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Abstract

Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the 

hippocampus, where place cells are active in spatially restricted locations. One feature of the grid 

population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the 

difficulty in perturbing grid scale without impacting the properties of other functionally-defined 

MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. 

Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing 

grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale 

expansion resulted in place scale expansion in fields located far from environmental boundaries, 

reduced long-term place field stability and impaired spatial learning. These observations, 

combined with simulations of a grid-to-place cell model and position decoding of place cells, 

illuminate how grid scale impacts place coding and spatial memory.

Proposed to serve as a neural metric for self-localization, grid cells in medial entorhinal 

cortex (MEC) fire in periodic patterns to form hexagonal arrays that tile the environment1. 

Grid scale, the spacing between the grid vertices and the size of grid fields, increases along 

the dorsal-ventral MEC axis1. Computational work2–6 has proposed that this diversity in grid 

scale provides a spatial input capable of generating hippocampal place cells, which fire in 

spatially restricted locations7. However, while grid cells project to the hippocampus8, the 

examination of place cells in the absence of grid cells has produced mixed results. 

Temporally-restricted MEC inactivation induced place cell re-mapping9, 10 and larger 

interventions, such as MEC lesions, resulted in place field expansion11, 12. However, these 

manipulations eliminated, in addition to grid cells, other functionally-defined MEC neurons, 

such as border cells that encode environmental boundaries and head direction cells that fire 

when an animal faces a particular direction13, 14. More selective manipulations of grid cells 

have revealed they are not necessary for the formation of place cells. For example, the loss 
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of grid periodicity after medial septal inactivation does not disrupt place cell firing and 

developmental work demonstrated that place cells have stable fields before the emergence of 

grid cell firing patterns15–18.

Importantly, previous studies that examined the impact of grid cells on place coding 

involved a total loss of grid cells9–11, 17, 19, degradation of the grid structure15, 16, 20, or 

manipulation of multiple functionally defined cell-types21. This could obscure how grid cells 

normally effect place cells when their periodicity is intact. Place cells likely receive inputs 

uniformly distributed across space, with non-linear amplification of certain inputs driving 

field formation22, 23. Removal versus modification of an input could have different effects, 

with each manipulation revealing principles for how inputs drive place cells. Thus, while 

grid cells are not necessary for place cells to form coherent and stable fields15, 16, this does 

not negate the idea that grid cells play an important role in controlling place cells when 

present and spatially stable.

Yet, selectively perturbing a specific grid cell feature, such as spatial scale, remains 

challenging. Grid cells are anatomically intermingled with multiple functionally-defined cell 

types13, 14, 24 and genetic markers tightly corresponding to specific MEC cell classes are 

lacking25, 26. These issues have not only made it difficult to study how grid scale impacts the 

place code but have left the role of grid scale in spatial navigation and memory unresolved. 

Theoretical and computational work suggest that the representation of space at multiple 

scales allows the grid population to provide a map of space that is simultaneously high in 

spatial resolution and large in its spatial range, features which could have implications for 

how different grid scales support behavior27, 28. To experimentally test the impact of grid 

scale on place cell coding and behavior we took advantage of the expansion in grid scale 

observed after the loss of HCN1 channels29, 30, which leaves grid periodicity and other 

functionally-defined MEC neurons intact. While previous work deleted HCN1 across the 

forebrain29–31, we used a viral approach to knockout HCN1 in the MEC of adult mice, 

allowing us to examine how grid scale controls place codes, navigation and memory.

Results

Selective knockout of MEC HCN1 channels

Previous work demonstrated that germline knockout of forebrain HCN1 channels increased 

both grid and place scale30, 31. To selectively examine how grid scale impacts place coding 

and behavior, we regulated HCN1 channel expression specifically in the MEC by injecting 

Cre-expressing AAV (AAV-DJ CMV cre-GFP) into the MEC of adult floxed HCN1 

knockout mice (iCre-KO) and their wildtype littermates (iWT) (Fig. 1a). GFP was well 

constricted to and detected in a large portion of MEC (Fig. 1b–c, Online Methods and 

Supplementary Figs. 1–4). Whole-cell patch clamp recordings confirmed that the Cre-

mediated knockout of HCN1 reduced I(h) (Supplementary Fig. 5).

Loss of MEC HCN1 channels selectively impacts grid scale

To investigate if the loss of MEC HCN1 in adult mice specifically impacted grid scale, we 

implanted tetrodes into 29 mice (12 iWT; 17 iCre-KO) and recorded cells in MEC (iWT n = 
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527; iCre-KO n = 600) as mice explored open arenas. We considered MEC coding properties 

in two ways. First, we identified grid, border, spatially-stable, head direction and speed cells 

by performing a shuffling analysis (Online Methods) (Supplementary Fig. 6). Using this 

approach, we found 37 iWT and 62 iCre-KO grid cells (Fig. 1d). While the magnitude of 

periodicity, mean firing rate (FR) and spatial stability of grid cells did not differ between 

groups, both grid spacing and field size were significantly expanded in iCre-KO compared to 

iWT mice (mean ± SD; spacing: iWT = 36.26 ± 9.27 cm, iCre-KO = 42.16 ± 10.53 cm, Z = 

−3.09, p = 0.0020; field size: iWT = 489.29 ± 301.62 cm2, iCre-KO = 502.64 ± 207.26 cm2, 

Z = −2.20, p = 0.028, two-tailed Wilcoxon rank sum [WRS] tests) (Fig. 1d–f). This 

difference in scale did not reflect different dorsal-ventral (DV) recording locations between 

the two groups (Supplementary Fig. 7). We did not detect any significant changes in the 

coding properties of other functionally-defined MEC cell types, including: border cells, 

spatially stable cells not classified as grid or border cells, putative interneurons (mean FR > 

10 Hz)24, head direction cells and speed cells (Table 1, Supplementary Fig. 8–9).

Second, we used a general statistical approach to capture the coding properties of MEC 

neurons32. We fit multiple, nested linear-nonlinear-Poisson (LN) models to the spike train of 

each cell, enabling us to quantify how well the position (P), head direction (H) or running 

speed (S) of the animal predicted single cell spiking activity (Figure 1g–k, Supplementary 

Fig. 10, Online Methods). This model-based approach does not classify neurons based on 

specific pre-defined firing rate patterns and thus, captures coding in a significantly larger 

proportion of MEC neurons than shuffling analyses (# classified cells: shuffled = 879/1127, 

LN model = 1025/1127, Z = −8.49, p ≪ 0.0001, 1-sided Binomial test). Using the LN model 

approach, we found equal proportions of MEC neurons encoding P, H, or S in iWT and iCre-

KO mice (Supplementary Fig. 10). For cells that significantly encoded P, H or S, there was 

no significant difference between groups in the mutual information between the navigation 

variable and neural spikes (Fig. 1g). As MEC contains a large number of cells that encode 

the spatial location of the animal but do not show grid or border firing patterns32, 33, we then 

considered cells that significantly encoded P but were not classified as grid or border cells. 

We found no significant differences in multiple coding features of this population of P-

encoding cells, consistent with our analyses of spatially modulated cells identified using 

shuffling (Fig. 1h). Finally, given the reported heterogeneity in how MEC neurons encode 

speed32, we examined cells S-encoding cells, many of which were not detected by our 

shuffling analysis. These included, for example, speed cells that had a negative or non-

monotonic firing rate relationship with running speed (Supplementary Fig. 10). We found no 

significant differences in the speed modulation of speed cells or the degree of curvature in 

their firing rate profiles (Fig. 1i–k). This result held for grid cells that significantly encoded 

S (Fig. 1k). Combined, these findings are consistent with our analyses using the shuffling 

approach to classify cell-types.

Finally, we examined if MEC HCN1 deletion impacted MEC or hippocampal temporal 

signals (Table 1, Supplementary Fig. 9). Theta power, frequency, and the running speed 

modulation of theta, as well as slow and fast gamma power, were all comparable between 

iCre-KO and iWT mice (all p > 0.05). Taken together, these data indicate that the impact of 

HCN1 on MEC coding properties is highly specific to grid scale, pointing to this 
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experimental model as an ideal entry point for the investigation of how grid scale impacts 

place coding and behavior.

Place and grid cell scale expansion occur in concert

We next asked how an increase in grid scale influenced spatial coding in dorsal 

hippocampus8. We recorded CA1 place cells in iWT (n = 11) and iCre-KO mice (n = 8) as 

they explored open arenas (Fig. 2a, Supplementary Fig. 2). Place field size was significantly 

larger in iCre-KO compared to iWT mice (Fig. 2b–c, Supplementary Fig. 11–12). Consistent 

with this, the percentage of the environment covered by firing fields and the mean firing rate 

(FR) across the environment were higher in iCre-KO place cells (Fig. 2d–e). This FR 

difference reflected the increased place field size in iCre-KO mice rather than increased 

firing outside of fields, as the spatial selectivity index was not significantly different between 

groups (mean ± SD; iWT = 1.08 ± 0.26, iCre-KO = 1.06 ± 0.27, Z = 0.53, p = 0.60, two-

tailed WRS). In addition, in a separate group of iWT and iCre-KO mice trained to run on a 

linear track, analysis of individual passes through place fields demonstrated that the 

expansion in field size represented a true scale expansion, rather than place fields slowly 

drifting over the course of the session (Supplementary Fig. 11–12).

Despite the increased place scale, other spiking features of place cells were similar between 

groups (Table 1). In addition, the temporal dynamics of place cell phase precession remained 

intact in iCre-KO mice, consistent with previous work demonstrating both that MEC is 

necessary for hippocampal phase precession34 and that the loss of forebrain HCN1 did not 

impact MEC theta phase precession29 (Supplementary Fig. 11).

Developmental and pharmacological approaches have suggested that grid cells 

predominately influence place cells with fields located far from environmental 

boundaries15, 20, 35. To examine this idea, we quantified place field size as a function of the 

field’s distance from the boundaries of the arena. In both iWT and iCre-KO mice, place field 

size was positively correlated with distance from the nearest boundary (Fig. 2f). However, 

the slope of this correlation was significantly steeper in iCre-KO mice, suggesting that the 

increase in grid scale primarily effected the size of place fields located far from boundaries. 

To further investigate this, we compared the size of place fields located near the center 

versus the boundaries of the arena. The difference in field size between these locations was 

more pronounced for iCre-KO compared to iWT mice (Fig. 2g). Taken together these data 

indicate that, when present, grid scale is an important determinant of place scale, with the 

strength of this influence likely dependent on the location of place fields relative to 

environmental landmarks.

Grid scale expansion impacts long-term place stability

While the scale of the place code could impact how accurately an animal can decode its 

current position, the long-term maintenance of place field stability across multiple exposures 

to the same environment has been proposed as a vital element of the spatial memory system. 

MEC input likely plays a role in the maintenance of the place map, as inactivation of MEC 

induces a near instantaneous change in the configuration of place fields, a phenomenon 

referred to as remapping9, 10, 34. However, which features of entorhinal coding drive place 
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stability versus remapping, as well as what impact place cell stability might have on 

memory, remain unresolved.

To address the role of grid scale in place cell stability, we compared the stability of iWT and 

iCre-KO place cells within a single session and across days within the same spatial context 

(Fig. 3a and Supplementary Fig. 13, 14). While stability did not differ across a single session 

(mean ± SD; Pearson’s correlation coefficient: iWT = 0.56 ± 0.23, iCre-KO = 0.60 ± 0.23, Z 
= −1.24, p = 0.21, two-tailed WRS), place cell stability across 24 hours was significantly 

lower in iCre-KO compared to iWT place cells (Fig. 3b). Suggesting that this decrease in 

iCre-KO long-term place stability reflected remapping, rather than degeneration, spatial 

information content remained similar across days (iWT Z = 0.013, p = 0.99; iCre-KO Z = 

0.64, p = 0.52, two-tailed Wilcoxon signed-rank tests).

We then examined the degree to which place cells remapped across days in iWT and iCre-

KO mice, which can consist of a change in firing rate or a shift in the location of a place 

field36, 37. While changes in firing rate across days were similar between iWT and iCre-KO 

(mean ± SD; rate difference index iWT = 0.37 ± 0.26, iCre-KO = 0.36 ± 0.39, Z = −0.42, p 

= 0.68, two-tailed WRS), iCre-KO place fields shifted across days to a larger degree than 

iWT place fields, with 80% of iWT place cells shifting less than 8 cm across days (median 

shift iWT = 2.50 cm, iCre-KO = 14.58 cm, Z = −3.27, p = 0.0011, two-tailed WRS) (Fig. 

3c). This suggests that shifts in place field location drove the reduction in iCre-KO across-

day stability values, an idea supported by the correlation between shift-magnitudes and 

across-day correlation coefficients in both groups (Fig. 3d). Cells that were simultaneously 

recorded shifted independently of one another (Supplementary Fig. 14d), consistent with 

previous place cell remapping work37, 38. The distributions of across-day correlation 

coefficients for iWT and iCre-KO mice were significantly greater than shuffled distributions 

(Fig. 3b), indicating that place maps across days were not completely independent. However, 

significantly fewer place cells remained stable across days in iCre-KO compared to iWT 

mice (place cells with an across-day correlation coefficient > 95th percentile of the shuffled 

distribution: iWT = 17/25 [68%], iCre-KO = 11/36 [31%], Z = 2.89, p = 0.0039, two-tailed 

binomial test). Taken together, these data indicate that larger grid scales increase the 

propensity of place cells to remap across days, and that this remapping reflects changes in 

place field location.

Winner-take-all dynamics, grid scale and remapping

How does grid scale influence the propensity of place cells to remap even when spatial 

context remains the same across days? Computational and experimental works have 

suggested that place cell remapping can be induced by rotation or phase shift in the grid 

pattern, or a change in grid firing rate3, 21, 39. However, we found that grid cells remained 

spatially stable across days in iWT and iCre-KO mice (Supplementary Fig. 14). To better 

understand how grid scale influences long-term place stability we next implemented a 

computational model of place cell formation, where place fields are formed via a winner-

take-all competition40. In the model, place cells received two types of input: modular grid 

cell inputs and “unstable spatial” inputs. Grid cell inputs remained constant across two 

consecutive simulations (i.e. days). The activity of unstable spatial inputs was represented by 
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Gaussian fields and were re-drawn from one simulation to the next, representing the long-

term spatial instability of some place cell inputs41, 42. Competitive inhibition between place 

cells limited the number of cells active at any given location of the environment. Although 

the exact number of grid inputs received by place cells is unknown, studies suggest a range 

up to ~100043. To explore values near this range, we varied the number of grid and unstable 

spatial inputs, as well as the ratio between each input type, across different iterations of this 

model (i.e. “conditions”).

To test the impact of increased grid scale on place cell remapping we ran simulations over 

which we varied the spacing of the smallest grid module, which set the spacing for all 

successive modules (Fig. 4a). The model recapitulated our experimental findings. First, 

increasing the scale of grid inputs increased the size of place fields (Supplementary Fig. 15). 

Second, the simulations revealed a reduction in the Pearson’s correlation of place maps 

across days as the scale of the grid inputs increased. This result was robust and independent 

of the exact parameters used in the model: reduced stability with increased grid scale was 

observed across all conditions tested, in which we varied the number of grid and unstable 

spatial inputs (Fig. 4b–d) or the size of the unstable spatial inputs (Supplementary Fig. 15).

How does grid scale control place cell stability in the presence of winner-take-all dynamics? 

We hypothesized that linear combinations of smaller-scaled grid cells result in an input 

pattern that has large peak values in specific spatial locations. This type of input then forms 

place fields resistant to changes in lower-amplitude unstable spatial inputs, allowing them to 

remain stable across simulations. We found several features in our simulation consistent with 

this hypothesis. First, the effect of grid scale on place cell remapping strengthened as the 

ratio of grid to unstable spatial inputs increased (Fig. 4e). Second, we examined the activity 

maps resulting from grid inputs, which represent the strength of the grid cell input to a single 

place cell at any given point in physical space (Fig. 4a). We found that the peak value for 

this grid input declined with increased grid spacing, as the likelihood of grid fields spatially 

coinciding decreased (Fig. 4f and Supplementary Fig. 15). Further, we found a significant 

relationship between the peak value of the grid input and the correlation coefficient of place 

maps across days (Fig. 4g). Finally, the correlation between the activity map for grid inputs 

and the resulting place map became less coupled as the scale of grid inputs increased, 

suggesting that grid input had less influence on the resulting place field location as grid scale 

increased (Fig. 4h). Together, these observations suggest that the activity profile of grid input 

across the environment changes with scale, impacting the degree to which grid inputs 

determine the location of the place field. Place cells receiving smaller-scale grid input may 

be driven strongly by grid inputs, whereas those receiving larger-scale grid inputs may be 

more heavily influenced by unstable spatial inputs that change over time.

Decoding accuracy after changes in place scale and stability

Given our experimental findings, we next asked how place scale versus long-term stability 

impact an animal’s ability to estimate its current position. Using a maximum-likelihood 

decoding framework, we computed the accuracy of decoders trained on simulated iWT and 

iCre-KO place cell datasets (Fig. 5a). These simulated data sets allowed us to examine how 

features of the place code impact position decoding assuming more realistic numbers of 
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active place cells, which is higher than what our data captured. First, we matched simulated 

field sizes for iWT and iCre-KO datasets to the experimentally observed distributions. For 

small populations of place cells (less than ~100), the iCre-KO model outperformed the iWT 

model, as the larger scaled iCre-KO place cells covered more of the environment. However, 

the difference in error between models decreased with cell number (5000 shuffles, p = 6.0e–

4) (Fig. 5b–c) and at more realistic place cell numbers (1000 neurons), decoding from iWT 

cells was only slightly better (< 1 cm difference) than from iCre-KO cells (Fig. 5c). These 

results suggest that the increased size of iCre-KO place fields is unlikely to impair the 

resolution of encoded position to a degree that is behaviorally relevant, consistent with 

theoretical work showing that in 2-dimensions (for 2-dimensional variables), the width of 

tuning curves does not affect the amount of information conveyed once there is coverage of 

the whole space44.

Next, to explore how the reduced long-term stability of iCre-KO place cells impacts 

decoding accuracy, the decoder was trained on datasets simulating iWT and iCre-KO place 

maps, but performance was assessed on a second day in which the field locations of each 

cell were shifted by values we observed experimentally. The iCre-KO model exhibited 

reduced decoding accuracy compared to the iWT model across the entire range of 

simulations, with the absolute difference increasing with cell number (5000 shuffles, p = 

0.031) until reaching ~4 cm at 1000 cells (Fig. 5d–e). Together, these results suggest that the 

instability, rather than the size, of iCre-KO place cells would have a larger impact on the 

accuracy of position coding.

Impaired rapid place learning in iCre-KO mice

Finally, to examine how impaired position decoding impacts behavior, we examined 

animals’ performance on the delayed-match-to-place (DMP) task, a hippocampal-dependent 

water maze variant that demands a flexible knowledge of the environment (Fig. 6, 

Supplementary Fig. 3)45. The task assesses the ability of rodents to rapidly learn the position 

of a hidden platform, whose location changes each day, within the context of a familiar 

environment. DMP testing began after five days of training, in which mice learned to swim 

to a hidden platform whose location remained constant. Suggesting that iCre-KO mice can 

accurately navigate to a fixed goal location, there were no differences in performance 

between the two groups on the training task (Fig. 6a–b and Supplementary Fig. 3) and both 

groups retained long-term memory for the goal location on a probe test administered 24 

hours after the last training session (Fig. 6c).

For the DMP task, the platform was moved to a new location each day, and the average 

performance on each of the four daily trials averaged across seven days of testing. The 

performance of iWT and iCre-KO mice was similar on the first trial of each day (t(19) = 

0.15, p = 0.88, two-tailed t-test). However, the rate of learning across trials significantly 

differed between the groups. The distance traveled by iWT mice to locate the platform 

decreased over the four trials, whereas iCre-KO mice did not show significant improvement 

across trials (Fig. 6d–f, Supplementary Fig. 3). Consistent with this finding, the average 

‘savings’ (reduction in path length between trials 1–2 and 3–4) was significantly greater in 

iWT compared to iCre-KO mice (Fig. 6g, Supplementary Fig. 3). The improved 
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performance of iWT mice in later trials was also reflected in their search strategies: 

compared to iCre-KO mice, iWT mice became increasingly focused on the area surrounding 

the platform location (Fig. 6h–i).

Deficits in rapid place learning in iCre-KO mice were not attributable to an overall 

difference in velocity or thigmotaxis (Fig. 6j–k). In addition, iCre-KO mice did not display 

visual, sensorimotor, or motivational impairments, performing comparably to iWTs on a 

cued version of the DMP task (Fig. 6l and Supplementary Fig. 3). Deficits did not reflect 

increased perseveration for the previous day’s platform location or the training platform 

location (visits to training platform iCre-KO, t(19) = 0.24, p = 0.81; visits to previous day’s 

platform, t(19) = 0.78, p = 0.45; two-tailed t-tests). Taken together with the intact 

performance on the training task (Fig. 6a), this suggests that iCre-KO mice can learn the 

general structure of the DMP task (e.g. that the environment contains a hidden platform and 

that finding this platform terminates the trial). However, unlike the training task, the DMP 

task requires that the mouse distinguish the current platform position (recent memory) from 

previous platform positions (remote memory). While precisely how place code stability 

supports recent versus remote memories remains incompletely understood, decreased long-

term place stability may result in interference between encoding of the current platform 

location and recall of remote spatial information regarding the environment or previous 

platforms.

Alternatively, it is possible that the iCre-KO manipulation impacted working memory. 

However, we found no difference in the performance of these same iWT and iCre-KO mice 

on a spontaneous Y maze alternation task (Supplementary Fig. 3). Thus, as a combined set 

of results, these data raise the possibility that increasing grid scale leads to decreased place 

stability, which in turn impacts the ability of mice to encode changing spatial goal locations 

within a single spatial context.

Discussion

While theoretical and computational works have proposed that grid scale impacts 

hippocampal coding and behavior2–5, 27, 28, the difficulty in selectively perturbing specific 

grid cell features has left these ideas experimentally untested. Here, we used a viral approach 

to knock out HCN1 channels in the MEC of adult mice, which increased grid scale but left 

the coding features of spatial, velocity and temporal MEC signals intact. In iCre-KO mice, 

the increase in grid scale expanded CA1 place scale and decreased long-term place stability. 

Simulations of large place cell populations, revealed that the experimentally observed 

decrease in iCre-KO long-term place stability led to larger decoding errors when estimating 

the animal’s position across days. The behavioral impact of this reduction in decoding 

accuracy became apparent in a task requiring mice to flexibly navigate to a goal location that 

moved each day. Combined, our data and simulations point to grid scale as a determinant of 

place scale and long-term stability, features that likely support an animal’s ability to rapidly 

learn multiple goal locations within a single spatial context.

These findings have implications for computational models that generate place cells. First, 

previous work that examined place cells in the absence of grid cells indicated that grid cells 
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did not impact the formation or maintenance of place fields15, 16, a finding inconsistent with 

models that use linear summation of grid cell input to drive place field formation2, 5, 6. At 

the same time, our data support the idea that, when present, grid scale is a significant feature 

of entorhinal input that is capable of shaping the place code. Our findings taken together 

with previous reports9, 15, 16 thus support models in which place cells receive inputs 

distributed across space, with spatial selectivity arising from the potentiation of subsets of 

these inputs22 or local hippocampal circuit computation40. In such a model, grid cells could 

influence the formation of place fields when present but have little impact on this process 

when absent. Moreover, the idea that place cell spatial selectivity reflects input-potentiating 

mechanisms is consistent with the expansion of place size we observed after grid scale 

expansion. Recent data points to coincidental activity between MEC and CA3 as a 

mechanism for generating large regenerative events in CA1 neurons called plateau 

potentials, with the prevalence of such events capable of creating place fields22. Inputs from 

grid cells with larger fields could thus interact with intrinsic hippocampal dynamics to cause 

an increase in the probability or duration of CA1 plateau potentials, leading to larger place 

fields, an idea future experiments could address.

The importance of local hippocampal dynamics in determining place field spatial selectivity 

is also reflected in our simulations of a winner-take-all model40. These simulations 

demonstrate how, in the context of a competitive hippocampal network, place cells that 

receive inputs from larger grid scales are more prone to remap in response to changes in 

unstable spatial inputs. The mechanism underlying this observation likely lies in the fact that 

inputs from large grid scales are less likely to overlap in a way that would create a strong 

spatial signal, allowing other inputs to dominate the location of the place field. This 

relationship however, likely depends on the degree of plasticity associated with various 

inputs, as previous manipulations that expanded grid scale and enhanced hippocampal 

plasticity at synapses receiving MEC input resulted in increased long-term place 

stability30, 31, 46. Even so, as grid spacing in ventral MEC is at least five times wider than 

spacing in dorsal MEC47 and a general dorsal to ventral topography exists in the projections 

from MEC to CA148, our simulations thus predict that, in the normal animal, ventral place 

cells should show more remapping than dorsal place cells when non-spatial cues change. 

This idea is consistent with experimental work demonstrating more remapping in ventral 

place cells after non-spatial manipulations, such as a change to the olfactory context49. 

Although we do not specify what anatomical sources might provide this unstable-spatial 

input, likely sources include the lateral entorhinal cortex, which encodes non-spatial 

contextual features41 or the hippocampal CA2 region, where neurons gradually change their 

coding features to reflect the passage of hours to days42. Our model predicts that elimination 

of these inputs would increase the stability of place maps, an idea future work could explore.

The decrease in long-term place stability we observed in iCre-KO mice had a clear 

behavioral impact when mice were required to encode novel goal locations within a single 

spatial context. Our data indicates a large subset of place cells in wildtype mice remain 

stable over days. However, the proportion of place cells that retained stable fields across 

days significantly decreased in iCre-KO mice. This decrease in long-term place stability 

could lead to errors when the mouse must integrate its current position and the location of a 

new goal within a familiar spatial context. As place maps in iCre-KO mice change 
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substantially from day to day, one possibility is that the map used to decode the animal’s 

current position did not match the map used to form a representation of the spatial context, 

or the map used to encode the location of the new goal. This mismatch between maps as a 

possible mechanism underlying the poor performance of iCre-KO mice on the DMP task is 

consistent with two other findings of the present study. First, it is consistent with our 

simulations of place cell networks, which demonstrates that the degree of iCre-KO place 

instability leads to significantly larger decoding errors across days in iCre-KO compared to 

iWT mice. Second, it is consistent with the fact that iCre-KO mice can navigate as well as 

iWT mice when the goal location can be located based on a visual cue, a strategy that likely 

supported their accurate behavior on the training task with a fixed goal location and on the 

cued version of the DMP task.

Together, our data reconciles studies describing varied effects of grid cell manipulations on 

place cells. Previously, the most selective manipulations of the grid network were achieved 

by inactivating the medial septum and thus triggering a loss of grid periodicity while 

preserving other MEC signals, causing a transient expansion in grid scale by introducing an 

animal to a novel environment, or lesioning MEC. First, with medial septal inactivation, the 

size of the environment appeared to determine the degree to which the loss of grid cells 

impacted place coding. When boundary information was readily available, for example in a 

small arena, the loss of grid cell periodicity did not impact the maintenance or formation of 

place fields15, 20. In larger open arenas however, place cells in the absence of grid periodicity 

did not form fields in the center of the box, where boundary information was less apparent20. 

Second, grid and place scale transiently expanded in novel environments and then contracted 

in concert as the environment becomes more familiar50. Combined, these findings are 

complementary to our work demonstrating grid cells play a stronger role in controlling place 

scale in conditions where input from border cells is weaker. In addition, our results of 

increased place scale and decreased place stability after grid scale expansion most closely 

mirror spatial changes in the place code observed after complete MEC lesions34. Taken 

together, these studies highlight a critical contribution for MEC spatial codes to the 

hippocampal place code. We take these findings further however, by both experimentally 

and computationally demonstrating how grid scale uniquely impacts long-term place 

stability and the ability to encode multiple spatial locations within a single spatial context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Knockout of HCN1 in MEC increases grid scale. (a) Virus expression near the injection site. 

Sections were stained against NeuN (red). The majority of neurons also express the nuclear 

fusion protein Cre-GFP (green). Scale bars: 100 μm. Arrows indicate virus-infected neurons. 

The rate of virus infection was determined from brain slices from 6 mice (mean ± SD, 71 

± 18%, n = 24 ROIs from 12 brain slices from 6 mice). (b) Flat maps from nine mice 

showing the extent of MEC infection; maps are plotted from lateral (left) to medial (right). 

Mouse identification number in italics. In these mice, virus was present within the majority 
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of MEC (mean ± SD; 60 ± 20% of total volume) and across the medial-lateral and dorsal-

ventral axes (medial-lateral: 98 ± 2.4%, dorsal-ventral: 75 ± 17.8%; n = 9 mice). (c) 
Example of virus expression across the medial-lateral axis of MEC in an individual mouse. 

Images of dapi and GFP were taken separately and then combined in Photoshop. The 

intensity of the blue and green channels were adjusted separately to allow for clear 

visualization of the GFP expression. Similar results were obtained in nine mice randomly 

selected for virus expression quantification. (d) Examples of grid cells recorded in iWT and 

iCre-KO mice. Rate maps (top rows) and autocorrelation maps (bottom rows) are color 

coded for minimum (blue) and maximum (red) values. Peak firing rates (left) and grid 

spacing (right) are marked at the top of each plot. Grid score, firing rates, and stability did 

not differ significantly between groups (mean ± SD; grid score: iWT = 0.49 ± 0.12, iCre-KO 

= 0.59 ± 0.25, Z = −0.98, p = 0.33, two-tailed WRS; FR: iWT = 1.11 ± 2.66 Hz, iCre-KO = 

1.75 ± 6.43 Hz, Z = 0.054, p = 0.96, two-tailed WRS; Stability controlled for grid scale F(1, 

96) = 0.66, p = 0.42, ɳ2 = 0.007, ANCOVA). (e-f) Cumulative distributions of grid spacing 

(e) and grid field size (f) in iWT (blue) and iCre-KO (red) mice (n = 37 iWT cells, 62 iCre-

KO cells). Grid field size was determined from the radius of the circle around the center 

field of the autocorrelation map. See Table 1 for statistics. (g) Cells identified as 

significantly encoding P, H or S using the LN model did not differ in mutual information 

(MI) between iWT and iCre-KO mice (mean ± SD; P cells spatial information iWT = 0.31 

± 0.29, n = 464, iCre-KO = 0.30 ± 0.29, n = 544, Z = 0.77, p = 0.44; H cells angular 

information iWT = 0.16 ± 0.35, n = 351, iCre-KO = 0.16 ± 0.30, n = 434, Z = −1.57, p = 

0.12; S cells speed information iWT = 0.034 ± 0.045, n = 227, iCre-KO = 0.034 ± 0.046, n = 

264, Z = 0.50, p = 0.62, two-tailed WRS tests). Boxes show the first and third quartiles, lines 

show the median. Whiskers indicate the range, except for data falling above the third quartile 

or below the first quartile by at least 1.5 times the interquartile range (plotted separately by a 

plus sign). (h) P cells not classified as border or grid cells in iWT and iCre-KO mice did not 

differ in MI (mean ± SD; iWT = 0.30 ± 0.29, iCre-KO = 0.27 ± 0.27, Z = 1.33, p = 0.18, 

two-tailed WRS; n = 355 iWT cells, 419 iCre-KO cells), percent of the environment covered 

by a field, or spatial stability (mean ± SD; % environment covered: iWT = 35.17 ± 32.52%, 

iCre-KO = 38.02 ± 33.53%, Z = −1.04, p = 0.30; stability: iWT = 0.18 ± 0.16, iCre-KO = 

0.19 ± 0.16, Z = −0.48, p = 0.63, two-tailed WRS tests). Box plots are depicted as in (g). (i) 
A similar proportion of grid cells in each group significantly encoded speed (16/37 iWT grid 

cells, 21/62 iCre-KO grid cells; Z = 0.93, p = 0.35, two-tailed binomial test). (j) S encoding 

cells in iWT and iCre-KO mice did not differ in their speed modulation (defined as 

(minimum FR – maximum FR)/mean FR) or curvature (mean ± SD; speed modulation: iWT 

= 0.90 ± 0.62, iCre-KO = 0.85 ± 0.53, Z = 1.01, p = 0.31; curvature: iWT = 0.15 ± 0.25, 

iCre-KO = 0.13 ± 0.20, Z = 0.95, p = 0.34, two-tailed WRS tests; n = 227 iWT cells, 264 

iCre-KO cells). (k) iWT and iCre-KO grid cells that also significantly encoded S did not 

differ in their speed modulation or curvature (mean ± SD; speed modulation: iWT = 0.93 

± 0.49, iCre-KO = 0.79 ± 0.39, Z = 0.78, p = 0.43; curvature: iWT = 0.13 ± 0.13, iCre-KO = 

0.12 ± 0.13, Z = 0.17, p = 0.87, two-tailed WRS tests; n = 16 iWT cells, 21 iCre-KO cells).
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Figure 2. 
Place scale expands in mice with an expanded grid scale. (a) Examples of place cells with 

fields within the boundary (left) and center (right) regions of the arena. The boundary width 

was set to 14 cm, the average width of all recorded border cells. Classification was based on 

the position of the largest field detected. Rate maps coded as in Figure 1. Peak firing rate 

(left) and maximum field size (right) are indicated at the top of each plot. Black dots denote 

firing fields. (b-e) Cumulative distributions of the mean place field sizes (mean ± SD; iWT = 

303.75 ± 204.07 cm2, iCre-KO = 438.71 ± 337.04 cm2, Z = −3.34, p = 8.3e-4, two-tailed 

WRS) (b), maximum place field sizes (mean ± SD; iWT = 373.34 ± 205.71 cm2, iCre-KO = 

524.40 ± 352.82 cm2, Z = −3.24, p = 0.0012, two-tailed WRS) (c), percentage of 

environment covered by fields (mean ± SD; iWT = 12.27 ± 6.1 %, iCre-KO = 15.3 ± 9.6 %, 

Z = −2.14, p = 0.033, two-tailed WRS) (d), and mean firing rate (mean ± SD; iWT = 0.28 

± 0.21 Hz, iCre-KO = 0.37 ± 0.32 Hz, Z = −2.38, p = 0.017, two-tailed WRS) (e), in iWT 

(blue) and iCre-KO (red) mice (n = 113 iWT place cells, 126 iCre-KO place cells). (f) 
Scatterplot demonstrating the increase in place field size as a function of the field’s distance 

from the nearest arena edge (iWT r(111) = 0.49, p = 3.5e-8, iCre-KO r(124) = 0.53, p = 

1.5e-10, Pearson’s correlation). The slope was significantly greater among iCre-KO cells 

(F(1,235) = 6.01, p = 0.015, ɳ2 = 0.025, ANCOVA; n = 113 iWT cells, 126 iCre-KO cells). 
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(g) Boxplot showing the sizes of place fields near the center (> 14 cm; 22 iWT cells, n = 35 

iCre-KO cells) versus the boundaries (< 14 cm; n = 91 iWT cells, 91 iCre-KO cells) of the 

environment. The difference in size between place fields located near the arena boundaries 

versus the arena center was larger for iCre-KO (red) compared to iWT (blue) place cells, as 

assessed by a two-tailed t-test on bootstrapped distributions of the mean difference (t(19998) 

= 192.30, p ≪ 0.0001; see Online Methods). Box shows first and third quartiles, a line 

shows the median. Whiskers indicate the range, except for data falling above the third 

quartile or below the first quartile by at least 1.5 times the interquartile range (plotted 

separately by a plus sign). *p<0.05, ***p<0.001
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Figure 3. 
Long-term place field stability is reduced after the loss of MEC HCN1 channels. (a) 
Examples of iWT (left) and iCre-KO (right) place cells recorded across two sessions 

separated by 24 hours. Rate maps coded as in Figure 2. Pearson’s correlation coefficient 

between maps is shown at top. Black dots denote firing fields. Right-most plots: cross-

correlograms between rate maps, coded for minimum (blue) and maximum (red) 

correlations; the peak correlation is indicated by a black dot. The difference between the 

center bin and the bin containing the peak correlation is shown at top. This measure 

describes the degree of place field shift across days. (b) Cumulative distribution of stability 

for sessions separated by 24 hours in iWT (blue; n = 25) and iCre-KO (red; n = 36) place 

cells. Across-day stability was significantly higher in iWT cells than in iCre-KO cells (mean 
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± SD; iWT = 0.52 ± 0.20, iCre-KO = 0.33 ± 0.25; Z = 2.81, p = 0.005, two-tailed WRS). 

Distributions of shuffled scores were obtained by randomly pairing place maps across days. 

Shuffled distributions for each group are show in black and gray, respectively (n = 1000 iWT 

shuffles, 1000 iCre-KO shuffles). (c) Histogram showing shift magnitude of place maps 

across 24 hours (D = 0.49, p = 8.33e-4, two-sample Kolmogorov-Smirnov test [KS]; n = 25 

iWT cells, 36 iCre-KO cells). Inset: The distributions of shift magnitudes for iWT and iCre-

KO were both larger than the corresponding shuffled distributions (iWT D = 0.68, p = 

8.6e-11, two-sample KS; iCre-KO D = 0.38, p = 6.0e-5, two-sample KS; n = 25 iWT cells, 

36 iCre-KO cells, 1000 iWT shuffles, 1000 iCre-KO shuffles). (d) The Pearson’s correlation 

coefficient of place cells recorded across sessions was inversely correlated with shift 

magnitude (iWT r(23) = −0.53, p = 0.0061; iCre-KO r(34) = −0.69, p = 3.9e-6, Pearson’s 

correlation; n = 25 iWT cells, 36 iCre-KO cells). Colors as in (b). Filled circles represent 

cells with correlations coefficients exceeding the 95th percentile of shuffled correlations.

Mallory et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2018 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Increasing grid scale reduces long-term place cell stability in a winner-take-all model of 

place field formation. (a) Individual examples of place cells simulated from small and large-

scale grid inputs (left: smallest grid module = 30 cm, right: smallest grid module = 60 cm). 

For each cell, the activity map resulting from grid input (left), unstable spatial input (middle) 

and the combination of grid and unstable spatial inputs (right) are shown, with warmer 

colors indicating regions of stronger input. The units of activity are a measure proportional 

to firing rate. Minimum and maximum activity values are reported below each map. The 

place maps resulting after winner-take-all dynamics are shown at right, with the Pearson’s 

correlation coefficient between the two maps indicated. Scale bar = 25 cm. (b) Across 9 

simulation conditions, in which the number of grid and unstable spatial inputs received by 

each place cell varied, the correlation coefficients for place maps across days declined with 

as the spacing of the smallest grid module increased. Each colored line shows the average of 

ten iterations for one condition (for each of the 9 conditions tested separately, all r(78) < 

−0.74, p < 2.51e-15, Pearson’s correlations). (c) Place cell correlations observed in 
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individual animals compared to correlations predicted by the model. Each circle represents 

the average correlation between place cells recorded across days in an individual animal 

(iWT shown in blue, n = 5 mice, iCre-KO shown in red, n = 6 mice). Each asterisk 

represents the average correlation obtained in one iteration of the model (n = 5 iterations), 

using parameters chosen to best match the experimental data (minimum grid spacings: 27 

cm for iWT, 37 cm for iWT; number of grid inputs: 1000; number of LEC inputs: 200). 

There was not a significant difference between the stability values for the experimental and 

simulated iWT data (p = 0.15, two-tailed WRS test) or the stability values for the 

experimental and simulated iCre-KO data (p = 0.18, two-tailed WRS test). However, there 

was a significant decrease in the stability values between simulated iWT and simulated iCre-

KO data (p = 0.0079, two-tailed WRS test). (d) The p-value for the Pearson’s correlation 

between grid scale and the correlation coefficient between place maps across days (n = 9 

simulation conditions). Each color represents a different simulation condition, as in (b). 

Dashed line indicates p = 0.001. (e) The slope between grid scale and the correlation 

coefficient between place maps across days becomes significantly steeper as the ratio of grid 

to unstable spatial inputs increases (r(7) = −0.91, p = 6.73e-04; Pearson’s correlation; n = 9 

simulation conditions). Mean ± SEM of 10 iterations is shown for each condition. (f) Peak 

total grid input decreases as the spacing of the smallest grid module increases (r(22) = 

−0.51, p = 0.011; Pearson’s correlation; n = 3 conditions [each with a different number of 

grid inputs], 8 grid scales). For each condition, the mean of 10 iterations is shown. Each of 

the 3 conditions tested individually also showed a significant correlation (n = 2000 place 

cells, 10 iterations, 8 grid scales; all r(159998) < −0.34, p ≪ 0.0001). (g) The correlation 

coefficient for place maps across days increases with peak total grid input, a finding that was 

consistent over all conditions and grid scales tested. Each line represents the average for one 

condition across all active place cells, 8 grid scales, and 10 iterations per scale (all r > 0.25, 

all p << 0.0001; Pearson’s correlation). A significant, positive correlation was also observed 

for all grid scales (all r > 0.20, all p < 3.5e-38). (h) The correlation between the activity 

maps of summed grid input, as in (a), and the place map resulting after winner-take-all 

dynamics decreased with the spacing of the smallest grid module (r(70) = −0.44, p = 

9.4e-05, Pearson’s correlation). For each of the 9 simulation conditions, the average of 10 

iterations is shown. For each condition tested separately, all r < −0.012, all p < 0.0090.
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Figure 5. 
Impaired decoding accuracy in iCre-KO mice. (a) Schematic of the decoding scheme used to 

estimate position. Top: depiction of the model used to assess the impact of place field size 

on decoding accuracy. Simulated spike trains were generated by combining simulated iWT 

or iCre-KO place field maps with the position trajectory. Spiking was assumed to follow a 

Poisson distribution. In the decoding phase, the simulated spike trains were passed through 

the decoder to generate an estimate of the animal’s position. A plus sign denotes the 

estimated position, an open circle denotes the actual position of the animal. Bottom: 

depiction of the model used to assess the impact of long-term place field stability on 

decoding accuracy. All aspects of the model are the same as those described above, except 

that the decoder was trained on simulated place maps from the previous day (n-1). The shifts 

in place maps across days were selected from those observed experimentally. Scale bars: 50 

cm. (b) Errors in estimated position for the scale model using simulated iWT (blue) and 

iCre-KO (red) datasets with varying numbers of cells. Here and in (c-e), the solid line 

represents the mean of 10 model iterations; shaded lines indicate the SEM. (c) In the scale 

model, the simulated iCre-KO dataset performed slightly more accurately at low cell 

numbers, but this advantage diminished with cell number. Difference in error using 1000 

cells [iWT - iCre-KO] ± SD: −0.027 ± 0.025 cm, t(18) = −3.41, p = 0.0031, two-tailed 

unpaired t-test. (d) Errors in estimated position for the stability model using simulated iWT 

(blue) and iCre-KO (red) datasets. (e) In the stability model, the error in estimated position 

was greater for the iCre-KO dataset at all cell numbers. Difference in error using 1000 cells 

[iWT - iCre-KO] ± SD: −3.85 ± 0.4, t(18) = −30.63, p = 5.6e-17, two-tailed unpaired t-test.
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Figure 6. 
Rapid place learning is impaired with the loss of MEC HCN1 channels. (a) Distance 

traveled during the pre-training MWM task was not significantly different between iWT 

(blue; n = 8) and iCre-KO (red; n = 13) mice (group×day interaction for distance traveled: 

F(4,76) = 0.36, p = 0.84, main effect of group: F(1,19) = 0.32, p = 0.58, repeated measures 

ANOVA). Plot shows mean ± SEM with individual data points overlaid. Inset: schematic of 

the MWM task. (b) Velocity did not differ between groups (main effect of group: F(1,19) = 

0.69, p = 0.42; repeated measures ANOVA; n = 8 iWT, 13 iCre-KO mice). Plot shows mean 

± SEM with individual data points overlaid. (c) Both groups spent significantly more time in 

the target quadrant than the other quadrants in a probe test conducted 24 hours after the last 

session of the MWM task (mean ± SEM; % time in correct quadrant: iWT = 52.70 ± 6.77, 

iCre-KO = 57.50 ± 6.76; main effect of quadrant type: F(1,19) = 21.94 p = 1.6e-4; main 

effect of group: F(1,19) = 1.15, p = 0.30, repeated measures ANOVA with group and 
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quadrant type as factors). The dashed line represents chance. Circles show individual data 

points (n = 8 iWT, 13 iCre-KO mice). Colored bars represent the means and black bars ± 

SEM. Additionally, for times when the animal was exploring the correct quadrant, the 

animals’ average distance from the previous platform location did not significantly differ 

between groups (mean ± SEM; iWT = 42.7 ± 5.66 cm, iCre-KO = 38.0 ± 4.88 cm, t(19) = 

0.61, p = 0.55, two-tailed unpaired t-test). (d) Distance traveled on the DMP task decreased 

across trials in iWT (blue, n = 8) but not iCre-KO (red; n = 13) mice (group×trial interaction: 

F(3,57) = 2.87, p = 0.044, repeated measures ANOVA with group and trial as factors). The 

distance traveled by iWT mice, but not iCre-KO mice, decreased over the four trials (main 

effect of trial: iWT F(3,21) = 6.70, p = 0.0024; iCre-KO F(3,36) = 0.23, p = 0.87; one way 

repeated measures ANOVAs). Plot shows mean ± SEM with individual data points overlaid. 

Inset: schematic of the DMP task. Grey circles mark the potential locations of the platform. 

(e-f) Distance traveled on the DMP by all iWT (e) and all iCre-KO (f) mice. Each colored 

line represents one subject. The black line shows the mean. (g) iCre-KO (red; n = 13) mice 

showed significantly less savings (difference in path length late versus early trials) than iWT 

(blue; n = 8) mice (mean ± SEM; iWT = 200.80 ± 41.46 cm, iCre-KO = 30.03 ± 40.35 cm, 

t(19) = 2.80, p = 0.011, two tailed t-test). Circles show individual data points. Colored bars 

represent the means and black bars ± SEM. *p<0.05. (h-i) The improvement of iWT on later 

trials was reflected in their search strategy. iWT (blue; n = 8), but not iCre-KO (red, n = 13) 

mice spent an significantly increasing proportion of their search path in the area surrounding 

the target platform (% path in target area, group×trial interaction: F(3,57) = 3.16, p = 0.031, 

repeated measures ANOVA) (h), and a similar trend was observed for duration (% duration 

in area surrounding, group×trial interaction: F(3,57) = 2.59, p = 0.062, repeated measures 

ANOVA) (i). Plots show mean ± SEM with individual data points overlaid. (j) The average 

velocity was not significantly different between groups (mean ± SEM; iWT = 19.62 ± 0.83 

cm/s, iCre-KO = 20.60 ± 0.76 cm/s, main effect of group: F(1,19) = 0.71 p = 0.41, repeated 

measures ANOVA). Plot shows mean ± SEM with individual data points overlaid. (k) Time 

spent in thigmotaxis was not significantly different between groups (main effect of group: 

F(1,19) = 0.44, p = 0.51, repeated measures ANOVA). Plot shows mean ± SEM with 

individual data points overlaid. (l) The distance traveled by iWT and iCre-KO mice was 

comparable on a cued-version of the DMP, in which a prominent proximal visual cue was 

erected above the platform (group×trial interaction: F(3,57) = 1.64, p = 0.19, repeated 

measures ANOVA; n = 8 iWT mice, 13 iCre-KO mice). Plot shows mean ± SEM with 

individual data points overlaid.
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Table 1

Firing and EEG-properties in medial entorhinal cortex and hippocampus

iWT iCre-KO

border cells 

n 86 71

border score 0.62 ± 0.092 0.61 ± 0.080 WRS Z = −0.20, p = 0.84

mean firing rate 1.13 ± 2.50 Hz 1.01 ± 1.73 Hz WRS Z = 0.34, p = 0.73

peak firing rate 3.69 ± 5.09 Hz 3.53 ± 5.00 Hz WRS Z = 0.22, p = 0.83

spatial stability 0.31 ± 0.22 0.27 ± 0.22 WRS Z = 0.87, p = 0.38

border width 14.43 ± 6.53 cm 14.23 ± 5.22 cm WRS Z =−0.30, p = 0.76

spatially stable cells 

n 32 38

mean firing rate 1.15 ± 1.11 Hz 1.99 ± 2.21 Hz WRS Z = −1.20, p = 0.23

peak firing rate 5.00 ± 4.37 Hz 6.15 ± 1.00 Hz WRS Z = −1.73, p = 0.084

spatial stability 0.37 ± 0.15 0.37 ± 0.17 WRS Z = 0.19, p = 0.85

mean field size 2473.45 ± 2233.2 cm2 2692.29 ± 2768.8 cm2 WRS Z = 0.12, p = 0.90

% box covered by fields 43.24 ± 30.72 % 45.58 ± 31.62 % WRS Z = −0.15, p = 0.88

interneurons 

n 15 22

mean firing rate 23.33 ± 26.46 Hz 23.37 ± 16.11 Hz WRS Z = −1.38, p = 0.17

peak firing rate 37.22 ± 36.48 Hz 38.85 ± 19.89 Hz WRS Z = −1.50, p = 0.13

bursting 19.33 ± 14.55 % 21.50 ± 16.20 % WRS Z = 0, p > 0.99

theta-modulated interneurons, n 13 16

interspike interval 96.92 ± 14.65 s 98.75 ± 16.07 s WRS Z = −0.36, p = 0.72

head direction cells 

layer II/III, n 176 185

head direction score 0.36 ± 0.21 0.37 ± 0.20 WRS Z = −1.32, p = 0.19

mean firing rate 1.24 ± 7.62 Hz 0.72 ± 1.22 Hz WRS Z = 0.15, p = 0.88

peak firing rate 3.66 ± 11.37 Hz 2.98 ± 3.81 Hz WRS Z = −0.50, p = 0.62

directional stability 0.46 ± 0.29 0.46 ± 0.29 WRS Z = −0.18, p = 0.86

tuning width 124.77 ± 72.86° 128.43 ± 81.51° WRS Z = 0.0071, p = 0.99

layer V, n 49 55

head direction score 0.41 ± 0.26 0.40 ± 0.20 WRS Z = −0.64, p = 0.52

mean firing rate 0.54 ± 0.75 Hz 0.84 ± 1.70 Hz WRS Z = −0.036, p = 0.97

peak firing rate 2.08 ± 2.34 Hz 3.00 ± 4.49 Hz WRS Z = −0.35, p = 0.73

directional stability 0.55 ± 0.27 0.52 ± 0.20 WRS Z = 0.83, p = 0.41

tuning width 126.61 ± 80.08° 126.55 ± 78.98° WRS Z = −0.42, p = 0.67

speed cells 

n 69 89

speed score 0.11 ± 0.056 0.11 ± 0.055 WRS Z = −0.074, p = 0.94

mean firing rate 3.39 ± 12.41 Hz 3.088 ± 9.72 Hz WRS Z = 0.11, p = 0.92

peak firing rate 6.89 ± 18.39 Hz 6.40 ± 13.12 Hz WRS Z = −0.50, p = 0.61
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iWT iCre-KO

slope (hz/cm/s) 0.018 ± 0.025 0.024 ± 0.047 WRS Z = −0.070, p = 0.94

MEC EEG (layer II) 

n 12 16

theta power 0.75 ± 0.34 0.80 ± 0.47 WRS Z = 0, p > 0.99

theta frequency 8.82 ± 0.22 Hz 8.79 ± 0.25 Hz WRS Z = 0.35, p = 0.73

theta slope (Hz/cm/s) 0.011 ± 0.0067 0.014 ± 0.0081 WRS Z = −1.27, p = 0.20

fast gamma power 0.092 ± 0.024 0.092 ± 0.039 WRS Z = 0.023, p = 0.98

slow gamma power 0.27 ± 0.068 0.23 ± 0.085 WRS Z = 1.18, p = 0.24

hippocampal EEG 

n 11 8 *p-value using exact method

theta power 0.89 ± 0.40 0.85 ± 0.32 WRS, p > 0.99

theta frequency 8.74 ± 0.29 Hz 8.77 ± 0.12 Hz WRS, p = 0.86

theta slope (Hz/cm/s) 0.016 ± 0.01 0.015 ± 0.0053 WRS, p = 0.90

fast gamma power 0.082 ± 0.049 0.087 ± 0.026 WRS, p = 0.60

slow gamma power 0.25 ± 0.097 0.32 ± 0.066 WRS, p = 0.091

place cells 

n 113 126

number of fields 1.95 ± 1.16 1.71 ± 1.09 WRS Z = 1.66, p = 0.10

peak firing rate 3.50 ± 2.55 Hz 4.38 ± 4.32 Hz WRS Z = −1.30, p = 0.19

mean in-field firing rate 1.41 ± 1.02 Hz 1.84 ± 1.98 Hz WRS Z = −1.09, p = 0.27

bursting 4.76 ± 6.40 %, 5.52 ± 4.29 % WRS Z = −1.00, p = 0.32

Mean ± SD. Cells are used as experimental units except for EEG measures, where mice are used. All WRS tests were two tailed.
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