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Ocean submesoscales as a key component of the
global heat budget
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Recent studies highlight that oceanic motions associated with horizontal scales smaller than

50 km, defined here as submesoscales, lead to anomalous vertical heat fluxes from colder to

warmer waters. This unique transport property is not captured in climate models that have

insufficient resolution to simulate these submesoscale dynamics. Here, we use an ocean

model with an unprecedented resolution that, for the first time, globally resolves sub-

mesoscale heat transport. Upper-ocean submesoscale turbulence produces a systematically-

upward heat transport that is five times larger than mesoscale heat transport, with winter-

time averages up to 100W/m2 for mid-latitudes. Compared to a lower-resolution model,

submesoscale heat transport warms the sea surface up to 0.3 °C and produces an upward

annual-mean air–sea heat flux anomaly of 4–10W/m2 at mid-latitudes. These results indicate

that submesoscale dynamics are critical to the transport of heat between the ocean interior

and the atmosphere, and are thus a key component of the Earth’s climate.
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Variations in the heat content of the ocean–atmosphere-
coupled system influence Earth’s climate1,2. Turbulent
motions in the upper ocean (down to ~300 m depths)

occur across a broad range of spatial scales, from ~1000 km down
to ~1 km and even smaller scales, and influence the partitioning
of heat between the ocean and atmosphere as suggested by local
studies3,4. Satellite images during the past four decades reveal
broadly distributed submesoscale (~0.1–50 km) turbulence over
the global ocean5, typically characterized by surface frontal
structures in the form of eddies and elongated filaments (Fig. 1a, b).
Only recently, regional numerical and observational studies4 have
shown that submesoscales may explain more than 50% of the total
vertical velocity variance in the ocean’s upper 300m. This implies
that submesoscale fluxes are a potentially efficient route for the
vertical transport of heat, nutrients, oxygen, and climatically
important dissolved gases. Submesoscale structures are produced by
several classes of surface frontal instabilities3–11 that tend to be
intensified in the winter when the mixed layer depth is large.
Additionally, submesoscales may transport heat vertically from cold
to warm waters (up-gradient)4–12, the opposite sense of traditional
subgrid-scale parameterizations (down-gradient) in climate models.
This unique property is not captured in climate models that have
insufficient resolution to simulate these submesoscale dynamics.
Useful parameterizations13 have been proposed and implemented
for certain submesoscale processes, although these involve
sometimes-unsettled coefficients while other submesoscale
processes remain uncaptured, e.g., wind-front interactions and
frontogenesis. The full impact of submesoscale turbulence on ocean

vertical heat transport and air–sea heat exchange has not
previously been directly quantified on a global scale, representing a
potential gap in our understanding of the evolution of global
oceanic and atmospheric heat content13. Accurately assessing the
impact of submesoscale turbulence requires explicit resolution of
motions at these scales, which remains computationally challenging
for global ocean simulations.

In this study, we make a major advance toward realizing this
challenge by using a novel global ocean simulation with an
unprecedented ~2 km horizontal resolution that, for the first
time, globally resolves the ocean submesoscale heat transport at
the 10–50-km scale range. We find that submesoscale turbulence
produces a large and systematically upward heat transport glob-
ally throughout the upper ocean: the winter-time averages are
20–100W/m2 across most of the mid-latitudes, peaking at
500–1000W/m2 over shorter intervals of days to weeks. These
amplitudes, consistent with recent in situ observations11, are
comparable to air–sea heat fluxes, and are more than five times
larger than the mesoscale vertical heat transport in most regions
of the ocean. Comparison with a lower resolution simulation
shows that submesoscale vertical heat transport warms the sea
surface by 0.06–0.3 °C and produces an upward annual mean
air–sea heat flux anomaly of 4–10W/m2 in most mid-latitude
areas. The latter is comparable to climatological air–sea heat
fluxes. These results suggest that submesoscale processes are
critical to setting the magnitude of the vertical heat flux between
the interior ocean, the surface ocean, and the atmosphere, as well
as the geographic location and temporal variability of these fluxes

Observed submesoscale structures in the Baltic Sea In the Andikithiron Channel

As c but on September 1, 2012Simulated submesoscale structures, on March 1, 2012

60
6

20 km

20 km

a b

c d

N 20 km N
B

A

20 km

× 10–5

3

–3

–6

0

40

20

0

–20

–40

–60

–80
0 60 120 180 240 300 360

La
tit

ud
e 

(°
)

Longitude (°)
0 60 120 180 240 300 360

Longitude (°)

Fig. 1 Overview of global submesoscale structures and distributions. a Satellite image of a large bloom of cyanobacteria in the Baltic Sea on August 11,
2015 showing submesoscale eddies, fronts, and filaments. Figure 1a sourced from NASA (images by Norman Kuring, NASA's Ocean Color Web). See
https://landsat.visibleearth.nasa.gov/view.php?id=86449. b Observations11 of submesoscale structures from sunglitter in the Andikithiron Channel
northwest of Crete on October 7, 1984. Ship tracks are labeled A, B. c, d Simulated global snapshot of ocean turbulence at ~2-km resolution, as well as
expanded views for local regions, for c Northern and d Southern Hemisphere winters. The quantity shown is relative vorticity (s−1), a measure of the spin of
fluid parcels, that emphasizes fast-rotating submesoscale turbulence especially in the winter hemisphere (see Supplementary Figure 1 for Rossby number).
The same global maps but with a higher pixel resolution can be found at web.gps.caltech.edu/~zhan/nailed/Figure1a.png
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over days to months, and are therefore a key component of the
global heat budget.

Results
An ultrahigh-resolution global ocean simulation. Here, we use
a global ocean model with unprecedented resolution (1/48°, 90
levels, see “Methods”). The horizontal resolution, ~2 km at
mid-latitude, captures physical processes at wavelengths down to
a scale of ~10 km14,15. This ocean simulation has been evaluated,
locally, using in situ observations in terms of the kinetic energy
levels at different wavelengths and frequencies14,15. The
simulation is progressively spun up from coarser resolution
(initially 1/6°), observationally constrained model solutions16,
which results in a quasi-equilibrated and realistic upper ocean
state above the first 500 m (see “Methods”). Throughout this
manuscript, we use the term submesoscale to designate a spatial
scale smaller than the mesoscale: a horizontal scale ≲0.5° in terms
of longitude (~50 km at mid-latitudes), roughly below the first
deformation radius in most of the global ocean9,17–22 (in terms of
wavelengths). Our simulation can resolve the 10–50 km sub-
mesoscale range (see “Methods”); we discuss the potential impact
of the still unresolved submesoscale range below.

Overview of global submesoscale structures and distributions.
The simulation shows that submesoscale turbulence populates the
global upper ocean with coherent structures (10–50 km) embed-
ded in the larger-scale ocean circulation (Fig. 1c, d and Supple-
mentary Figure 1). Relative vorticity ζ, the curl of the velocity
field, is a useful diagnostic for visualizing the ocean

submesoscales. The relative vorticity (Fig. 1) on March 1, 2012
(Northern Hemisphere winter) and September 1, 2012 (Southern
Hemisphere winter) reveals the geographic variability of sub-
mesoscale turbulence. Submesoscales in our simulation are
everywhere characterized by a myriad of eddies as small as ~10
km intertwining with elongated and wavy filaments, as seen in the
expanded panels of Fig. 1. There is a pronounced global seasonal
signal in the ζ-field, characterized by larger magnitudes and
smaller scales during the winter. Relative vorticity values com-
parable to Earth’s rotation rate (Supplementary Figure 1) are
found in almost all ocean basins. This suggests4,23 strong and
wide-spread vertical velocities in the upper ocean: in the 20°–60°
mid-latitude band during the winter, about 51% and 2% of ocean
area at 40 m depth has magnitudes larger than 10 m/day and 40
m/day, respectively (Supplementary Figure 2a–b). The above
characteristics dominate not only in the Gulf Stream and Kur-
oshio, as already reported18,20,24, but also in a large number of
unexplored regions that are critical for ocean–atmosphere
exchange, including the Southern Ocean, the high-latitude North
Atlantic, the broad subtropical oceans, and the Mediterranean,
Black, and Arabian Seas. Note that these regions generally have
deep mixed layer depths, which is an important factor for pro-
ducing intense submesoscale motions.

Temporal variabilities of submesoscale characteristics. The
time series of submesoscale vorticity and vertical heat transport
exhibit not only a strong winter-peaked seasonality, but also a
significant intermittency at daily to weekly time scales (Fig. 2, see
“Methods”). The latter is associated with the short timescales of
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Fig. 2 Temporal variability of submesoscale characteristics. Local time series of submesoscale band (~10–50 km, see “Methods”) root mean square (rms)
relative vorticity (black), rms vertical velocity (blue), and vertical heat transport (positive: upward) at 40m and 200m depths (magenta and red,
respectively). Dashed curves are the sinusoidal seasonal cycle fit for relative vorticity. The locations are in the a high-latitude North Atlantic (57°N, 26°W),
b Kuroshio Extension (38.1°N, 156°E), c eastern Indian Ocean (38.3°S, 118°E), d Agulhas Current (40°S, 18°E). The results here are averaged over a 1° × 1°
square box in each location. The correlation between the time series suggests a strong dynamic connection between the different quantities. Submesoscale
upward heat transport can reach a significant amplitude up to 500–1000W/m2, consistent with values inferred from recent observations10, and is
characterized by a strong intermittency (days to weeks) and a winter-peaked seasonality

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02983-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:775 |DOI: 10.1038/s41467-018-02983-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


submesoscale dynamics3,22. The time series of the root-mean-
square values of ζ and vertical velocity confirm their strong
correlation (Fig. 2) and therefore the frontal character of sub-
mesoscale turbulence. This relationship is due to the ageostrophic
circulation described by the omega equation23. The energetic
vertical motions cause significant vertical heat transport at sub-
mesoscales, up to 500–1000W/m2 (Fig. 2). The seasonal varia-
bility of the vertical heat flux has an amplitude of up to 200W/
m2, and its variability over shorter intervals of days to weeks
peaks at 500–1000W/m2. Our results suggest that submesoscale
turbulence dramatically enhances the upper-ocean heat exchange
at diverse time scales ranging from days to seasons, which applies
broadly across the global ocean.

Global patterns of submesoscale vertical heat transport. The
enhancement of the near-surface vertical heat transport by sub-
mesoscales is ubiquitous over the global ocean (Fig. 3). This heat
transport is systematically upward (upgradient): it acts to produce
a surface warming and a deeper cooling, intensified in winter. In
the wintertime Southern Hemisphere, large submesoscale heat
fluxes at 40-m depth cover most of the region between 20°S and
60°S (Fig. 3b), where 66% and 5% of ocean area has amplitudes
larger than 20W/m2 and 100W/m2, respectively. At 200-m
depth, submesoscale fluxes retain their large amplitudes and
mostly cover the 35°–60°S latitude band (Fig. 3d), where 48% and
10% of ocean area here has amplitudes larger than 20W/m2 and
100W/m2, respectively. Large submesoscale heat fluxes also occur
in the wintertime Northern Hemisphere (Fig. 3a, c). These are
strongest in the 20°–40°N band, where 65% and 11% of ocean
area has amplitudes larger than 20W/m2 and 100W/m2,
respectively, at 40 m depth. Similar amplitudes also occur in the
Atlantic subpolar and polar gyres (40°–60°N), where 61% and
19% of ocean area has amplitudes larger than 20W/m2 and 100
W/m2, respectively, at 200 m depth. During the summer, sub-
mesoscale fluxes are still positive but have a smaller amplitude
and more limited spatial coverage. Only the region between

40°–60°S, as well as 40°–60°N in the Atlantic, still have significant
submesoscale fluxes, where 32% and 46% of the area in these
respective latitude bands have amplitudes larger than 10W/m2 at
200 m depth (Fig. 3c, d).

Importantly, in most regions the amplitudes of the subme-
soscale heat transport, 20–100W/m2 over the winter hemisphere
(Fig. 3, see above), are comparable to or larger than the
climatological net air–sea heat fluxes25 (~10–200W/m2) and
mesoscale vertical fluxes (≲20W/m2 over most of the ocean’s
surface area; Supplementary Figure 3). Specifically, submesoscale
vertical fluxes are more than five times larger than mesoscale
vertical fluxes in 72% of ocean area in winter hemispheres
(Fig. 3a, b vs Supplementary Figure 3a, b). The globally averaged
submesoscale heat flux is 9± 3.5W/m2, compared to a mesoscale
heat flux of 1.5± 0.2W/m2 (the global integrated values are ~3.0,
4.6, 2.0, and 2.9 PW for submesoscale flux in Fig. 3a–d,
respectively, compared to only ~0.6, 0.6, 0.5, and 0.5 PW for
mesoscale flux in Supplementary Figure 3a–d, respectively). These
comparisons suggest a key role for submesoscale motions in
controlling upper ocean vertical heat transport on a global scale.
Mesoscale heat fluxes (Supplementary Figure 3) do not exhibit a
seasonal cycle and are less systematically upward, which
highlights a marked difference between mesoscale and subme-
soscale motions in modulating the near-surface heat budget.
Moreover, this explicit quantification at submesoscales (Figs. 2–3)
shows that the heat transport has a stronger temporal
intermittency24, has larger amplitudes (~2–4 times larger), and
exceeds 10W/m2 over a greater proportion of the ocean (~3 times
greater), as compared to studies that parameterize submesoscale
motions26.

Global air–sea heat flux modulated by submesoscale dynamics.
These characteristics of the directly resolved submesoscale heat
flux, in particular the large amplitudes and broad coverage
(Figs. 2–3), suggest that its misrepresentation in coupled climate
models could produce significant biases in the magnitude, the
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Fig. 3 Global patterns of submesoscale vertical heat transport. Values are spatially smoothed over 3° × 3° square boxes; positive values indicate upward.
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temporal variability, and the geographical location of
ocean–atmosphere heat exchange. To test this, we compare two
simulations with identical configurations except for the horizontal
resolution (1/48° vs 1/24°). The nonlinear nature of turbulence
(e.g., meso- or smaller scale fluctuations) could cause chaotic
differences between two models due to the position of individual
coherent structures. Therefore, we apply statistical averaging
(annual mean, and 3° × 3° spatial mean) to our following analyses
to compare statistical properties, although differences in coherent
structure at larger scales, e.g., standing eddies in western
boundary currents or the Antarctic Circumpolar Current (ACC),
could still lead to differences between the two model runs (e.g.,
both positive and negative difference in these regions such as in
Fig. 4). The 1/48° model exhibits a greater conversion from
potential energy to kinetic energy (Supplementary Figure 5a),
consistent with resolving submesoscale instabilities over a greater
range of wavelengths, ~10–50 km, as compared to ~20–50 km for
the 1/24° model (see “Methods”). Consequently, the global sub-
mesoscale field is more active in the 1/48° model (Supplementary
Figure 5b–c). This produces stronger submesoscale upward heat
fluxes in the upper ocean: 62% and 5% of the ocean area at
20°–60° mid-latitudes have fluxes that are more than 4W/m2 and
10W/m2 stronger, respectively (Fig. 4a and Supplementary Fig-
ure 5d; annual-mean here and for below). This acts to warm the
sea surface (Fig. 4b): 64% and 8% of ocean area at 20°–60° mid-
latitudes becomes more than 0.06 °C and 0.3 °C warmer,
respectively. Again, these effects (Fig. 4) are mainly caused by
submesoscale motions in the 10–20 km range. This result is fur-
ther explained as follows: the stronger submesoscale upward heat
flux in the 1/48° model (Fig. 4a and Supplementary Figure 5d),
i.e., the stronger restratification flux, causes a shallower mixed
layer in the 1/48° model (dashed and dotted curves in

Supplementary Figure 4b; Fig. 4d). This process is equivalent to a
stronger slumping of isopycnals7,27 (approximately temperature
contours) in the 1/48° model (solid curves in Supplementary
Figure 4b). This submesoscale-driven slumping of temperature
contours explains the ocean surface warming (roughly within the
range of wintertime mixed layer; Supplementary Figure 4b, b) and
the deeper cooling (roughly below the wintertime mixed layer;
Supplementary Figure 4b). This sea surface warming (Fig. 4b)
results in a larger release of heat from the ocean to the atmo-
sphere via intensified upward air–sea heat flux anomalies
(Fig. 4c): 60% and 8% of the ocean area between 20° and 60° in
both hemispheres show an intensification of the annual-average
air–sea flux by more than 4W/m2 and 10W/m2, respectively.
This increase in air–sea flux ultimately balances the stronger
submesoscale upward heat flux (Fig. 4c vs 4a, see also explanation
in “Methods”). This 4–10W/m2 air–sea flux response is a sig-
nificant fraction of the climatological, as well as our model’s, net
air–sea heat flux, which is ≲20W/m2 over broad regions of the
ocean basins25.

Discussion
Our numerical simulation of the global ocean has permitted an
estimate of the vertical heat fluxes caused by submesoscale
motions at ~10–50 km range (in terms of wavelengths, see
“Methods”). This global ocean simulation is state of the art in
terms of resolution; at the time of writing this manuscript, it
remains impractical to go beyond a ~2 km resolution in a global
model. We acknowledge that the heat flux contributions from
submesoscale motions not resolved by this model (~0.1–10 km)
could be significant and could quantitatively alter the values
presented in this study. However, recent studies provide strong
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evidence that the total heat flux, including the full range of
submesoscale motions, should remain upward (positive) and, if
anything, are likely to be even larger than the values reported
here. Indeed, a process study12 showed that submesoscale
dynamics at the 0.1–10 km range leads to a significant restratifi-
cation of the upper ocean (in particular through filamentary
intensification) and therefore produce an upward heat flux. Other
process studies7,28–31 suggested similar behavior. A more recent
study32, using a non-hydrostatic model in a 200-km square
domain, found that physical scales from 10 km down to 250 m
lead to upward buoyancy fluxes and therefore upward heat fluxes,
with a magnitude comparable to our estimate. Extrapolation of
these localized or process-based results to the global ocean still
needs to be examined.

An acknowledged limitation of this study is that the atmo-
sphere and ocean are not fully coupled. In our global ocean
simulation, modifications to sea surface temperature (SST) by
submesoscale heat fluxes necessarily impact air–sea fluxes since
the latter are parameterized using bulk formulae involving SST33.
However, atmospheric variables, such as surface wind, air tem-
perature, and humidity that also impact air–sea fluxes, are pre-
scribed in our model, rather than being influenced by SST as they
are in a fully coupled system. Thus, there is an additional
uncertainty related to our calculated submesoscale and surface
heat fluxes due to air–sea coupling. Submesoscale fluxes may
modulate atmospheric dynamics that in turn lead to feedback on
ocean dynamics. Indeed, multiple studies have pointed out the
impact of eddy-driven SST anomalies on the stability of the
overlying atmosphere34 and surface pressure anomalies35. These
interactions may significantly influence wind stress36–38 and the
location and strength of the atmospheric jet streams39–41, as well
as mid-latitude storms42. This raises the possibility that SST
changes reported in our study—most significant at mid-latitudes
—may impact atmospheric storm-tracks, and therefore produce a
feedback on the large-scale ocean circulation as well as on ocean
submesoscale motions. This feedback may also include wind-
front interactions43, wind-driven changes in mixed layer
depth44 and ocean stratification,45 the change of wind energy
input to the ocean46, and changes in air–sea turbulent fluxes47.

These results indicate that the oceanic submesoscale heat fluxes
may impact ocean dynamics at both larger and smaller scales
through the interaction with atmospheric dynamics. This impact
may only be assessed and quantified through a global
ocean–atmosphere-coupled model with a spatial resolution
similar to the one considered in the present study. This simula-
tion does not yet exist due to its computational expense.

We emphasize that critical regions for ocean heat uptake from
the atmosphere48, e.g., the Southern Ocean and high-latitude
North Atlantic, as well as regions that influence the atmospheric
storm tracks, e.g., the Kuroshio Extension and Gulf Stream, are
particularly affected by the strong submesoscale heat transport
(~20–100W/m2 in winter, Fig. 3). These regions suffer from
uncertainty in the quantification of the local air–sea heat fluxes49.
This can be partially attributed to the commonly neglected26

submesoscale heat transport, which may impact the partitioning
of heat between the ocean and atmosphere (Fig. 4). Furthermore,
the modification of air–sea heat fluxes due to submesoscale
processes may influence the formation of deep, intermediate, and
mode waters, which controls the downwelling and upwelling
branches of the meridional overturning circulation50. Finally, this
study has implications for the exchange of carbon and oxygen
between the atmosphere, ocean surface, and ocean interior, which
will be sensitive to near-surface submesoscale vertical fluxes. In
particular, the Southern Ocean, where submesoscale activity is
particularly strong (Fig. 3), accounts for up to 40% of global
anthropogenic carbon uptake51. An important and likely

computationally affordable next step is to explore the potential
impact of oceanic submesoscale motions on atmospheric circu-
lation and the feedback on air–sea flux and ocean state, using a
high-resolution ocean model that is coupled to at least the
atmospheric boundary layer. The impact of even smaller-scale
oceanic motions than can be resolved in our study on the large-
scale heat transport also needs to be explored, likely using a basin-
scale ocean model.

Methods
Model description. We use a set of global, full-depth ocean and sea ice numerical
simulations carried out using the Massachusetts Institute of Technology general
circulation model (MITgcm) on a Latitude-Longitude polar Cap (LLC) grid16. The
computation is enabled by NASA Advanced Supercomputing. The model output
analyzed in this study is from the so-called LLC4320 simulation, which has a
nominal horizontal grid spacing of 1/48° (0.75 km near Antarctica, 2.3 km at the
Equator, and 1 km in the Arctic Ocean). We also use the LLC2160 simulation for
the results presented in Fig. 4, which has a nominal horizontal grid spacing of 1/
24°. Horizontal wavenumber spectra suggest14 that the effective resolution of
LLC4320 and LLC2160 is about 10 km and 20 km, respectively. The 1/48° simu-
lation spans 14 months from September 10, 2011 to November 15, 2012. The spin-
up of this simulation is described in Appendix D and Table D2 of ref. 16; it
progresses from a 1/6° global ocean state estimate generated by the Estimating the
Circulation and Climate of the Ocean, Phase II (ECCO2) project16, to 1/12° and
then 1/24° simulations. The 1/12°, 1/24°, and 1/48° simulations are forced with six-
hourly surface atmospheric fields (10-m wind velocity, 2-m air temperature and
humidity, downwelling long and shortwave radiation, and atmospheric pressure
load) from the 0.14° European Centre for Medium-Range Weather Forecasting
(ECMWF) atmospheric operational model analysis, starting in 2011. These three
simulations also include tidal forcing for the 16 most significant components,
applied as additional atmospheric pressure forcing. Vertical mixing is para-
meterized based on the critical value of Richardson number and is implemented
using the K-Profile Parameterization (KPP) scheme52 that has been extensively
used and evaluated in ocean modeling studies53,54. The 1/48° simulation has been
evaluated using in situ observations in terms of the kinetic energy level at different
wavelengths and frequencies14,15. This simulation’s air–sea fluxes have similar
magnitudes as climatological fluxes. This is because our model’s global SST dis-
tributions are in realistic range and the air–sea fluxes in our model depend on SST
and the prescribed reanalysis of atmospheric state such as near-surface air tem-
perature, humidity, and wind speed according to the bulk formulae of ref. 33. This
study focuses on submesoscales and its seasonality. The current integration of this
simulation is able to reach the equilibrium state for submesoscale dynamics
because of their short timescales. We are aware that it would take longer inte-
gration to reach the equilibrium state for the larger-scale ocean dynamics in the
global ocean, which is beyond the capacity of the most powerful computers at the
current time50. Note that the 1/48° simulation is integrated using primitive
equations (i.e., with hydrostatic assumption). The horizontal grid spacing and the
hydrostatic assumption indicate that the 1/48° simulation cannot adequately
resolve symmetric instability. But to a large extent, we expect the 1/48° simulation
to resolve some other crucial sources for generating submesoscale turbulence, such
as the mixed layer instability7,9,17,18,26, wind-front interactions43, and strain-
induced frontogenesis3,28.

Relative vorticity ζ. Relative vorticity is defined as the rotational component of
horizontal motions: vx − uy, with u and v the zonal and meridional velocities and x
and y the zonal and meridional coordinates; subscripts here imply partial differ-
entiation. Here, ζ is a measure of the spin of a fluid parcel. A useful non-
dimensional number characterizing the surface frontal structure is ζ/f, where f is
the Coriolis parameter due to the Earth rotation. When this non-dimensional
number (also called Rossby number, Supplementary Figure 1) is larger than 0.1, the
vertical velocity associated with these frontal structures may be large18,55,56. About
10% of ocean area in the winter hemisphere (20°–60° latitude band) has a surface |
Ro| ~0.4 (Supplementary Figure 1c). Root-mean-square Rossby number can reach
~0.4 during winter in basin-scale domains (Supplementary Figure 1d), suggesting
that individual amplitudes of Rossby number can reach O(1). Smaller-scale
motions, if resolved, should increase the Rossby number amplitudes.

Definition and computation of submesoscale and mesoscale fields. We use the
term submesoscale to designate a spatial scale just smaller than the mesoscale: a
horizontal scale ≲0.5° in terms of longitude (~50 km at mid-latitudes), roughly
below the first deformation radius in most of the global ocean9,17–22 (in terms of
wavelengths, i.e., need to times a factor of π). The lower bound of submesoscales is
often considered3 as O(0.1 km), but in our model is ~10 km, which is the effective
resolution of our model14 since our numerical resolution is 1/48°, ~2 km at mid-
latitudes (physical length scales really represented in the simulation are usually five
times the numerical resolution). Therefore, submesoscale in this study refers to the
range 1/10°–0.5° (~10–50 km). To focus on submesoscale processes, for all fields
analyzed, we apply daily averaging to filter out most of the internal gravity waves14.
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The submesoscale component of ζ, denoted as ζ′, are the anomalies of the daily
mean ζ from its 0.5° × 0.5° spatial mean (averaging over a 0.5° × 0.5° square box).
Therefore, ζ′ is a spatial-temporal variable and approximately represents the
component of ζ in the 1/48°–0.5° scale range (~2–50 km). Similarly, we can define
the submesoscale component for other quantities such as temperature and vertical
velocity. In our test, it yields essentially the same results when using 1° instead of
0.5° as the upper bound for defining submesoscales. The vertical heat flux (Figs. 2–
4) is defined as Cpρw′T′, where Cp is the specific heat capacity, ρ is the density, w′
and T′ are the submesoscale components of vertical velocity and temperature,
respectively. The spatial and temporal filters above have been similarly and widely
used in other studies to deliver the submesoscale field22,57,58. The mesoscale
component of a quantity is defined as the temporal anomalies of a given quantity
from the annual average and has a spatial scale larger than 0.5° (averaging over a
0.5° × 0.5° square box)22.

Sensitivity analysis shown in Fig. 4. We perform a sensitivity analysis by com-
paring two simulations with identical setups except for the horizontal resolution (1/
48° vs 1/24°). The 1/48° model resolves submesoscale instabilities over slightly
broader wavelengths than the 1/24° model14 (~10–50 km vs ~20–50 km). This
powers a stronger global submesoscale field in the 1/48° model (Supplementary
Figure 5a–c) and produce a stronger submesoscale upward heat transport in most
area of mid-latitude upper ocean (Supplementary Figure 5d). This causes a warmer
sea surface in the 1/48° model (Fig. 4b) and is ultimately balanced by a stronger
upward ocean–atmosphere heat exchange (Fig. 4c). This response, to leading order,
may be explained by a classic thermodynamic equation59 that captures the evo-
lution of upper-ocean temperature T:

C dT=dt ¼ S� λT: ð1Þ

Here C is the total heat capacity of the upper layer (the system we focus on), S is the
heating source, and –λT is the negative feedback from air–sea heat flux, where λ can
be approximated as a positive constant locally59. In the 1/48° model, S is larger due
to a stronger incoming submesoscale heat flux from below (Fig. 4a). From Eq. (1),
this causes a higher temperature T (Fig. 4b), and hence a larger upward air–sea heat
exchange λT in the 1/48° model. The change in λT ultimately closely balance with
the difference of S in the two model simulations (Fig. 4c vs 4a) such that the
systems approach a quasi-steady state (dT/dt ~0 in an annual-mean sense). In this
case for the upper 40 m ocean59, λ is ~15Wm2/K and C is ~16 × 107 Jm2/K.
Therefore, the timescale C/λ is about a few months, which means that the air–sea
flux (−λT) can respond to the forcing S by a timescale of months. This is captured
in our simulations (see Supplementary Figure 4 for a further illustration). See the
main text for the discussion of caveats.

Code availability. The instructions and code for running the 1/24° and 1/48°
simulations are available by the following websites:

http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires/
llc_2160/

http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires/
llc_4320/

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information Files, or
from the corresponding authors on request.
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