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Summary

Primate motor cortex projects to spinal interneurons and motor neurons, suggesting that motor 

cortex activity may be dominated by muscle-like commands. Extensive observations during 

reaching lend support to this view, but evidence remains ambiguous and much-debated. To provide 

a different perspective, we employed a novel behavioral paradigm that affords extensive 

comparison between time-evolving neural and muscle activity. We found that single motor cortex 

neurons displayed many muscle-like properties, but the structure of population activity was not 

muscle-like. Unlike muscle activity, neural activity was structured to avoid ‘tangling’: moments 

where similar activity patterns led to dissimilar future patterns. Avoidance of tangling was present 

across tasks and species. Network models revealed a potential reason for this consistent feature: 

low tangling confers noise robustness. Finally, we were able to predict motor cortex activity from 

muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in 

additional structure that yields low tangling.

Introduction

For fifty years1–3, a central question in motor physiology has been whether motor cortex 

activity resembles muscle activity, and if not, why not? Primate motor cortex is as close as 

one synapse from the motoneurons4 and single action potentials in corticospinal neurons can 

measurably impact muscle activity5–9, suggesting that motor cortex may encode muscle-like 

commands10–16. Yet responses of motor cortical neurons can differ from what would be 

expected if they encode muscle force, motivating the hypothesis that motor cortex primarily 

encodes movement velocity or direction3,17–19. Alternatively, it has been proposed that non-

muscle-like response features may be explained by network or feedback dynamics20–30. 

Many studies, largely focused on reaching, have produced little consensus31–42. Progress 

may thus require new experimental and analytical approaches.

The ubiquity of reaching tasks (and related isometric tasks) has naturally promoted analysis 

of directional tuning2,16,28,43–46 the interpretation of which remains debated31,33,39,41,42. 

More generally, reaching tasks tend to prompt hypotheses where neurons encode parameters 

relevant to reaching (hand velocity and position, target direction, etc.)3,17,44,47,48 or where 

the population reflects reach-appropriate dynamics25,26. A few studies49–53 have examined 

primate motor cortex during more extended drawing or tracing movements, but have also 

largely focused on directional properties (although see54,55). Given that the defining feature 

of movement is change with time, we sought a task that afforded detailed comparison of 

time-evolving patterns of neural and muscle activity.

We developed a novel ‘cycling task’: monkeys manipulated a pedal-like device, endowed 

with virtual mass and viscosity, to progress through a virtual environment. Cycling involved 

simple kinematics, but necessitated complex patterns of muscle activity. We found that 

single neurons and muscles shared many temporal response properties. Yet the neural 

population as a whole was dominated by signals that were not muscle-like, and could not be 

explained in terms of velocity / direction coding. These results underscore that we presently 

lack an explanation for the dominant signals in motor cortex.
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We asked whether the dominant signals in motor cortex might relate to a general principle of 

networks that rely on recurrent and feedback dynamics to generate outputs. Because the 

current state of activity in such systems strongly influences the future state, two similar 

patterns of activity (perhaps visited during different movements or at different times during 

the same movement) should not lead to highly dissimilar patterns in the near future. 

Violations of this principle, which we refer to as ‘trajectory tangling’, imply that network 

dynamics are non-smooth and thus potentially non-robust (or more trivially, may imply that 

the activity under study reflects signals generated elsewhere).

We asked whether motor cortex avoids trajectory tangling, and whether this might explain its 

dominant signals. We found that tangling was often high for muscle population trajectories, 

but was dramatically lower for motor cortex population trajectories. This effect was general: 

it was observed not only during cycling but during a standard reaching task, and in rodent 

during reach-to-grasp and locomotion. However, this effect was also specific: it was not 

observed for primary visual or somatosensory cortex.

We employed a novel optimization framework, and predicted motor cortex population 

activity as the solution to the problem of optimally encoding muscle-like commands while 

minimizing tangling. The predicted population response was quantitatively similar to the 

empirical population response, and the two shared the same dominant features. Thus, the 

structure of motor cortex activity can be accounted for by the hypothesis that neural activity 

encodes muscle-like commands while displaying additional structure that confers low 

tangling.

An intriguing finding was that motor cortex activity not only avoided high tangling, but was 

dominated by structure that resulted in very low tangling. We wondered whether minimal 

tangling might be computationally advantageous. We examined recurrent neural networks 

trained to produce the same output, but using varying degrees of internal trajectory tangling. 

Networks with low tangling were much more robust: they could reliably generate their 

output in the presence of noise.

Our data reveal a novel and potentially general property of motor cortex: muscle-like signals 

are present, but are relatively modest ‘ripples’ riding on top of larger signals that confer 

minimal tangling.

This structure initially seems counter-intuitive – one might expect the outgoing commands 

to be the dominant signals in the network. However, the empirical structure is expected of 

networks that must be noise robust. Thus, the dominant signals in motor cortex may serve 

not a representational function – encoding specific variables – but rather a computational 

function – ensuring that outgoing commands can be generated reliably.

Results

Task and behavior

We trained two rhesus macaque monkeys to grasp a pedal with their hand and cycle an 

instructed number of revolutions for juice reward (Fig. 1). Cycling produced movement 
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through a virtual landscape. Landscape color indicated whether forward virtual movement 

required ‘forward’ cycling (Fig. 1A) or ‘backward’ cycling (Fig. 1B). During each trial, the 

monkey moved between a pair of targets. The distance between targets determined the 

required number of revolutions: 0.5, 1, 2, 4, or 7 cycles. Acquiring a target required stopping 

with the target positioned ‘under’ the first person perspective (Fig. 1A,B). This location 

always corresponded to a pedal location that was either straight up (‘top-start’) or straight 

down (‘bottom-start’). Monkeys performed twenty conditions: all combinations of two 

cycling directions, two starting pedal orientations, and five distances. Cycling required 

overcoming simulated inertia and viscosity while countering the weight of an arm extended 

in front of a vertically oriented body. These requirements differ from those during 

locomotion, and had to be learned.

Behavior was highly stereotyped; note similarity of virtual-world-position traces across trials 

in (Fig 1C,D. Nevertheless, small trial-to-trial differences in cycling speed caused 

accumulating misalignment of kinematics (e.g., vertical hand position) with time. We 

therefore temporally scaled trials so that virtual-world-position traces were closely matched 

(Fig. 1E,F, top). Doing so revealed considerable temporal structure in neural (Fig. 1E, 

bottom) and muscle (Fig. 1F, bottom) responses. To summarize such structure, we computed 

average firing rate (neurons; Fig. 1G) or muscle activation (muscles; Fig. 1H). We used a 

narrow filter (25 ms Gaussian kernel) relative to the timescale of behavior (~500 ms cycling 

period) to preserve fine temporal features. Single neurons and muscles displayed temporally 

structured and statistically reliable response patterns (flanking traces show SEMs).

Hand velocity and muscle activity

Consistent with the circular pedal motion, vertical and horizontal hand velocity exhibited 

approximately sinusoidal profiles during forward and backward cycling (Fig. 2A,B). Top- 

and bottom-start movements differed in phase but were otherwise similar during middle 

cycles (plots are phase-shifted to aid visual comparison). The temporal profile of hand 

velocity was repeated consistently across middle cycles. Hand velocity was slightly slower 

during initial / terminal cycles as angular velocity ramped up and down.

Extensive intramuscular electromyographic (EMG) recordings (29 and 35 sites in monkey C 

and D) concentrated on muscles that moved the upper arm and elbow and to a lesser degree 

the wrist (which had limited mobility given the pedal design). Muscle activity (Fig. 2C–E) 

generally followed intuitions from biomechanics. For example, the triceps extends the 

elbow, moving the hand away from the body. Accordingly, triceps activity (Fig. 2D) peaked 

near each cycle’s apex (white shading) when pedaling forward, and near its bottom (dark 
shading) when cycling backward. Some muscle responses were roughly sinusoidal and 

resembled kinematics, yet deviations from sinusoidal were common (e.g., Fig. 2E). 

Furthermore, the amplitude and profile of the response often differed between forward and 

backward cycling. Depending on the muscle, responses during initial / terminal cycles could 

be either larger or smaller than those during middle cycles.
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Single-neuron response

Well-isolated neurons (103 and 109 for monkeys D and C) were recorded from motor cortex, 

including sulcal and surface primary motor cortex and the immediately adjacent aspect of 

dorsal premotor cortex (potential differences within this population are explored later). 

Recordings were localized to the region where microstimulation activated the muscles from 

which we recorded. Cycling evoked particularly strong responses. Nearly all neurons that 

could be isolated were modulated during the task. Peak firing rates ranged from 16–184 

spikes/s (monkey D, average of 69 spikes/s) and 16–185 spikes/s (monkey C, average of 76 

spikes/s). Neurons displayed a variety of intricate response patterns (Fig 3). These patterns 

were statistically reliable: SEMs (flanking traces) were small and the same pattern could be 

seen repeatedly across middle cycles (cycles 2–6) for both top-start and bottom-start 

conditions.

Inspection revealed four features shared between muscles and neurons. First, responses often 

deviated from the sinusoidal profile of kinematics (e.g., Fig 2E-backward; Fig 3A-forward). 

Second, responses during initial / terminal cycles often displayed differences in amplitude or 

temporal profile compared to middle cycles (e.g., Fig 2D-forward; Fig 3D-forward; Fig 3E-

backward). This effect presumably relates to the unique force patterns required to start and 

stop. Third, responses could differ between forward and backward cycling in both amplitude 

(e.g., Fig 2C, Fig 3C) and structure (e.g., Fig 2E, Fig 3A,F).

Consistent with these shared features, muscle responses could be successfully decoded from 

the neural population using a linear model (Leave-one-out-cross-validated R2 = .80 and .78) 

consistent with6,7,10. This is potentially impressive, given that a linear model is almost 

certainly too simplistic. This finding might suggest that motor cortex activity primarily 

reflects muscle-like commands. However, decoding neural activity from muscle activity was 

less successful (Leave-one-out-cross-validated R2 = .54 and .50). This discrepancy in fit 

quality was not due to individual neuron recordings being ‘noisier’ (having higher sampling 

error) than individual-muscle recordings; the same discrepancy was observed if neural 

responses were de-noised using dimensionality reduction techniques (methods). Thus, while 

muscle-like signals can be found in the neural data, there appear to exist additional non-

muscle-like neural response patterns, consistent with related observations during 

reaching19,35

Non-muscle-like signals dominate the neural population response

To characterize population responses, we applied principal component analysis (PCA), a 

standard unsupervised algorithm that identifies the dominant signals in multi-dimensional 

data (Fig. 4). Each signal identified via PCA is a weighted combination of individual-neuron 

responses. Those weights (the PCs) allow individual-neuron responses to be faithfully 

reconstructed from the signals found by PCA. A small number of PCA-derived signals can 

thus provide a useful summary of the response of a full population.

For visualization, we first examine the signals captured by the top two principal components 

(PCs). It is often informative to plot one PCA-derived signal versus another, yielding a 

‘state-space’ trajectory (Fig. 4C). Each point on the trajectory (e.g., the orange dot in Fig 
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4C) corresponds to the neural state at that moment (dashed line in Fig 4A). A two-

dimensional trajectory provides only a partial summary of the neural state, but the resulting 

visualization can still be informative, and can suggest hypotheses to be tested using the full 

population response.

Neural trajectories during both forward and backward cycling (Fig 4E,H) followed a 

repeating orbit throughout the middle cycles (colored portion of trajectory trace shows 

cycles 3–5). Muscle trajectories also followed repeating orbits (Fig 4D,G; similarly 

computed using PCA). Rotating orbits are expected during cycling, in contrast to reaching26, 

and simply reflect what can be observed in single neurons: middle-cycle responses tend to 

repeat. Despite this basic similarity, muscle trajectories (Fig 4D,G) differed from neural 

trajectories in their basic structure. Muscle trajectories counter-rotated: they orbited in 

opposing directions for forward and backward cycling. Counter-rotation is expected given 

the reversal of the required force patterns. For example, forward cycling requires lifting 

before pushing and backward cycling requires pushing before lifting. In contrast, neural 

trajectories co-rotated: they orbited in the same direction for forward and backward cycling 

(Fig 4E,H). Other aspects of muscle and neural trajectories also differed. Muscle trajectories 

tended to depart from circular: the orbit often possessed a kidney- or saddle-like shape. This 

was moderately true for monkey D (Fig 4D) and pronounced for monkey C (Fig 4G). Neural 

trajectories were more circular or elliptical. Thus, the dominant signals in the neural 

population behave rather differently from those in the muscles.

Potential explanations and caveats

A potential explanation for non-muscle-like properties in motor cortex is that they encode 

directional signals such as hand velocity (e.g.,17). This explanation initially seems appealing 

given the present data. For example, the neural trajectory during backward cycling for 

monkey D (Fig 4E, red) visually resembles the corresponding velocity trajectory (Fig 4F, 

red). However, velocity trajectories necessarily counter-rotate between forward and 

backward cycling (the same would be true of hand direction, position, or other kinematic 

variables). The dominant signals in the neural data do just the opposite. Given this 

observation, and the fact that single-neuron response profiles typically do not resemble 

sinusoidal kinematic parameters, it seems unlikely that a representation of kinematic 

parameters can explain the dominant signals in the neural data.

An alternative explanation is that the dominant signals in the neural data reflect descending 

commands, but look very non-muscle-like because they will be heavily modified by spinal 

circuitry. For example, cortical commands are likely integrated / low-pass filtered by the 

spinal cord56, and may encode muscle synergies rather than individual muscle activations57. 

Yet on their own these hypotheses cannot explain the dominant signals in the neural 

population. Any commands related to force – whether for individual muscles or synergies – 

are almost certain to reverse between forward and backward cycling due to the reversal of 

required force patterns. Furthermore, if descending commands are low-pass filtered by the 

spinal cord, then those commands will necessarily resemble high-pass filtered versions of 

the final output (muscle activity) with transients and other features becoming more 
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prominent57. High-pass filtering the signals in Figure 4D,G would not cause them to co-

rotate, and would make them look less circular rather than more.

The above findings do not argue against the idea that muscle-like commands (or kinematic 

commands) are encoded by neural activity in dimensions beyond the top two PCs. Indeed, 

we will suggest below that muscle-like commands likely are encoded. The present results 

do, however, indicate that the dominant signals in the neural data cannot be explained in 

terms of either muscle encoding or velocity / direction encoding. One thus wonders whether 

thinking about the dominant signals as ‘encoding’ commands or representations might be 

misleading. Might there exist an alternative class of explanation?

Smooth dynamics predict low trajectory tangling

Recent physiological and theoretical investigations suggest that the neural state in motor 

cortex obeys smooth dynamics20,24,26,27,29,58,59. Smooth dynamics imply that neural 

trajectories should not be ‘tangled’: similar neural states, either during different movements 

or at different times for the same movement, should not be associated with different 

derivatives. We quantified trajectory tangling using

Equation 1

where xt is the neural state at time t: i.e., a vector containing the neural responses at that 

time, ẋt is the temporal derivative of the neural state, ∥·∥ is the Euclidean norm, and ε is a 

small constant that prevents division by zero (methods). Q(t) becomes high if there exists a 

state at a different time, t′, that is similar but associated with a dissimilar derivative. For 

example, tangling is high if two trajectories pass through similar points but in different 

directions. We take the maximum to ask whether the state at time t ever becomes tangled 

with any other state (it is trivially true that two random states will rarely be tangled, as they 

will rarely be close). This maximum is taken with t indexing across time during all 

conditions. Q(t) can also be measured for the muscle state, in which case xt contains muscle 

responses.

Moments of high tangling are expected in most generic data; a priori there is no reason why 

two similar states, which may be visited at very different times or during different 

conditions, should avoid having dissimilar derivatives. Indeed, for many tasks muscle 

trajectories may need to be tangled. For example, co-contraction of the biceps and triceps at 

one moment might need to be quickly followed by activation of the biceps and relaxation of 

the triceps. At a later moment, or during a different movement, co-contraction might instead 

need to be followed by relaxation of the biceps and activation of the triceps. This would 

constitute an instance of tangling, because the same state (co-contraction) is followed by 

different subsequent states. Do these moments of high tangling indeed occur for the 

muscles? If so, are they mirrored or avoided in the neural responses?
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Visualizing trajectory tangling

The state for a given time and condition is a location on the population trajectory. The 

derivative is the direction in which the trajectory is headed. Two states are thus tangled if 

they are nearby, but associated with different trajectory directions. For visualization, we 

consider a subset of the data: the middle five cycles of 7-cycle movements. Two-dimensional 

projections of muscle (Fig 5A) and neural (Fig 5B) trajectories are shown for forward 

(green) and backward (red) bottom-start movements. It should be kept in mind that 

trajectories that cross in these two dimensions may or may not be separated in other 

dimensions. Thus, the tangling measure (which considers more than two dimensions) does 

not always agree with what can be seen in a two-dimensional projection. Still, the two-

dimensional projections are useful for gaining intuition.

Muscle trajectories (Fig 5A) show three features suggestive of high tangling. Most 

obviously, muscle trajectories counter-rotate for forward versus backward cycling. Counter-

rotation produces opposing derivatives for similar states: e.g., red traces are moving to the 

right at the bottom while green traces are moving to the left. Second, muscle trajectories 

often crossed themselves at right angles, resulting in similar states with very different 

derivatives. Third, non-circular trajectories sometimes cause nearby muscle states to move in 

opposite directions (consider the sharp turn on the left-hand-side of the green trace). These 

features lead to occasional moments of high tangling. For example, the green arrow shows 

the muscle state and its derivative at a chosen time t. There exists another state, at time , 

that is similar but possesses a very different derivative (red arrow), yielding an instance of 

high tangling.

Neural trajectories (Fig. 5B) appear potentially less tangled. Co-rotation prevents middle-

cycle trajectories from continuously opposing one another between forward and backward 

cycling. Even within a condition, trajectories are closer to circular with fewer sharp bends. 

There are moments where trajectories cross in these two dimensions, but this did not result 

in high tangling because those trajectories were separated in other dimensions. Notably, 

although the muscle state at time t was strongly tangled, the neural state at that same time 

was not.

For comparison, we examined trajectories from a simulated recurrent neural network trained 

to produce muscle activity for the subset of data plotted in Figure 5A. Thus, the dominant 

signals in the output of the network are approximately the signals in Figure 5A. We wished 

to observe whether the network – a dynamical system with dynamics determined by 

connectivity – would indeed show lower tangling than its output. Network trajectories, when 

projected onto their top PCs (Fig 5C), did not resemble muscle trajectories, and appeared 

less tangled. For example, although the muscles exhibited a moment of high tangling at time 

t, the network did not. This illustrates that a network that produces a given output may be 

dominated by signals that differ from that output. By inspection, such signals appear to be 

less tangled.
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Quantifying trajectory tangling

Are neural (and simulated network) trajectories indeed consistently less tangled than muscle 

trajectories, as suggested by the visualization in Figure 5A–C? Answering this question 

requires moving beyond inspection of two-dimensional trajectories, and considering tangling 

for more than one state. To illustrate our approach, we first consider the simulated network. 

We measured QNetwork (t) and QEMG(t) for every time during both simulated conditions. 

Note that QEMG quantifies tangling for the output of the network, which was trained to 

produce the activity of all muscles. Plotting QNetwork versus QEMG revealed that network-

trajectory tangling was consistent lower than muscle-trajectory tangling (Fig 5D).

We repeated this analysis for multiple simulated networks, using different weight 

initializations and meta-parameters. There was considerable variability in the magnitude of 

network-trajectory tangling (distributions in Fig 5E) but tangling was nearly always reduced 

relative to muscle-trajectory tangling. This effect is most clearly observed when plotting 

network versus muscle tangling for each pair of corresponding states (Fig 5D), but can also 

be summarized by measuring the 90th percentile level of tangling (Fig 5E). These 

simulations reveal that network trajectories can, and indeed strongly tend to be, less tangled 

that the eventual output. Is this also true of motor cortex, and if so might it explain why the 

dominant signals in the data are not muscle-like?

Neural-versus muscle-trajectory tangling

For motor cortex, we compared Qneural and QEMG for all times and across all twenty 

conditions (not just the subset of data used for illustrative purposes in Fig 5). At least four 

results are possible. First, if motor cortex activity is a straightforward code for muscle 

activity, Qneural and QEMG should have a linear relationship with a slope near unity. Second, 

if motor cortex reflects unknown variables, and/or if the tangling metric captures nothing 

fundamental, Qneural and QEMG may show no clear relationship. Third, if neural activity is 

more complex, intricate, or ‘noisier’ than muscle activity, Qneural could be greater than 

QEMG. Finally, neural-trajectory tangling could be reduced relative to muscle-trajectory 

tanging, as in the case of the simulated networks. If so the slope relating Qneural to QEMG 

could be less than one, or could even be close to flat.

The data (Fig 6A,B) obeyed the final prediction. The neural state was less tangled than the 

corresponding muscle state in 99.9% (monkey D) and 96.6% (monkey C) of cases. 

Distributions of neuraland muscle-trajectory tangling (marginal distributions in Fig 6A,B) 

were significantly different (paired t-test, p<10−10 for each monkey). The rare instances 

where neural-trajectory tangling exceeded muscle-trajectory tangling occurred when 

tangling was low for both. Strikingly, muscle-trajectory tangling could be quite high with no 

accompanying increase in neural-trajectory tangling.

The large and consistent difference between Qneural and QEMG contrasts with the 

observation that visual inspection does not readily reveal whether a set of individual 

recordings are neural or muscular (compare Fig 3 with Fig 2). Yet the tangling metric readily 

distinguished between even small populations of neurons versus muscles (Fig. 6C). Thus, 
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tangling captures a robust difference between neural and muscle responses that is only 

visible at the population level.

When performing the above analyses, we had to choose whether xt was full-dimensional 

(containing the response of every neuron / muscle) or reduced in dimensionality (containing 

the projection onto the top PCs). The latter is computationally efficient and interpretationally 

conservative; we can compare neural and muscle data using the same number of dimensions, 

and PCA reduces the impact of measurement noise. All analyses thus employed eight PCs, 

which captured 70% and 68% (monkey D and C) of the neural data variance, and 94% and 

88% of the muscle data variance. In practice, results were remarkably robust regardless of 

this choice. Effects were virtually identical if xt was full-dimensional, with no use of PCA 

(Supp Fig 1). When using PCA, Qneural was consistently lower than QEMG regardless of the 

analyzed dimensionality (Supp Fig 2). We also considered that we should compare Qneural 

and QEMG using different dimensionalities. This relates to the hypothesis, developed further 

below, that neural trajectories contain both muscle-like signals and additional signals that 

confer low overall tangling. If so, it would be most natural to employ a higher 

dimensionality for the neural data, such that a similar percentage of variance is captured in 

both cases. Doing so revealed the same, or perhaps a slightly stronger, effect (Supp Fig 2). 

Finally, the difference between Qneural and QEMG was not related to the number of measured 

neurons versus muscles: the difference persisted when population sizes were matched (Supp 

Fig 2).

Tangling across tasks, species, and areas

Observations made during the cycling task were critical to developing the above approach. 

But is low neural-versus muscle-trajectory tangling specific to cycling, or a more general 

property of motor cortex? We leveraged recently collected data60 from two monkeys 

performing a center-out reaching task. Reaching provided fewer data-points than cycling, 

but the same result was observed: Qneural was almost always less than QEMG (Fig 6E,F). We 

also compared Qneural and QEMGin mice during an experiment with two behaviors: reaching 

to pull a joystick and walking on a treadmill [Miri et al., in press]. We observed a slightly 

weaker, yet similar effect (Fig. 6G) to that seen in primate. Thus, low trajectory tangling in 

motor cortex appears to be a general property.

We were motivated by the likelihood that tangling is low in a network that obeys strong 

(internal or feedback) dynamics, such that the present state has a strong influence on the 

future state. In contrast, tangling could become high in an area where responses are 

dominated by sensory inputs, especially if those inputs are not a predictable result of the 

observable network state. Is this range of tangling values indeed observed, or is low tangling 

a generic property of neural populations? We first examined the population response 

recorded from the proprioceptive region (area 3a) of primary somatosensory cortex (S1) 

during cycling. This region is immediately adjacent to motor cortex, and individual-neuron 

responses (Supp Fig 3) are surprisingly similar to those in motor cortex. Indeed, 

conclusively discriminating between the two areas typically requires assessing 

microstimulation thresholds. We also note that both motor cortex and S1 exhibit strong 

proprioceptive responses, both project to spinal interneuron and motor-neuron populations4, 
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and both are believed to contribute to feedback control61. It is thus a priori unclear whether 

to expect S1 trajectories to show high or low tangling.

We found that S1 trajectories tended to be less tangled than the muscle trajectories (Fig 6D; 

80.7% of neural states were less tangled than their corresponding muscles states). However, 

this effect was much weaker in S1 than in motor cortex. For moments where the muscle state 

became highly tangled, the S1 state often also became quite tangled. In contrast, the motor 

cortex state always remained weakly tangled. All three tangling distributions were 

significantly different: p < 10−10 when comparing muscle and S1 populations; p < 10−10 

when comparing S1 and motor cortex populations (paired t-test).

We also analyzed trajectory tangling for a primary visual cortex (V1) population responding 

to naturalscene movies29. V1 trajectories were much more tangled than motor cortex 

trajectories (p<10−10 for both comparisons; two-sample t-test), and occasionally had very 

high tangling values that were not seen for motor cortex (Fig. 6H). Thus, tangling is a 

property that can differ dramatically between cortical areas, and cannot be readily inferred 

from inspection of single-neuron responses.

Noise-robust networks display low tangling

We were surprised to find such a dramatic reduction in tangling between the muscle 

population and the upstream motor cortex population. Even a purely autonomous dynamical 

system needn’t show very low tangling (it merely needs to avoid near-maximal tangling). 

For example, some of the recurrent networks we trained did show modestly high tangling 

(right tail of the distribution in Fig 5E). Might minimal tangling confer a computational 

advantage?

To address this question, we considered a neural network trained to generate a simple 

idealized output: cos t for one muscle and sin 2t for a second muscle (Fig 7A, top). The 

resulting output trajectory was thus a figure-eight (left sub-panel). It is not possible for the 

network’s internal trajectory to follow a pure figure-eight; the center-most state is traversed 

in different directions and is thus strongly tangled. Tangling can be reduced by employing a 

third dimension such that the trajectory is [cos t ; sin 2t ; βsin t]. Even a small value of β will 

reduce tangling modestly (middle sub-panel) such that the trajectory can be produced by the 

network. The figure-eight trajectory can still be ‘read out’ via projection onto two of the 

axes. Is there an advantage to further decreases in tangling (right sub-panel)? We examined 

noise-tolerance across networks whose internal trajectories followed the trajectory cos t; sin 

2t ; βsin t, with different values of β. This necessitated the unusual step of training the 

network not only to produce the desired output (the figure-eight) but to follow the specified 

internal trajectory (methods).

Low trajectory tangling yielded robustness to external noise (Fig 7B). When tangling is high, 

small perturbations of the present state can have large ramifications for the future state. For 

example, the state can be perturbed off the trajectory and relax to an inappropriate point 

much further along on the trajectory. Reduced tangling makes such events unlikely. Note 

that β = 1 yields a weakly-tangled trajectory that is a circle in one two-dimensional 

projection and a figure-eight in another (Fig 7A right sub-panel). The circular aspect of the 
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trajectory does not match the output, but does relate to the robustness with which the output 

can be generated. We repeated this analysis with more realistic outputs (the empirical 

patterns of muscle activity) with the same result: low tangling confers noise robustness 

(Supp Fig 4).

Hypothesis-based prediction of neural responses

The results above suggest a hypothesis: motor cortex may embed outgoing commands 

(which, if muscle-like, would be quite tangled) in a larger trajectory such that the full orbit is 

minimally tangled. Inspired by optimizations that successfully predicted aspects of V1 

responses62, we employed an optimization approach to predict motor cortex activity based 

on this hypothesis. Optimization found a predicted neural population response, X̂, that could 

be linearly decoded to produce the empirical muscle activity Z, yet was minimally tangled. 

Specifically:

Equation 2

where Z is a matrix describing the muscle population response. The first term of the 

minimized cost function ensures that neural activity ‘encodes’ muscle activity; ZX†X is the 

optimal linear reconstruction of Z from X († indicates the pseudo-inverse and ∥·∥F indicates 

the Frobenius norm). This formulation should not be taken to imply that the true neural-to-

muscle mapping is linear, merely that the predicted neural activity should yield a reasonable 

linear readout of muscle activity, consistent with empirical findings6,7,10. The second term of 

the cost function encourages low trajectory tangling. The predicted neural population 

response thus balances optimal encoding of muscle activity with minimal tangling. The 

constant λ was adjusted to ensure that the second term had an impact, but that muscle 

activity could still be decoded with >95% accuracy.

We applied optimization to muscle data that included three middle cycles of forward cycling 

and three middle cycles of backward cycling. Thus, we are attempting to simultaneously 

predict two ‘steady state’ neural trajectories. We initialized optimization with X̂
init = Z, 

corresponding to the baseline hypothesis that neural activity is a ‘pure’ code for muscle 

activity. We used canonical correlation to assess the similarity between predicted and actual 

neural responses (unity similarity indicates perfect agreement). The similarity for X ̂
init (Fig 

7C,D, cyan dot) is already high, given that muscle activity shares many basic features with 

neural activity (e.g., the same fundamental frequency). The key question is whether 

similarity increases or decreases during optimization, as X̂ is altered to reduce tangling.

Similarity between predicted and empirical populations increased with optimization (Fig. 

7C,D blue). That is, similarity increased as optimization moves the prediction away from the 

hypothesis that neural activity is a pure code for muscle activity, and towards the hypothesis 

that neural activity encodes muscle commands but also contains non-muscle-like structure 

that minimizes tangling. The final results of optimization yield a similarity roughly halfway 

between the initial ‘pure muscle encoding’ hypothesis and perfect similarity. To provide a 

rough benchmark of good similarity, we computed the average similarity between two 
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random halves of the empirical neural population (black dashed trace with 95% confidence 

intervals). Similarity between predicted and empirical populations slightly exceeded this 

benchmark for monkey D and approached it for monkey C.

Similarity increased not because optimization reduced tangling per se, but because the 

features that emerged during optimization matched prominent features in the neural data. As 

one example, the reduction in tangling of X̂ was accompanied by the emergence of co-

rotational, circular structure in the top two principal components (Fig. 7E,F). Thus, the 

hypothesis embodied in Equation 2 explains a basic feature not explained by the pure-

muscle-encoding (or kinematic-encoding) hypothesis.

Interpreting optimization-based predictions

For both predicted and empirical data, projections onto the top PCs only partially reveal the 

structure of the population trajectories. In both cases, aspects of structure beyond the first 

two PCs contributed to low tangling. In particular, trajectories were not coplanar (although 

also not orthogonal) during forward and backward cycling. The resulting separation further 

reduced tangling by eliminating crossing points. Structure in the higher PCs also contributed 

to the ability to decode muscle activity. This was true for both the empirical and predicted 

populations, and is explored further below.

The optimization approach was motivated by the hypothesis that motor cortex activity 

reflects both muscle-like commands and additional, dominant structure that reduces 

tangling. This is possible if aspects of neural activity occupy a ‘null-space’: dimensions that 

do not directly contribute to the outgoing command60,63,64. The example in Fig 7A contains 

a simple one-dimensional null space. This hypothesis implies that neural dimensionality is 

greater than muscle dimensionality (empirically, a given number of neural PCs did indeed 

captured less variance than the same number of muscle PCs). Nevertheless, to be 

conservative, we insisted that the predicted neural population response, X ̂, have the same 

dimensionality as the muscle population response, Z (both were ten-dimensional). This 

choice aids interpretation: any increase in similarity is noteworthy because some muscle-like 

features must be lost in order to gain features that reduce tangling. Similarity will thus 

increase only if the features that are gained are more realistic / prominent than the features 

that are lost. Had we allowed a higher-dimensional X̂, any increase could have been a trivial 

result of simply having more structure in X̂ that could correlate with the structure in Z.

We explored a variety of other cost functions, corresponding to other hypotheses (Supp Fig 

4). Similarity between predicted and empirical responses increased if we allowed a non-

linear decode from neural to muscle activity, but only if optimization also sought to reduce 

tangling. Optimizations that sought to increase local smoothness (one component of low 

tangling) increased similarity, but not as much as optimizing for low tangling itself. 

Optimizations that sought to reduce the norm of activity or to increase sparseness (standard 

forms of regularization) led to decreases in similarity. Thus, across all the cost functions we 

explored, only those that reduced tangling led to improved predictions.
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Muscle-like signals are embedded in trajectories with low tangling

The above results support the hypothesis that muscle-like signals are embedded in larger, 

minimally tangled trajectories. A circle is the least tangled rhythmic trajectory. Muscle-like 

signals may thus be encoded by relatively small ‘ripples’ in dimensions that point off the 

plane of dominant circular structure. A rough analogy would be a phonograph, where the 

direction that encodes a temporally complex output is orthogonal to the dominant motion of 

the record. The above results strongly suggest such structure, but can it be viewed directly?

We projected the neural population response onto triplets of dimensions (Fig 8). The first 

and second dimensions were always the first two PCs, while the third was based on the 

readout direction of a particular muscle. The readout direction was defined by the set of 

weights found via linear regression (the arrow in Fig 8A plots the readout direction for the 

trapezius). The third dimension was then the vector that was orthogonal to the first two PCs, 

and allowed the three dimensions to span the readout direction.

Consider first a triplet of dimensions based on the readout direction of the trapezius (Fig 

8A). Trajectories trace out circular paths in the top PCs. Ripples in a third dimension yield 

the fine temporal structure that matches trapezius activity Fig 8B). The overall trajectory 

thus has the joint properties of encoding trapezius activity while exhibiting low tangling. 

Similar structure was observed for other muscles (Fig 8C,E, Supp Fig 5 shows data for 

monkey C).

The dimensions that encode muscle activity captured only modest variance. In the examples 

in Figure 8, each muscle-readout dimension captured ~10% as much variance as each of the 

top two PCs. The vertical dimensions in 8A,C,E are thus shown on an expanded scale for 

visualization. Similar structure was present for both the network model in Figure 5C and for 

the predicted population responses in Figure 7E,F: the activity of each ‘encoded’ muscle 

constituted a set of ripples upon dominant circular structure that yielded low tangling. These 

ripples cannot be seen in Figures 5C and 7E,F precisely because they point ‘out’ of the page.

Tangling is higher in sulcal motor cortex

The ability to read out muscle activity (Fig 7) suggests that the outputs of motor cortex may 

be ‘musclelike’, Nevertheless, it remains unclear how heavily those outputs are transformed 

by the spinal cord (regression can compensate to some degree for any transformation that is 

not too nonlinear). Ideally, we would have compared neural tangling not with muscle 

tangling per se, but with the spinally directed output of motor cortex. Fortunately, the 

potential computational benefits of low tangling are largely agnostic to the details of the 

particular output. For example, low tangling correlated with noise robustness for both 

realistic (Supp Fig 4) and idealized (Fig 7A,B) network outputs.

We also considered that descending commands are potentially enriched in sulcal motor 

cortex, where some neurons make mono-synaptic connections onto motor neurons4. We thus 

compared tangling between a sub-population of surface recordings and a sub-population of 

sulcal recordings. Tangling was modestly but consistently higher for the sulcal sub-

population. This was true for during both cycling and reaching (Supp. Fig. 6). This is 

consistent with the hypothesis that the broader motor cortex population has tangling lower 
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than its output. The effect was smaller than when comparing neural versus muscle tangling. 

This is expected: the sulcal sub-population is unlikely to contain only ‘pure’ output signals.

Discussion

Are the dominant signals in motor cortex representational or computational?

We found that the dominant signals in motor cortex were not muscle-like. This result echoes 

findings during reaching, where aspects of neural responses sometimes (but not always) 

depart from expectations under a muscle-encoding framework1,2,11,17,35,46,65,66. However, 

the dominance of non-muscle-like signals is more patent during cycling; non-muscle-like 

signals are apparent simply via inspection of projections onto the top principal components.

A traditional explanation for non-muscle-like signals is that they represent higher-level 

movement parameters. The present results are inconsistent with the most common proposal: 

a representation of direction or velocity. Under that proposal, trajectories should have 

counter-rotated between forward and backward cycling, and would have been highly tangled 

as a result. That said, there do exist other ‘representational hypotheses’ that would result in 

low tangling. For example, a joint representation of hand acceleration, velocity, and position 

would result in a weakly tangled six-dimensional trajectory. This particular hypothesis does 

not account for the present results; single-neuron responses did not resemble combinations 

of acceleration, velocity, and position. Yet this example illustrates that it is conceivable that 

there exists some set of movement parameters which, if represented in motor cortex, could 

explain the present findings.

An alternative explanation is that the dominant signals in cortex play a computational, rather 

than a representational function. Specifically, the dominant signals may fall partly or largely 

in the null-space of the commands being sent to downstream structures, yet may still be 

important for ensuring that those commands are generated in a reliable and noise-robust 

fashion. Put differently, motor cortex is part of a larger dynamical system (spanning many 

areas, including the spinal cord, and incorporating sensory feedback) that culminates in the 

generation of muscle commands. Such a system as a whole likely has no ‘choice’ but to 

contain non-muscle-like signals. It does not of course logically follow that motor cortex 

itself must show non-muscle-like signals or low tangling; motor cortex could be downstream 

of the relevant dynamics, or reflect only a small part of the overall network state. Yet 

empirically, motor cortex displayed very low tangling.

We favor the hypothesis that the dominant signals in motor cortex play a computational role, 

for three reasons. First, a universal strategy seen in simulated recurrent networks is the 

production of internal trajectories that possess structure beyond the output. One should thus 

have a strong prior that aspects of physiological data relate to internal computations rather 

than to outputs. Second, the hypothesis that motor cortex encodes muscle-like commands, 

while also displaying low tangling, yielded a concrete prediction of the empirical population 

response. That prediction was not only successful quantitatively, but reproduced the major 

qualitative feature of the dominant signals: near-circular co-rotating trajectories. Finally, 

network simulations demonstrated that low tangling confers noise robustness, suggesting an 

important computational role.

Russo et al. Page 15

Neuron. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notably, the computational explanation for low tangling does not depend on particular 

assumptions regarding the exact nature of the outgoing commands. A few of our analyses 

assumed a roughly linear relationship (over the dynamic range being examined) between 

neural and muscle activity. But the hypothesized computational principle – embed output 

commands in structure that minimizes tangling – would apply even if outgoing commands 

were only somewhat muscle-like (e.g., if they were transformed considerably by the spinal 

cord).

Differences and commonalities across tasks

During both cycling and reaching26, neural trajectories follow circular paths that rotate in a 

concordant direction, a feature not seen in the muscle population during either task. This 

shared feature may reflect the combination of two facts. First, muscle activity during both 

tasks involves rhythmic aspects. This is trivially true during cycling. It is more subtly true 

during reaching, where the multiphasic patterns of muscle activity are readily constructed 

from a quasi-oscillatory basis25,26. Second, a circle is the least-tangled rhythmic trajectory. 

Rotational trajectories are thus a natural way of encoding muscle activity while maintaining 

low tangling. This interpretation agrees with recent results from a modeling study. We found 

that a network model, trained to produce the empirical patterns of muscle activity during 

reaching, reproduced the circular neural trajectories24. This occurred only if the network was 

regularized to encourage smooth dynamics. Those findings are consistent with the present 

results: such regularization would implicitly encourage low tangling.

However, we stress that rotational structure per se is unlikely to be the fundamental principle 

shared across tasks. There are many ways of adding structure that can reduce tangling. Even 

if certain motifs are common, the optimal way to reduce tangling will be task-dependent. 

Thus, we propose that the deeper connection across tasks will not be a specific form of 

dynamics, but dynamics that produce trajectories with low tangling.

Expectations regarding tangling across areas

Trajectory tangling was very low for motor cortex, considerably higher for S1, and higher 

still for the muscles. Tangling was also high for V1. Whether tangling is low versus high in a 

given area may depend on how fully activity in that area reflects global dynamics. Motor 

cortex may show particularly low tangling because it processes many relevant sources of 

information. It is not only a major output of the primate motor system, but responds robustly 

and rapidly to sensory inputs67, and lies at the nexus of cerebellar and basal-ganglia 

feedback loops68,69. Other areas, even those that participate in the same task, may or may 

not exhibit low tangling depending on how fully they reflect the overall network state. In 

particular, S1 responses are likely dominated by sensory feedback, and may very 

incompletely reflect overall network dynamics. Even within motor cortex, tangling was 

modestly higher within the sulcus, where activity may be more dominated by output 

commands. Although V1 presumably does exhibit dynamics, activity is likely dominated by 

visual inputs which can produce high tangling. These comparisons echo our recent finding 

that population structure can be fundamentally different depending on whether an area is 

hypothesized to primarily reflect population dynamics versus external variables29.
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It is also possible that tangling might differ within a population, even for the same task. 

Might the motor system, over the course of learning or development, adopt network 

trajectories that are increasingly less tangled and thus increasingly noise robust? When a 

new skill is learned, is performance better if subjects achieve lower tangling? Are 

pathological conditions associated with increased tangling? Such questions illustrate that 

many aspects of motor cortex activity may be best understood not in terms of representations 

of external parameters, but in terms of the computational strategies that allow outputs to be 

accurately and reliably generated.

Methods

Experimental apparatus

Subjects were two adult male rhesus macaques (monkeys C and D). Animal protocols were 

approved by the Columbia University Institutional Animal Care and Use Committee. 

Experiments were controlled and data collected under computer control (Speedgoat Real-

time Target Machine). During experiments, monkeys sat in a customized chair with the head 

restrained via a surgical implant. Stimuli were displayed on a monitor in front of the 

monkey. A clear acrylic shield was mounted between the monkey and the apparatus and a 

tube fixed to this shield dispensed juice rewards. The left arm was loosely restrained using a 

tube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. The 

device consisted of a cylindrical rotating grip (the pedal), attached to a crank-arm, which 

rotated upon a main axel. That axel was connected to a motor and a rotary encoder that 

reported angular position with 1/8000 cycle precision. In real time, information about 

angular position and its derivatives was used to provide virtual mass and viscosity, with the 

desired forces delivered by the motor. The delay between encoder measurement and force 

production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the 

length of the crank-arm (64 mm). To minimize extraneous movement of the wrist, the 

monkeys’ right wrist rested in a brace attached to the hand pedal. The motion of the pedal 

was thus almost entirely driven by the shoulder and elbow, with the wrist moving only 

slightly to maintain a comfortable posture. Wrist movements were monitored via two 

reflective spheres attached to the wrist brace, which were tracked optically (Polaris system; 

Northern Digital, Waterloo, Ontario, Canada) and used to calculate wrist angle. The small 

wrist movements were highly stereotyped across movements of a given type, as were the 

movements of the other joints (monitored visually using infrared cameras). Eye position and 

pupil dilation were monitored but are not analyzed here.

Task

The monitor displayed a virtual landscape, generated by the Unity engine (Unity 

Technologies, San Francisco). Surface texture and landmarks to each side provided visual 

cues regarding movement through the landscape. Movement was along a linear ‘track’. One 

rotation of the pedal provided one arbitrary unit of movement. Targets on the landscape 

surface indicated where the monkey should stop for juice reward.
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Each trial of the task began with the appearance of an initial target. To begin the trial, the 

monkey had to cycle to and to acquire the initial target (e.g., stop on it and remain 

stationary) within 5 seconds. Acquisition of the initial target yielded a small reward. After a 

1000 ms hold period, the final target appeared at a prescribed distance. Following a 

randomized (500–1000 ms) delay period, a go-cue (a brightening of the final target) was 

given. The monkey then had to cycle to acquire the final target. After remaining stationary in 

the final target for 1500 ms, the monkey received a large reward.

Successfully completing a trial necessitated satisfying a variety of constraints. Cycling had 

to begin between within 650 ms after the go cue. Once cycling began, the final target had to 

be reached within a distance-dependent time limit. The trial was aborted if this time elapsed, 

or if cycling speed dropped below a threshold before entering the final target. The trial was 

also aborted if the monkey moved past the final target, or if the monkey acquired the final 

target and then moved while waiting for the reward. These constraints, combined with the 

monkeys’ natural desire to receive reward quickly, produced movements that were both brisk 

and quite consistent across trials. The primary difference in behavior across trials was 

modest variation in overall movement duration (e.g., Fig 1). In rare cases, behavior on a 

successful trial differed notably from typical behavior for that condition. Such trials were 

removed prior to analysis.

The task included 20 conditions distinguishable by final target distance (half-, one-, two-, 

four-, and seven-cycles), initial starting position (top or bottom of the cycle), and pedaling 

direction. A salient visual cue (landscape color) indicated whether pedaling must be 

‘forward’ (the had moved away from the body at the top of the cycle) or ‘backward’ (the had 

moved toward from the body at the top of the cycle) to produce forward progress in the 

virtual world. Trials were blocked into forward and backward pedaling. Other trials types 

were interleaved using a block-randomized design.

Neural recordings during cycling

After initial training, we performed a sterile surgery during which monkeys were implanted 

with a head restraint. Cylinders (Crist Instruments, Hagerstown, MD) were centered over 

caudal PMd, located according to a previous magnetic resonance imaging scan. Cylinders 

were placed surface normal to the cortex. The skull within the cylinder was left intact and 

covered with a thin layer of dental acrylic. Neural recordings were made using conventional 

single electrodes (Frederick Haer Company, Bowdoinham, ME) driven by a hydraulic 

microdrive (David Kopf Instruments, Tujunga, CA). Electrodes were introduced through 

small (3mm diameter) burr holes drilled by hand through the acrylic and skull, under 

ketamine / xylazine anesthesia.

Sequential recording with conventional electrodes (as opposed to simultaneous recording 

with an array) allowed us to acquire recordings from a broader range of sites, including 

sulcal sites inaccessible to most array techniques. Recording locations were guided via 

microstimulation, light touch, and muscle palpation protocols to confirm the trademark 

properties of each region. For motor cortex, recordings were made from primary motor 

cortex (both surface and sulcal) and the adjacent (caudal) aspect of dorsal premotor cortex. 

For most analyses, these recordings are analyzed together as a single motor cortex 
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population (though see Supp Fig 6). Motor cortex recordings were restricted to regions 

where microstimulation elicited responses in shoulder, upper arm, chest and forearm. For 

one monkey, we recorded from area 3a (proprioceptive primary motor cortex). These 

recordings (44 neurons) were made from the deeper aspects of the posterior bank of the 

central sulcus, where microstimulation did not produce movement.

Neural signals were amplified, filtered, and manually sorted using Blackrock Microsystems 

(Digital Hub and 128-channel Neural Signal Processor). A total of 277 isolations were made 

in monkeys C and D. Nearly all neurons that could be isolated in motor cortex were 

responsive during cycling. A modest number (21) of isolations were discarded due to low 

signal-to-noise ratios or insufficient trial counts. No further selection criteria were applied. 

On each trial, the spikes of the recorded neuron were filtered with a Gaussian (25 ms SD) to 

produce an estimate of firing rate versus time. These were then averaged across trials as 

described below.

EMG recordings

Intra-muscular EMG was recorded from the major muscles of the arm, shoulder, and chest 

using percutaneous pairs of hook-wire electrodes (30mm × 27 gauge, Natus Neurology) 

inserted ~1 cm into the belly of the muscle for the duration of single recording sessions. 

Electrode voltages were amplified, bandpass filtered (10–500 Hz) and digitized at 1000 Hz. 

To ensure that recordings were of high quality, signals were visualized on an oscilloscope 

throughout the duration of the recording session. Recordings were aborted if they contained 

significant movement artifact or weak signal. That muscle was then recorded later. Offline, 

EMG records were high-pass filtered at 40 Hz and rectified. Finally, EMG records were 

smoothed with a Gaussian (25ms standard deviation, same as neural data) and trial averaged 

(see below). Recordings were made from the following: the three heads of the deltoid, the 

two heads of the biceps brachii, the three heads of the triceps brachii, trapezius, latissimus 
dorsi, pectoralis, brachioradialis, extensor carpi ulnaris, extensor carpi radialis, flexor carpi 
ulnaris, flexor carpi radialis, and pronator. We often made multiple recordings for a given 

muscle, especially those that we have previously noted can display responses that vary with 

recording location (e.g., the deltoid).

Trial alignment and averaging

To preserve response features, it was important to compute the average firing rate across 

trials with nearly identical behavior. This was achieved by 1) training to a high level of 

stereotyped behavior, 2) discarding rare aberrant trials, and 3) ‘adaptive alignment’ of 

behavior on individual trials prior to averaging. Because of the temporally extended nature 

of cycling movements, standard alignment procedures (e.g., locking to movement onset) 

often misalign responses later in the movement. For example, a seven-cycle movement 

lasted ~3500 ms. By the last cycle, a trial 5% faster than normal and a trial 5% slower than 

normal would thus be misaligned by 350 ms, or over half a cycle.

To ensure response features were not lost to misalignment, we developed a technique to 

adaptively align trials within a condition. First, trials were aligned so that movement onset 

occurred at the same moment for every trial. Individual trials were then scaled so that all 
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trials had the same duration (set to be the median duration across trials). Because monkeys 

usually cycled at a consistent speed (within a given condition) this brought trials largely into 

alignment: e.g., the top of each cycle occurred at nearly the same time for each trial. The 

adaptive alignment procedure was used to correct any remaining slight misalignments. The 

time-base for each trial was scaled so that the position trace on that trial closely matched the 

average position of all trials. This involved a slight non-uniform stretching, and resulted in 

the timing of all key moments – such as when the hand passed the top of the cycle – being 

nearly identical across trials. This ensured that high-frequency temporal response features 

(e.g., the small peak in Figure 1G) were not lost to averaging.

All variables of interest (firing rate, hand position, hand velocity, EMG, etc.) were computed 

on each trial before adaptive alignment. Thus, the above procedure never alters the values of 

these variables, but simply aligns when those values occur across trials. The adaptive 

procedure was used once to align trials within a condition on a given recording session, and 

again to align data across recording sessions. This allowed, for example, comparison of 

neural and muscle responses on a matched time-base.

Other experimental datasets

Data from primate motor cortex during reaching has been analyzed previously60. Briefly, 

two male rhesus monkeys (A and B) performed center-out delayed reaches in eight target 

directions on a fronto-parallel screen. This task employed three ‘contexts’ in which reach 

initiation was prompted by different cues. That manipulation was incidental to the present 

analysis: we analyzed only movement-related responses, which were empirically very 

similar across the three contexts. We therefore simply computed, for each reach direction, 

the average time-varying firing rate (smoothed with a 20 ms Gaussian) across all reaches in 

that direction. Trials were aligned to movement onset and average firing rate was computed 

from 100 ms before movement onset until 100 ms after the average time of movement offset. 

Neural populations included 101 and 129 neurons (monkey A and B) recorded from the arm 

region of motor cortex (including sulcal and surface primary motor cortex and the adjacent 

aspect of dorsal premotor cortex). During this same task, activity was recorded from the 

muscles of the upper arm using the same procedures described above (13 and 10 recordings 

for monkey A and B).

Data from primate V1 were recorded using natural-movie stimuli from an anaesthetized 

adult monkey (Macaca fascicularis) implanted with a 96-electrode silicon ‘Utah’ array 

(Blackrock Microsystems, Salt Lake City, UT) in left-hemisphere V1 as previously 

described29. These data were recorded in the laboratory of Adam Kohn. Procedures were 

approved by the Animal Care and Use Committees at Albert Einstein College of Medicine 

(protocol #20150303). The left eye was covered. Receptive field centers (2–4 degrees 

eccentric) were determined via brief presentations of small drifting gratings. Stimuli, which 

spanned the receptive fields, were 48 natural movie clips (selected from YouTube) with 50 

repeats each. The frame rate was ~95 Hz. Each stimulus lasted 2.63 s (100 movie frames 

followed by 150 blank frames). Spikes from the array were sorted offline using MKsort 

(available at https://github.com/ripple-neuro/mksort/). A total of 108 single units and stable 

multi-unit isolations were included.
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Data from mouse motor cortex were recorded from three head-fixed mice during a task that 

invoked both a reach-to-grasp sub-task and natural treadmill walking (10 cm/s), performed 

in separate blocks. Procedures were as described previously (Miri et al., Neuron, in press). 

Multiple neurons / muscles were recorded simultaneously, but were also accumulated across 

days to allow analysis of larger populations. Populations from each mouse were analyzed 

separately. Neural recordings were made with independently movable tetrode micro-drives 

(plated with Platinum Black solution to achieve final impedances of 80–200 kΩ at 1 kHz) 

implanted into a 3.5 mm diameter craniotomy above the left caudal forelimb area of M1. 

Tetrodes were lowered over the course of two weeks to target recordings within layer 5. 

Spike waveforms were acquired at 40 kHz and sorted. A total of 890 well-isolated units 

from three animals were recorded across 11 behavioral sessions. Muscle activity from the 

forelimb was recorded from electrodes chronically implanted in the trapezius, pectoralis, 
biceps, triceps, extensor digitorum communis, and palmaris longus. For two mice, 

recordings were made from all six of these muscles. For one mice recordings could only be 

made from four. Each muscle was recorded across eleven sessions. PCA thus extracted the 

top signals across 66 total records for two mice and 44 for the other. Spike-trains and muscle 

activity were smoothed with a Gaussian filter (20 ms standard deviation) and averaged 

across trials.

Preprocessing, PCA, and regression

Because PCA seeks to capture variance, it can be disproportionately influenced by 

differences in firing rate range (e.g., a neuron with a range of 100 spikes/s has 25 times the 

variance of a similar neuron with a range of 20 spikes/s). This concern is greater still for 

EMG, where the scale is arbitrary and can differ greatly between recordings. The response 

of each neuron / muscle was thus normalized prior to application of PCA. EMG data were 

fully normalized: response ← response/range(response), where the range is taken across all 

recorded times and conditions. Neural data were ‘soft’ normalized: response ← response/

(range(response) + 5). We standardly26,29 use soft normalization to balance the desire for 

PCA to explain the responses of all neurons with the desire that weak responses not 

contribute on an equal footing with robust responses. In practice, soft normalization was 

essentially irrelevant for data during cycling, as nearly all neurons had high firing rate 

ranges.

Following preprocessing, neural data were formatted as a ‘full-dimensional’ matrix, Xfull, of 

size n × t, where n is the number of neurons and t indexes across all analyzed times and 

conditions. We similarly formatted muscle data as a matrix, Zfull, of size m × t, where m is 

the number of muscles. Unless otherwise specified, analyzed times were from 100 ms before 

movement onset to 100 ms after movement offset, for all conditions. Because PCA operates 

on mean-centered data, we mean-centered Xfull and Zfull so that every row had a mean value 

of zero.

PCA was used to find X, a reduced-dimensional version of Xfull with the property that Xfull 

≈ VX, where V are the principal components (‘neural dimensions’ upon which the data are 

projected). PCA was similarly used to find Z, the reduced-dimensional version of Zfull. For 

most analyses, we employed eight principal components, such that X and Z were of size 8×t.
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Decoding of muscle activity from neural activity was accomplished via a linear model: Zfull 

= BXfull. B was found using ridge regression. Performance was assessed using 

generalization R2, using Leave-One-Out Cross Validation. Regularization strength was 

chosen to maximize Leave-One-Out Cross Validation performance, though in practice a 

broad range of regularization strengths provided similar performance. For one analysis we 

also attempted to decode neural activity from muscle activity using the model Xfull = BZfull. 

Decoding neural activity from muscle activity was less successful than decoding muscle 

activity from neural activity. Although our neural recordings generally had very good signal-

to-noise, it is possible that poor decoding of neural activity from muscle activity (relative to 

decoding muscle activity from neural activity) could result because neural responses are on 

average modestly noisier (have higher sampling error) than muscle responses. We therefore 

re-ran the regression above after de-noising the neural data by replacing each neuron’s 

response with its reconstruction from the top thirty principal components. The same 

discrepancy was observed.

Tangling

Tangling was computed as described in the results (Equation 1). The neural state, xt was the 

tth column of X. Muscle tangling was computed analogously, based on Z. Essentially 

identical results were found if we used Xfull (Supp Fig 1) but this was less computationally 

efficient and did not allow matched dimensionality between neurons and muscles. We 

computed the derivative of the state as ẋt = (xt − xt−Δt)/Δt, where Δt was 1 ms When 

computing tangling, we employed the squared distance between derivatives, ∥ẋt − ẋt,∥2, 

because its magnitude more intuitively tracks the difference in trajectory direction. For 

example, if the angle between derivatives doubles from 90° to 180°, the norm grows by only 

41%, but the squared norm is doubled. The constant ε (set to 0.1 for all analyses) 

determines how small the denominator can become, which effectively prevents the 

measurement of squared distance between states from ever shrinking below 0.1 times the 

average squared distance. Results were essentially identical across an order of magnitude of 

values of ε.

The definition of trajectory tangling used here differs somewhat from the recently introduced 

definition of representational tangling70. Representations are tangled if the sets of states 

corresponding to two stimulus classes cannot be separated by a smooth (e.g., linear) 

separatrix. Trajectories are tangled if their evolution cannot be accounted for by a smooth 

dynamical flow-field.

Standard Recurrent Neural Networks

We used two very different approaches to train recurrent neural networks (RNNs). In the 

first approach, we trained RNNs to produce a target output (Fig 5) as is conventionally done. 

We used a network with dynamics:

where x is the network state (the ‘firing rate’ of every unit) for time t and condition c. The 

function f ≔ tanh is an element-wise transfer function linking a unit’s input to its firing rate, 
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Ax captures the influence of network activity on itself via the connection weights in A, Bu 
captures external inputs (used to instruct the network which output is desired) and the 

random vector w~N(0, σw) adds modest noise. Network output is then a linear readout of its 

firing rates:

The parameters A, B, C, and x(0, c) were optimized to minimize the difference between the 

network output, y and a target, ytarg. That target was the pattern of activity, across all 

muscles, during the middle five cycles of a seven-cycle movement. We used two conditions 

with different targets: ytarg (:,1) and ytarg(:,2) contained muscle activity during forward and 

backward cycling respectively. The input provided the network with the condition identity: 

u(1) = [1; 0] and u(2) = [0; 1].

The loss function optimized during training contained regularization terms:

where the first term is the error between the network output and the target, the second and 

third terms penalize large recurrent and output weights respectively, and the last term 

penalizes large firing rates. By varying the hyper-parameters λA, λC, λxσw, and the initial 

weight values, we simulated a family of networks that found different solutions for 

producing the same output. This allowed us to ask whether low network-trajectory tangling 

was a common feature of those solutions.

We trained 1000 such networks. Hyper-parameters drawn randomly from log uniform 

distributions, λA ∈ [10−4, 10−1], λC ∈ [10−6, 101], λx ∈ [10−4, 101], and σw ∈ [10−4, 101]. 

Each RNN included n = 100 units. Each matrix of the RNN was initialized to a random 

orthonormal matrix. RNNs were trained using TensorFlow’s Adam optimizer. We discarded 

RNNs that were not successful (R2 < 0.5 between target and actual outputs). Because of the 

broad range of hyper-parameters, only a subset of networks (463) were successful.

As a technical point, we were concerned that, despite regularization, networks might find 

overly specific solutions. Each cycle of the empirical muscle activity had different small 

idiosyncrasies, and optimization might promote overfitting of these small differences. We 

therefore added ‘new’ conditions to ytarg(t, c). Each new condition looked almost identical to 

one of the original two conditions, but was modified such that the small idiosyncrasies 

occurred on different cycles. This ensured that networks produced a consistent output very 

close to the empirical muscle activity, but did not attempt to perfectly match small 

idiosyncratic differences. The inclusion of noise via w also encouraged optimization to find 

robust, rather than overfit, solutions. Noise magnitude, σw, was a hyper-parameter that was 

varied across networks, to encourage varied solutions. However, σw was always set to zero 

when measuring network tangling.
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Trajectory-constrained Neural Networks

To examine the relative noise-robustness of different internal trajectories (Fig 7B and Supp 

Fig 4) we trained RNNs to follow a target internal trajectory. This involved the 

unconventional approach of employing both a target output, ytarg, and a target internal 

network trajectory, starg. Networks consisted of 100 units. Network dynamics were governed 

by

where f ≔ tanh and w~N(0, σw) adds noise. v can be thought of as the membrane voltage 

and f(v(t)) as the firing rate. Af(v(t)) is then the network input to each unit: the firing rates 

weighted by the connection strengths. Cf(v(t)) is a linear readout of firing rates.

During training, A was adjusted using recursive least squares71 so that Af(v(t)) ≈ starg. 

Training thus insured that the synaptic inputs to each unit closely followed the pre-

determined trajectory defined by starg. Firing rates therefore also followed a pre-determined 

trajectory. C was adjusted so that y ≈ ytarg. Training was deemed successful if the R2 

between y and ytarg was > 0.9. Noise robustness was assessed as the largest value of σw for 

which the network could be trained to accurately produce the target output (R2 > 0.9 

between y and ytarg) despite being forced to follow the target trajectory.

We set ytarg = [cos t; sin 2t]. To construct starg, we began with an idealized low-dimensional 

target, . To give each unit a target, we set  where 

G is a random matrix of size 100 × 3 with entries drawn independently from a uniform 

distribution from −1 to 1. (Supplementary simulations use versions of ytarg and 

derived from muscle activity and predicted neural activity respectively.)

Noise tolerance was tested for a range of values of β, producing target trajectories that varied 

greatly in their tangling. For each target trajectory, and each tested value of σw, we ran 

multiple simulations with different random initializations of A, C, and G. The noise 

tolerance reported in Figure 7 is the average (and SEM) across these simulations.

Predicting neural population activity

The optimization described by Equation 2 was performed using Tensorflow. Optimization 

was initialized with X̂
init = Z. Both X̂ and Z were 10×T; they contained the projection onto 

the top ten PCs (T is the total number of timepoints across the conditions being considered). 

Because dimensionality is equal for X̂ and Z, the ability to decode Z from X̂ will suffer as 

optimization modifies X̂. This will increase the first term of the cost function. However, for 

~90% of the variance in muscle population activity was captured in the first 8 PCs. This 

makes it possible for optimization to add structure to X̂ while compromising the decode only 

slightly (most trivially, optimization could change the last two rows of X̂ and result in at 
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most 10% error). Thus, the choice of ten dimensions allows ‘room’ for optimization to add 

structure while keeping decode error low. In practice, decode error was always < 5% (λ was 

chosen to ensure this). Optimizations employed gradient descent using an inexact line search 

for the Wolfe conditions c1 = 0.05 and c2 = 0.1. Because optimization predicts a single 

‘canonical’ middle cycle out of many repeating cycles, we computed the derivative used to 

compute Q (tend) based on the assumption that the cycle would repeat. When assessing 

similarity, we used a modified version of canonical correlation that does not whiten the data 

(Cunningham & Ghahramani 2015). Similarity was the average of the ten canonical 

correlations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Motor cortex displays a signature of a smooth dynamical system: low 

‘tangling’.

• Low tangling explains the previously puzzling dominant signals in motor 

cortex.

• Low tangling conveys noise robustness and predicts population activity 

patterns.

• Motor cortex embeds output commands in structure that reduces tangling.
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Figure 1. 
Behavior, neural activity, and muscle activity during the cycling task. A. Schematic 

illustration of the task during forward cycling. A lush green landscape indicated that 

progress from one target to the next required cycling in the ‘forward’ direction, as indicated. 

B. Same for backward cycling. An arid orange landscape indicated that progress required 

cycling in the opposite, ‘backward’ direction. C. Behavioral data and spikes for individual 

trials during an example neural recording session. Data are shown for a single condition: 

forward / seven-cycle / bottom-start (monkey C). Trials are aligned to movement onset, and 

ordered from fastest to slowest. D. Behavioral data and raw EMG recorded from the 

trapezius for a single condition: backward / seven-cycle / bottom-start (monkey D). E. 
Behavioral and neural data from C after temporal scaling to align trials. F. Behavioral and 

EMG data from D after temporal scaling. G. Trial-averaged and filtered (25 ms Gaussian 

kernel) neural activity for the example neuron in C,E. Flanking envelopes show standard 
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error of the mean (SEM; often these were no larger than the trace width). The shaded 

rectangle indicates the interval during which the monkey was actively cycling between 

targets. Background shading indicates vertical hand position: lightest at top and darkest at 

bottom. Small tick-marks indicate the completion of each cycle. H. Rectified, filtered (25 ms 

Gaussian kernel) and trial-averaged muscle activity for the example in D,F.
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Figure 2. 
A. Vertical hand velocity, averaged across trials from a typical session (monkey C). Same 

format as in Fig 1G. Data are shown for seven-cycle movements for forward cycling (green, 

left column) and backward cycling (red, right column), and for both top-start and bottom-

start movements. The latter have been shifted a half-cycle to visually align hand position 

between top- and bottom-start movements (light shading indicates the top of each cycle). 

Flanking traces show the SEM but are generally narrower than the trace width. B. Horizontal 

hand velocity from the same session, plotted using the same format. C. Activity of brachialis 
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(monkey C) plotted using the same format. Flanking traces (barely visible) show the SEM. 

D. Activity of the medial triceps (monkey C). E. Activity of the trapezius (monkey D).
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Figure 3. 
Firing rates of six example neurons recorded from motor cortex. Same format as for Figure 

2. Flanking envelopes show the SEM. Cell names indicate area (M1 versus PMd) and 

monkey (C and D). All vertical calibrations are 40 spikes/s.
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Figure 4. 
Visualization of population structure via PCA. A. PCA operates on a population of 

responses (six of 103 neurons are shown, monkey D). Green traces highlight the middle 

three ‘steady state’ cycles, which were used to find the PCs for the present analyses 

(subsequent analyses consider all times for all conditions). Data are shown for only one 

condition – forward cycling starting at the bottom – but PCs were computed based on both 

forward and backward cycling and both top- and bottom-start conditions. B. Projections onto 

the PCs capture the dominant signals in the data. Orange dashed lines highlight the ‘neural 

state’ at a single time. That state can be summarized either using the full vector of firing 
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rates (A) or a reduced-dimensional vector containing the values of the projections onto the 

top PCs (B). C. Neural trajectories revealed by plotting the projection onto the second PC 

versus the projection onto the first PC (~35% of the total variance is captured in these two 

dimensions). This is equivalent to projecting the 103-dimensional neural trajectory onto the 

two dimensions defined by the PCs. Orange dot corresponds to the neural state at the same 

time as in A and B. D. Muscle trajectories captured by projecting the muscle population 

response onto its first two PCs (monkey D). Trajectories are shown for forward cycling 

(green) and backward cycling (red). Each panel overlays trajectories for top-start and 

bottom-start conditions (lighter and darker colored traces respectively). The same PCs 

were used to project data for both forward and backward cycling. E. Corresponding neural 

trajectories for the same monkey and conditions as in D. F. Corresponding hand-velocity 

trajectories. Trajectories were produced by applying PCA to horizontal and hand velocity 

traces across multiple sessions. This is exceedingly similar (but for a change of axes) to 

simply plotting average vertical velocity versus average horizontal velocity. G,H,I. PCA-

based muscle, neural, and velocity trajectories for monkey C. Same format as D,E,F, but 

forward and backward cycling are overlaid.
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Figure 5. 
Illustration and validation of the tangling metric. A. Muscle trajectories during the middle 

five cycles for two conditions: seven-cycle / bottom-start / forward (green) and seven-cycle / 

bottom-start / backward (red). Arrows illustrate a pair of highly tangled states. Arrows point 

in the direction of the derivative (the path of the trajectory). The state at time t is maximally 

tangled with the state at time t1′, yielding QEMG (t)=3898. Tangling was computed in eight 

dimensions. B. Same as A but for neural trajectories. The state at time t becomes maximally 

tangled with the state at time t2′, but this maximum is lower than for the muscles. C. Same 

but for network trajectories from an artificial recurrent network. The network was trained to 

produce the activity of all muscles for the times / conditions illustrated in A. D. Scatterplot, 

with one point per time/condition, of network tangling versus muscle tangling. Orange arrow 
denotes tangling for time t, corresponding to the time for which tangling was assessed in 

panels A and C. E. The consistency of the effect in panel D is demonstrated across 247/216 

networks, each trained to produce the pattern of muscle activity from monkey D (red) or 

monkey C (blue). Tangling is summarized by the 90th percentile value (which highlights 

Russo et al. Page 37

Neuron. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how high tangling can become). Lines denote 90th percentile tangling for the empirical 

muscle populations.
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Figure 6. 
Trajectory tangling for multiple datasets. A. Scatterplot of motor-cortex-trajectory tangling 

versus muscle-trajectory tangling (monkey D). Each point shows tangling for one moment 

(one time during one condition). Points are show for all times during movement (sampled 

every 25 ms) for all twenty conditions. Blue line indicates unity slope. Gray / orange 
triangles indicate 90% percentile tangling. B. Same as A but for monkey C. C. Neural versus 

muscle populations could be distinguished based on tangling. For a given number of 

recordings, we drew that many neurons and muscles and computed tangling for each 

subpopulation. 500 such draws were made for each subpopulation size. The vertical axis 

gives the percentage of instances where the neural sub-population was correctly identified 

based on lower tangling. Flanking standard errors are based on binomial statistics. D. 
Tangling for S1 neural population trajectories versus muscle trajectories (monkey D). E. 
Scatterplot of motor-cortex-trajectory tangling versus muscle-trajectory tangling during 

reaching (monkey A). Each point corresponds to one time during one of eight conditions. F. 
Same as E but for monkey B. G. Scatterplot of motor-cortex-trajectory tangling versus 

muscle-trajectory tangling in three mice (black, blue, and green symbols) during both 

locomotion and lever pulling. Illustration in inset by E. Daubert. H. Comparison of tangling 

in motor cortex and visual cortex. Motor cortex data are from the cycling task as in panels A 

and B. V1 data were recorded using natural scenes. Because V1 data contains no 

corresponding muscle activity, tangling is quantified by the 90th percentile values. Error bars 

show the standard error computed via bootstrap: the distribution of tangling values was 

resampled 200 times, and we computing the sampling distribution of the 90th percentile 

values.
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Figure 7. 
Leveraging the observation of low tangling to predict the neural population response. A. 
Illustration of how the same output can be embedded in a larger trajectory with varying 

degrees of tangling. Top gray traces: A desired two-dimensional output [cos t; sin 2t] Plotted 

in state space, the output trajectory is a figure eight, and contains a central point that is 

maximally tangled. Adding a third dimension (βsin t) reduces tangling at that central point. 

The figure-eight can still be decoded via projection onto two dimensions, in which case the 

third dimension falls in the null-space of the decode. B. Noise robustness of recurrent 

networks trained to follow the internal trajectory [cos t; sin 2t; βsin t]. By varying β, we 

trained multiple networks that could all produce the same figure-eight output, but had 

varying degrees of trajectory tangling. For each network, noise tolerance was the largest 

magnitude of state noise for which the network still produced the figure-eight output. For 

each value of β we trained 20 networks, each with a different random weight initialization. 

Error bars show the SEM across such networks. C. Similarity of the predicted and empirical 

motor-cortex population responses (monkey D). Blue trace: prediction yielded by optimizing 

the cost function in Equation 2. Light blue dot indicates similarity at initialization. Dashed 

lines show benchmarks as described in the text. Gray shading indicates 95% confidence 

interval on the upper benchmark, computed across multiple random divisions of the 

population. D. Same but for monkey C. E. Projection of the predicted population response 

(after optimization was complete) onto the top two principal components. Data are for 

monkey D. Green / red traces show trajectories for three cycles of forward / backward 

cycling respectively. F. Same but for monkey C.
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Figure 8. 
Muscle-like signals coexist with signals that contribute to low tangling. Data are for monkey 

D. A. Three-dimensional subspace capturing trajectories that encode trapezius activity; i.e., 
can be linearly read out to approximate trapezius activity. Blue arrow indicates the readout 

direction, defined by the weights identified via linear regression. Axes correspond to the first 

two PCs and a third dimension that ensures the space spans the readout direction. 

Trajectories are shown for four conditions: forward (green) and backward (red) seven-cycle 

movements, starting at the top and bottom (lighter and darker traces). Lighter ‘shadow’ 
traces at bottom show the projection onto just the first two PCs (perspective has been added). 
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B. Projections, for the four conditions plotted in A, onto the readout direction. Thin black 

trace plots the true activity of the trapezius. Axis spans the time of movement. C,D. Same as 

A,B but for the medial biceps. Only the third (vertical) axis is different. E,F. Same but for 

the medial triceps.
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