins in mammalian cells are phosphory-
lated;11 it is a dynamic post translational modification
that can regulate protein folding, protein interactions,
localization and stability.12,13 Phosphorylation results

in addition of two negative charges at physiological
pH, which will alter the electrostatic environment and
can alter the strength of protein-protein interactions,
both within binding sites and through longer range
changes in protein conformation.12,13 Although the
estimated stability of most protein complexes is not
altered by phosphorylation, about a third are expected
to be significantly stabilized or destabilized by phos-
phorylation.12 The predominant influence is destabili-
zation, but a significant minority of protein-protein
interactions result in stabilization of protein com-
plexes.12 In spite of the fact that thousands of phos-
phorylation sites have been identified by mass
spectrometry (MS),14 relatively few of these have been
analyzed in terms of how they affect structure and
function.

All of the transmembrane tight junction proteins are
reported to be phosphoproteins. In some studies, phos-
phorylation has been associated with functional
changes, but only in a couple of cases has there been
any detailed analysis of the relevant mechanisms.
Rather than include an exhaustive and exhausting list
of phosphorylation changes, the goal of this review is
to focus on the best understood examples of how phos-
phorylation alters interactions or functions in the
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limited set of tight junction integral membrane pro-
teins. In some cases, studies of closely related proteins
will be included if they appear to provide relevant
insights. By focusing on relatively few different
approaches and examples, we hope to highlight some
general themes and ongoing challenges as well as iden-
tify areas that are particularly promising for future
study.

Cldn phosphorylation and PDZ-dependent
interactions

PDZ-dependent interactions are a central feature of
tight junction organization. Many tight junction scaf-
folding proteins, including ZO proteins,15-17 MUPP1,18

afadin/AF6,19 MAGI-1, 2, 3,20–22 PARD3,23 PALS124

and PATJ25 among others, contain multiple PDZ
domains. PDZ domains form small globular structures
of 80–90 residues;26 which typically bind the 4–10
carboxy-terminal residues (PDZ binding motifs)27,28

of transmembrane proteins and anchor them to the
junction. The basic model for interaction is that the ter-
minal hydrophobic residue of the PDZ binding motif-
containing protein (numbered amino acid 0) inserts
into a hydrophobic pocket in the PDZ domain, and
then the upstream amino acids of the binding motif
(-1 to -5) form an antiparallel beta strand to a beta
strand in the PDZ domain.29 Both the tight junction
strand forming cldns6 and the adhesion proteins, the
JAMs8,9 end in PDZ binding motifs and have been

Figure 1. Selected cldn cytoplasmic domains. Red text, phosphorylation sites identified by MS14; blue highlighted residues are referred
to in text, purple highlight identified ubiquitination site blocked by adjacent phosphorylation. Double underline identified regions pre-
dicted to be disordered (see text).
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shown to interact with the PDZ domain-containing
scaffolding proteins.

Cldns are small, tetraspan proteins, with short cyto-
plasmic tails that vary in length from 26-70 amino acid
residues; these tail regions contain abundant serines,
threonines and tyrosines (Fig. 1). All but three of the 23
(human) cldn family members end in a characteristic
PDZ binding motif (for most cldns -XYV) and interact
with the first PDZ domains of ZO-1, -2 and -36 and
MUPP1,30 among others. Although specificity of interac-
tion between binding motif and binding domain is likely
to be primarily regulated by primary amino acid
sequence and protein localization,29 regulation of this
interaction is not well understood. One attractive possible
regulatorymechanism is phosphorylation.

Mass Spectrometry data from tissues and cultured
cells shows cldn C-terminal regions are abundantly
phosphorylated,14 including within the canonical C-
terminal three amino acid PDZ binding motif. For
example, much MS data14 identifies phosphorylation
of Y(-1) in cldn1-7, -9, -10 and -18.14,31 Surprisingly,
phosphorylation of this site might not affect interac-
tion with ZO-1, since by analogy, tyrosine phosphory-
lation of the -1 residue in the PDZ binding motif of
syndecan can be accommodated in the PDZ binding
pocket in Tiam1 and does not alter binding affinity.32

Syndecan, like cldns, can bind to a variety of PDZ con-
taining proteins. The authors suggest that syndecan
phosphorylation at this site might provide regulatory
specificity, since both phosphorylated and unphos-
phorylated syndecan can bind Tiam1, but only
unphosphorylated syndecan can bind to the syntenin
PDZ domain. Additionally, binding of phosphorylated
syndecan to Tiam1 dampened PDZ domain dynamics,
and the authors suggested it might result changes in
binding affinities at other sites in Tiam1.32 Indirect
evidence suggests that tyrosine phosphorylation of
cldn4 at the -1 position decreases binding to ZO-1,33

but the possibility that differentially phosphorylated
cldns might have differing interactions with ZO-1
PDZ1 is intriguing but unexplored.

Cldn phosphorylation sites upstream from the C-ter-
minal motif could also affect PDZ domain binding. For
example, although only the last four residues of cldn1 are
involved in interaction with PDZ1 of ZO-1, seven termi-
nal residues of cldn2 contact PDZ1 of ZO-1, and Y-6
phenol group of cldn2 contributes to higher affinity bind-
ing to ZO-1 PDZ1 compared with that for cldn1.34 We
recently found that tyrosine phosphorylation of cldn2 at

this -6 position decreased affinity for binding to PDZ1 of
ZO-1,34 suggesting a potential regulatory mechanism for
their interactions. Similarly, phosphorylation of the anal-
ogous site in cldn3 increases its mobility in the mem-
brane as determined by Fluorescence Recovery After
Photobleaching (FRAP),35 suggesting the possibility that
phosphorylation of cldn3 Y -6 decreased scaffolding to
ZO-1 at the tight junction. Along with possibly altering
the affinity for PDZ1 of ZO-1, phosphorylation at other
sites in cldn tails may promote binding specificity, which
could be important given the presence of multiple PDZ
domain-containing junctional proteins.2

Other cldn phosphorylation sites and tight
junction association

There are many examples of cldn phosphorylation
apart from the PDZ domain interaction that are
thought to be important for tight junction localiza-
tion.31,36–41 For example, phosphorylation of cldn1
(T191)39 and cldn2(S208)31 is associated with
enhanced tight junction strand formation or localiza-
tion; Fujii et al.39 found that hypotonic stress resulted
in dephosphorylation at these sites and junctional
removal by clathrin-dependent endocytosis. In sup-
port of a role for cldn1(T191) phosphorylation in
enhancing junction localization, Shiomi et al.40 found
that AMPK activation by AICAR resulted in phos-
phorylation of T191 in cldn1 and stimulated the for-
mation of ectopic tight junction formation on lateral
membrane of Eph4 cells; ectopic fibril formation is
also seen with a phosphomimetic mutant of the analo-
gous site in cldn3(T192)37 and after cldn4 phosphory-
lation by protein kinase C epsilon.36 Shiomi et al.40

further found that stimulated phosphorylation by
AMPK activation was associated with decreased cldn1
ubiquitination at a nearby lysine (K189). These
authors interpreted these findings to mean that cldn1
ubiquitination is normally required for turnover;
blocking turnover by forced phosphorylation thus
resulted in ectopic fibril formation. Many cldns have
similar arrangements of serines/threonines close to
ubiquitinylated lysines identified by MS,14 so it is pos-
sible that this could be a common theme regulating
cldn turnover.

Phosphorylation/ubiquitinoylation may also be
important in cldn16 removal from the tight junction.
Phosphorylation of S217 in cldn16 by protein kinase
A pathway results in tight junction localization.41,42
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This group found that phosphorylation at this site is
required for interaction with syntaxin-8 and recycling
to the membrane42 and that dephosphorylated cldn16
was associated with the E3 ubiquitin ligase, PDZRN3,
a protein containing both PDZ and ring finger
domains.43 Marunaka et al. suggest this interaction
was likely involved in the endocytosis of dephosphory-
lated cldn16; interestingly, PDZRN3 has also been
implicated in regulation of the stability of endothelial
cell junctions through targeting the multiPDZ protein
MUPP1 for proteasomal degradation.44

Cldn phosphorylation has also, although less fre-
quently, been reported to play a role in removal from
the tight junction. For example, Cong et al. found that
carbachol stimulated ERK phosphorylation of cldn4
and its removal from tight junctions in a rat subman-
dibular epithelial cell line, by promoting its interaction
with b-arrestin2 and clathrin endocytosis.45

JAM family phosphorylation

The JAM family of proteins are single span integral
membrane proteins that are members of the immuno-
globulin superfamily; they are broadly distributed in
immune cells as well as epithelial and endothelial
cells.46 JAM-A is the principal form expressed on
mucosal epithelial cells and is known to be an impor-
tant regulator of cell polarization, migration, cell-cell
adhesion and paracellular permeability. It, like the
other JAMs, has a fairly short cytoplasmic C-terminal
tail (»40 amino acids) that contains conserved con-
sensus phosphorylation sites (Fig. 2). Like the cldns,

JAM cytoplasmic tails end in PDZ binding motifs that
interact with PDZ3 of ZO1, as well as with other PDZ
domain containing proteins, including afadin,
MUPP1 and PAR3.47

The carboxyl terminal of human JAM-A, -B and -C
all end in the conserved sequence S(295)-S(296)-F
(297)-I/V/L(298)-V/I(299). Structural analysis dem-
onstrated that S(296) is a critical component of inter-
action with ZO-148 and high throughput MS has
identified this as a phosphorylation site. Although
there is no evidence for an effect of phosphorylation
at S(296)49 on interaction with ZO-1 or other PDZ
domain containing proteins, possible phosphorylation
at this site might regulated the affinity or specificity of
interaction with tight junction PDZ containing
protein.

In epithelial cells, JAM-A recruits atypical Protein
Kinase C (aPKC) to nascent tight junctions where it
phosphorylates JAM-A at S285 (S284 in human JAM-
A). Total JAM-A is normally present at tight junctions
and also to a variable extent along the lateral mem-
brane, but JAM-A S285P is exclusively localized to
tight junctions.50 This phosphorylation is required for
the full development of the paracellular barrier and is
negatively regulated by Protein Phosphatase 2A
(PP2A), which is also involved in de-phosphorylation
of other tight junction proteins.50,51 JAM-A S285
phosphorylation increases as cell contacts mature,50

and Burridge and colleagues52 reasoned that tension
associated with junction formation might stimulate
JAM-A phosphorylation at this site. They used anti
JAM-A antibody-coated (to the extracellular domain)

Figure 2. JAM-A, CAR and CLMP cytoplasmic domains. Red text, phosphorylation sites identified by MS (14; blue highlighted residues are
referred to in text, double underline identified regions predicted to be disordered (see text).
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paramagnetic beads to apply tension to JAM-A and
found tension increased JAM-A phosphorylation at
S284; further, tension applied to JAM-A activated
RhoA in a phosphorylation-dependent fashion. Inhi-
bition of RhoA activity is associated with barrier dis-
ruption,53 which might explain in part how JAM-A
phosphorylation regulates barrier function. However,
the exact mechanism is unclear.

It seems likely that other phosphorylation sites are
important in JAM-A function, but they are less well
studied. For example, T273 is required for the devel-
opment of hepatocyte polarity49 and Y280 develop-
ment of tube formation by endothelial cells [54]. In
addition, tyrosine phosphorylation of JAM-A in plate-
lets modulates integrin signaling;55 it is not clear if a
similar modification is relevant in epithelial cells.
However, given that JAMs play myriad roles and bind
to a variety of proteins, it is likely that other phosphor-
ylation sites are important, perhaps in altering the
affinity for specific binding partners and signaling
pathways.

JAM-C, which has been localized both to desmo-
somes56 and tight junctions57 is also found in a variety
of tumor cell lines58 where its function is unknown.
Mandicourt et al.59 demonstrated that exogenous
expression of JAM-C in a tumor cell lacking the endog-
enous protein improved epithelial barrier function. Fur-
ther, these authors demonstrated that phosphorylation
of JAM-C S281 was required for improved tight junc-
tion function, since mutation of this residue to alanine
blocked the epithelial phenotypic change.

A JAM-related protein, the Coxsackie and Adeno-
virus Receptor (CAR) has also been identified as a
tight junction protein60 that interacts with both ZO-
160 and MUPP1.61 Although addition of peptides cor-
responding to the extracellular domain of CAR inter-
fere with recovery of TER after junction disruption
following calcium removal,60 it seems likely that CAR
may also play a role at the adherens junction. Morton
et al.62 demonstrated that unphosphorylated CAR was
involved in E-cadherin endocytosis and that when two
residues in the cytoplasmic tail of CAR were phos-
phorylated by PKCd, this blocked the endocytosis
stimulated by over-expression of wild-type CAR.
These results suggested that CAR normally plays a
role in E-cadherin recycling and that CAR phosphory-
lation might stabilize E-cadherin at the membrane.
One caveat to this study is that the fluorescent tag
used to follow CAR localization is likely to block

interaction with PDZ domain binding and thus may
alter localization. These two sites are not found in the
canonical JAMs, but another JAM family member,
CLMP (CAR-like membrane protein) has a serine and
threonine-rich tail with potential phosphorylation
sites in the same region. CLMP is required for intesti-
nal development and its absence results in short bowel
syndrome.63,64 It has been shown to localize at tight
junctions65 and it can mediate cell-cell adhesion65 but
more study is required to understand its specific func-
tional role and the role of phosphorylation.66

TAMP family phosphorylation

Occludin Phosphorylation

Occludin (Ocln) was the first identified tight junction
transmembrane protein;67 like cldns, it is a tetraspan
protein and most phosphorylation sites are found in
the C-terminal cytoplasmic domain14 (Fig. 3) It was
early identified as being multiply phosphorylated.68

Ocln, although normally concentrated at tight junc-
tions, is found all along the lateral membrane; in an
elegant study, Tsukita and colleagues demonstrated
that ocln at the lateral membrane was phosphorylated
at a much lower level than the highly phosphorylated
junctional ocln.68 Following this initial observation,
there were a large number of studies that correlated
the degree of ocln phosphorylation with its localiza-
tion; in most cases, ocln dephosphorylation, as mea-
sured by changes in migration in SDS-PAGE, was
correlated with barrier loss,69–73 reviewed in.74 A large
number of kinases and phosphatases have been impli-
cated in regulation of ocln phosphorylation, including
CK2,75 cYES,76 CK1,77 PKC,78 Rho kinase,79 Src,80 G-
coupled receptor kinases (GRK),81 PP2A,51 density
enhanced phosphastase 182 and PTPN2 (non-receptor
protein tyrosine phosphatase N2).83

Although correlations between ocln phosphoryla-
tion with localization and with different signaling
pathways were noted soon after the discovery of ocln,
mechanistic studies on the importance of specific
phosphorylation sites are relatively recent. An elegant
pair of studies from the Antonetti laboratory identified
a number of ocln phosphorylation sites84,85 and
important functional consequences associated with
phosphorylation of one of them. These authors found
S490 was phosphorylated in response to VEGF treat-
ment and that this phosphorylation attenuated inter-
action with ZO-1, suggesting a molecular mechanism
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for ocln dissociation from the tight junction. In addi-
tion, mutation of S490 to a non-phosphorylatable ala-
nine suppressed VEGF-induced ubiquitination, tight
junction protein trafficking and the increase in perme-
ability associated with VEGF treatment. More recent
work from this group identified PCKb as the relevant
kinase.86 Unexpectedly, Antonetti and colleagues also
has implicated this phosphorylation site in ocln-
dependent regulation of mitotic entry87 and in control
of VEGF-induced neovascularization.88 These data
suggest that phosphorylation of ocln at S490 could be
an important site in the coordination of endothelial
proliferative response to injury associated with tight
junction barrier changes.

Antonetti and colleagues went on to analyze the
structural contacts between ZO-1 and ocln and identi-
fied a potential stabilizing phosphorylation site within
the ocln tail, S471.89 In a more recent study, they dem-
onstrated that over-expression of ocln S471A blocked
monolayer maturation and normal tight junction pro-
tein localization, consistent with a requirement for
phosphorylation at this site in meditating normal
interactions with ZO-1 and cell packing.81

In addition to these phosphorylation sites, Dorfel
and Huber90 identified a phosphorylation hotspot
within the ocln c-terminal domain, an 11 amino acid
stretch from 398-408. Within this region, Raleigh
et al.91 had found that inhibition of CK2-mediated

Figure 3. Ocln, tricellulin and marvelD3 cytoplasmic N- and C-terminal domains. Red text, phosphorylation sites identified by MS14; blue
highlighted residues are referred to in text, double underline identified regions predicted to be disordered (see text). Yellow highlighted
area in ocln C-terminal domain identifies area with structural information.89,107
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phosphorylation of ocln at S408 resulted in increased
TER. Dephosphorylated ocln interacted with ZO-1
and through ZO-1 with cldn 2; these interactions were
attenuated by S408 phosphorylation. The authors
speculated that phosphorylation decreased interaction
between ZO-1, cldn2 and ocln, affecting the dynamic
behavior among these proteins and resulting in
decreased paracellular permeability by disrupting the
cation-permeable paracellular pores formed by cldn2.
In contrast to the findings of Raleigh et al., ocln T400
and T404 were also identified as CK2 phosphorylation
sites and when T400, T404 and S408 were mutated to
phosphomimetic amino acids, Huber and colleagues
found diminished interaction with ZO-2 and
increased TER;92 some differences were seen between
the effects of the mutations on interactions with ZO-1
and ZO-2. Also within this region is T403, which with
T404 has also been reported to be a phosphorylation
site for PKCh;93 expression of wild-type or dominant
active PKCh enhances tight junction assembly, similar
to what was reported by Huber and colleagues.92

Phosphorylation of T403/4 was associated with tight
junction assembly, since T403/4A ocln mutants fail to
localize to tight junctions, while T403/4D mutants
block the ability of a PKCh inhibitor to disrupt ocln
localization. The reason for the different effects of
phosphorylation in this small region is unclear, but
may reflect differences in cell lines and/or relative cldn
expression levels and requires further investigation.

Along with serine and threonine ocln phosphoryla-
tion, tyrosine phosphorylation of ocln has also been
implicated in both tight junction disassembly;71,94 and
assembly76 however, most studies have reported that
tyrosine phosphorylation is predominantly associated
with diminished junctional ocln. Both Y398 and 402
phosphomimetics have been shown to block binding to
ZO-1 and to destabilize ocln at tight junctions.95 In
one unusual example, ocln Y473P was localized to the
leading edge of wounded epithelial monolayers; where
is was reported to recruit the phosphoinositol-3-kinase
regulatory subunit, p85a and thus activate Rac1 to pro-
mote lamellipodial formation and migration.80

Tricellulin and MarvelD3 phosphorylation

Both tricellulin and marvelD3 are ocln-related pro-
teins; marvelD3, like ocln, is distributed along bicellu-
lar tight junction contacts96,97 while tricellulin is
concentrated at tricellular contacts. Tricellulin is it

critical for regulation of paracellular flux of larger
molecules98 while the role of marvelD3 is more com-
plex.99 Both tricellulin and marvelD3 are reported to
be phosphoproteins,14 but in contrast to ocln, tricellu-
lin and marvelD3 have relatively extended intracellu-
lar N-terminal domains which contain a significant
number of phosphosites; in the case of marvelD3,
most phosphorylation sites lie in this domain (Fig. 3).
All phospho sites to date within both tricellulin and
marvelD3 have been identified solely by high through-
put MS analysis, without direct experimental verifica-
tion, so that the importance of these sites remains to
be explored. As an aside, tricellulin is concentrated at
tricellular contacts through interaction with angulin1/
LSR, an immunoglobulin superfamily transmembrane
protein. Although little is known about tricellulin
phosphorylation, a recent study demonstrated the
requirement for JNK1/2-mediated phosphorylation of
angulin 1/LSR at S288 for its localization, and thus
localization of tricellulin, to the tricellular junctions.100

Future approaches

Although it is possible to deduce some general rules
from the above studies, for example, that serine/threo-
nine phosphorylation of the cldn and JAM C-terminal
domains is (mostly) associated with localization at the
tight junction, while tyrosine phosphorylation of
either cldns or ocln results in junction disruption,
most findings referenced in this review are necessarily
simplistic. However, these studies at a minimum iden-
tify key areas and relevant pathways that should allow
us to ask increasingly sophisticated questions about
the importance of tight junction protein phosphoryla-
tion. For example, the growing availability of struc-
tural information (as in34,89) can be used to guide
mutational analyses and interpretations about phos-
phorylation in well-ordered protein domains. In addi-
tion, the recognition that intrinsically disordered
protein domains are enriched in phosphorylation101

and are particularly important in trafficking and pro-
tein localization102 is highly relevant. The cytoplasmic
domains of cldns and JAM-A, as well as regions
within the ocln tail are predicted to be disordered by
several algorithms;103,104 phosphorylation in these
regions has different implications than that in highly
structured domains.12 Further, it is important to
remember that all of the tight junction integral mem-
brane proteins have multiple phosphorylation sites
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that in combination are likely to have complex and
interacting contributions to their behavior. In many
cases the domains in other proteins with which these
phosphorylated proteins interact are themselves likely
to be variably phosphorylated; for example, it has
recently been shown that threonine phosphorylation
on T770/T772 in the GUK (guanylate kinase) domain
of ZO-1 by PKCe disrupts interaction with ocln.105

Phosphorylation can be difficult to detect, is dynamic
and reversible and can have subtle long range as well
as large local effects. As algorithms improve, molecu-
lar modeling is likely to be increasingly useful in pre-
dicting how phosphorylation might alter protein
interactions.106

Dynamic phosphorylation changes are clearly rele-
vant to regulation of the interactions and stability of
tight junction proteins, and better understanding of
the role of this post-translational modification will
provide important biologic and potentially therapeutic
insights in the regulation of the paracellular barrier.
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