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ABSTRACT Zika virus (ZIKV) is an emerging flavivirus that can cause birth defects
and neurologic complications. Molecular tests are effective for diagnosing acute ZIKV
infection, although the majority of infections produce no symptoms at all or present
after the narrow window in which molecular diagnostics are dependable. Serology is
a reliable method for detecting infections after the viremic period; however, most
serological assays have limited specificity due to cross-reactive antibodies elicited by
flavivirus infections. Since ZIKV and dengue virus (DENV) widely cocirculate, distin-
guishing ZIKV infection from DENV infection is particularly important for diagnosing
individual cases or for surveillance to coordinate public health responses. Flaviviruses
also elicit type-specific antibodies directed to non-cross-reactive epitopes of the in-
fecting virus; such epitopes are attractive targets for the design of antigens for de-
velopment of serological tests with greater specificity. Guided by comparative
epitope modeling of the ZIKV envelope protein, we designed two recombinant anti-
gens displaying unique antigenic regions on domain I (Z-EDI) and domain III (Z-EDIII)
of the ZIKV envelope protein. Both the Z-EDI and Z-EDIII antigens consistently de-
tected ZIKV-specific IgG in ZIKV-immune sera but not cross-reactive IgG in DENV-
immune sera in late convalescence (�12 weeks postinfection). In contrast, during
early convalescence (2 to 12 weeks postinfection), secondary DENV-immune sera
and some primary DENV-immune sera cross-reacted with the Z-EDI and Z-EDIII anti-
gens. Analysis of sequential samples from DENV-immune individuals demonstrated
that Z-EDIII cross-reactivity peaked in early convalescence and declined steeply over
time. The Z-EDIII antigen has much potential as a diagnostic antigen for population-
level surveillance and for detecting past infections in patients.
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Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus in the
Flavivirus genus, which includes other medically important viruses, such as dengue

virus (DENV), West Nile virus, and yellow fever virus (1). ZIKV infection has become a
major global health concern because it can disseminate rapidly in naive populations
and lead to neurologic sequelae, such as a Guillain-Barré-like syndrome, in otherwise
healthy individuals. ZIKV also has the unusual ability among human flaviviruses to be
transmitted through sexual contact and from mother to fetus during pregnancy (2).
Congenital ZIKV infection can cause developmental abnormalities, including ocular
damage, microcephaly, and fetal death (2–5). People at risk of DENV infection are also
at risk of ZIKV infection, as both viruses are transmitted by Aedes mosquitoes (3).

Accurate diagnosis is critical to many aspects of the public health response to the
Zika disease epidemic (6) but is complicated by multiple factors. Clinically, it is impos-
sible to discern among myriad causes of acute fever and/or rash. Molecular tests are
useful for detecting symptomatic flavivirus infections during the brief period immedi-
ately following infection (7). However, most individuals with ZIKV infection never seek
medical attention because they are asymptomatic or experience only a mild, self-
limited illness (8, 9). Beyond this acute period, serological tests are necessary to detect
ZIKV infections and to support public health efforts, such as prenatal evaluation and
management, risk reduction counseling, and surveillance and outbreak investigations.

Unfortunately, most serological tests lack specificity due to cross-reactive antibodies
elicited by flavivirus infections. Neutralization assays, which are more specific but less
widely available due to their resource-intensive nature, may or may not clarify IgM
results that suggest ZIKV or DENV infection, leaving many weeks of waiting for a
diagnosis or giving the ambiguous designation “recent flavivirus infection” (10, 11).
Patient serum collected 5 or more days after the onset of symptoms contains a complex
mixture of antibody populations against the viral envelope (E) protein, directed to
epitopes that are unique to the infecting virus as well as to epitopes that are conserved
among flaviviruses (12, 13). Consequently, assays that employ the whole virus or E as
antigen do not reliably distinguish infections caused by ZIKV from those caused by
DENV (14). Recombinant ZIKV antigens containing epitopes recognized by type-specific
but not cross-reactive antibody are needed for the development of serological diag-
nostic assays with greater specificity for ZIKV infection.

The surface of the ZIKV virion is decorated by 180 copies of E with icosahedral
symmetry (12, 15–19). Each E protein monomer is composed of an amino-terminal
ectodomain (E80; amino acids [aa] 1 to 403), two amphipathic �-helices, and two
carboxy-terminal membrane-spanning �-helices (17–19). The surface-exposed E80 re-
gion comprises three distinct domains (EDI, EDII, and EDIII), with EDI in the center. EDI
(aa 1 to 49, 136 to 195, and 286 to 302) and EDII are noncontiguous in sequence and
are connected by a flexible hinge region (EDI/II hinge), whereas EDIII (aa 303 to 403) is
a continuous domain extending from EDI (Fig. 1).

Here we present the design, production, and evaluation of ZIKV EDI and EDIII
antigens (referred to here as Z-EDI and Z-EDIII, respectively) for serological diagnosis of
ZIKV by use of well-characterized early- and late-convalescent-phase immune sera from
individuals infected by ZIKV, DENV, or both.

MATERIALS AND METHODS
Human subjects and clinical specimens. (i) Samples from North Carolina (15 samples). Sera were

collected from North Carolina residents or visitors with possible or confirmed DENV or ZIKV infection
based on self-reported symptoms and travel to or prior residence in areas where flaviviruses are endemic.
All specimens were deidentified. All University of North Carolina (UNC) donations were collected in
compliance with the Institutional Review Board (IRB) of UNC-Chapel Hill (protocol 08-0895).

(ii) Samples from Nicaragua (24 samples). Five children from the Nicaraguan Pediatric Dengue
Cohort Study (PDCS) who were reverse transcription-PCR (RT-PCR) positive for ZIKV and who experienced
onset of signs and symptoms of ZIKV infection between 18 January and 16 February 2016 were included.
The PDCS is a community-based prospective study of children of 2 to 14 years of age that has been
ongoing since August 2004 in Managua, Nicaragua (20). Participants present at the first sign of illness to
the Health Center Sócrates Flores Vivas are monitored daily during the acute phase of illness. Acute-
phase and convalescent-phase (�14 to 21 days after onset of symptoms) blood samples are drawn for
DENV, chikungunya virus (CHIKV), and ZIKV diagnostic testing from patients meeting the case definition
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for DENV or ZIKV infection or presenting with undifferentiated febrile illness. All suspected Zika disease
cases were confirmed by RT-PCR analysis of serum and/or urine, using triplex assays that simultaneously
screen for ZIKV, DENV, and CHIKV infections (ZCD assay [21] or CDC Trioplex assay) or, in some cases, the
CDC ZIKV monoplex assay (22) in parallel with a DENV-CHIKV multiplex assay (23). A second set of 19
specimens was obtained from a prospective, hospital-based study of DENV (1998 to present; Nicaraguan
Hospital Infantil Manual de Jesús Rivera). Children of 6 months to 14 years of age with suspected
flavivirus infection (�7 days of illness) were enrolled (24) and diagnosed by RT-PCR, and blood was
obtained at the acute (days 1 to 6) and convalescent (days 14 to 28) phases as well as 3, 6, 12, and 18
months following infection. Only samples obtained prior to the introduction of ZIKV into Nicaragua were
used. All studies were approved by the IRBs of the Nicaraguan Ministry of Health and the University of
California, Berkeley. Parents or legal guardians of all subjects provided written informed consent, and
subjects who were �6 years old provided assent.

(iii) Samples from Colombia (6 samples). Sera were collected in Sincelejo, Colombia, between
December 2015 and March 2016, as part of a field investigation of the ZIKV outbreak and an arbovirus
surveillance program conducted by the University of Sucre. All participants provided informed consent
prior to blood collection, as described in the University of Sucre Bioethics Committee-approved protocol.
Samples were collected during the convalescent phase (3 months after symptom onset) from partici-
pants who reported ZIKV-related symptoms.

(iv) Samples from Brazil (9 samples). A cohort of pregnant women with confirmed or suspected
ZIKV infection during pregnancy in Vitoria, Espírito Santo State, Brazil, were enrolled in 2016 in a clinical
study to follow ZIKV and other related viruses by RT-PCR, serology, and clinical outcomes for the
mother-infant pair, under a protocol approved by the national and local IRBs.

(v) Samples from Sri Lanka (13 samples). Sera were collected in the convalescent phase from
patients with confirmed DENV infection. Acute infection was confirmed by detection of DENV RNA and/or
the presence of DENV-specific IgM and IgG in the serum. Samples were collected 2 to 12 weeks after
infection, as previously described (25). The IRBs of both the La Jolla Institute for Allergy and Immunology
and the Medical Faculty, University of Colombo (serving as an NIH-approved IRB for Genetech), approved
all protocols described for this study.

Sera were heat inactivated at 56°C for 30 min. The serostatuses of specimens were categorized as
primary or secondary infection by use of neutralization assays (see Tables S1 and S4 in the supplemental
material) as previously described (26). Fivefold-diluted sera were mixed with 50 to 100 focus-forming
units of DENV1, DENV2, DENV3, DENV4, or ZIKV per well in Dulbecco’s modified Eagle medium
supplemented with 2% fetal bovine serum (FBS). Virus-antibody mixtures were incubated for 1 h at 37°C,
transferred to a confluent monolayer of Vero cells, and then overlaid with medium containing 1%
methylcellulose. Infected cell foci were detected 48 h after infection, following fixation with 4%
paraformaldehyde and incubation with 500 ng/ml of flavivirus-cross-reactive mouse monoclonal anti-
body E60 (27) for 2 h at room temperature. After incubation for 1 h with a 1:5,000 dilution of horseradish
peroxidase (HRP)-conjugated goat anti-mouse IgG (Sigma), foci were detected by addition of TrueBlue
substrate (KPL). Foci were analyzed with a CTL Immunospot instrument. Fifty percent inhibitory con-
centration (IC50) values were calculated using the sigmoidal dose-response (variable slope) equation in
Prism 7 (GraphPad Software). Reported values were required to have an R2 value of �0.75, a hill slope
of �0.5, and an IC50 within the range of the assay.

Flavivirus infection status was determined by considering the profile of neutralizing activity of
each specimen toward each of five flaviviruses (ZIKV and DENV1 to -4) in the epidemiologic context

FIG 1 Identification of putative virus-specific antigenic regions on ZIKV E protein. We performed mapping of
type-specific (A) and cross-reactive (B) epitopes on E protein by using experimentally determined antibody
complex structures available in the Protein Data Bank. Contact residues observed at the interface between E
protein and antibody in the complexes are shown as spheres (purple or magenta). (C) Mapping of the degrees of
conservation of amino acid positions among eight clinically relevant flaviviruses. The color scale (cyan, variable
region; and maroon, conserved region), as described in ConSurf (33, 51), is shown at the top. Three highly variable
regions that overlap type-specific antibody-binding regions in panel A were identified as putative ZIKV-specific
antibody-binding regions (orange circles), and the corresponding amino acid residues within this region are shown
as spheres.
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of the donor. Specimens with neutralizing antibodies to any one serotype of DENV or to ZIKV, with
minimal cross-neutralizing antibodies, were defined as having primary flavivirus infections (meaning
that the IC50 for a single DENV serotype or ZIKV was �4-fold higher than that for any other virus
tested). In most cases, the person’s travel history corroborated the immune status. Sera that had
high levels of neutralizing antibody to �2 flaviviruses were defined as having secondary flavivirus
infections. Most secondary infection samples were from persons who had resided in countries where
DENV or ZIKV is endemic. The characteristics of all the samples used in the study are presented in
Tables S1 to S4 and S6.

Protein production. A codon-optimized gene encoding Z-EDI or Z-EDIII from ZIKV strain H/PF/2013
(28) was cloned into the pET PPL His6 MBP expression vector (2K-T) by use of a ligation-independent
cloning method (29). The 2K-T plasmid was a gift from Scott Gradia (Addgene plasmid 37183). Maltose
binding protein (MBP) fused to Z-EDI or Z-EDIII was expressed in Escherichia coli BL21(DE3)pLysS and
purified using amylose affinity resin. The ZIKV E80 antigen (aa 1 to 404) was expressed in the Expi293
transient expression system and purified by use of Ni-nitrilotriacetic acid (Ni-NTA) affinity resin as
previously described (30, 31).

IgG ELISA. Human serum IgG binding was measured by enzyme-linked immunosorbent assay (ELISA)
as previously described (32). Recombinant ZIKV E80 antigen (500 ng/well) was used to coat the plate,
blocked with 3% milk, and incubated with human serum at the indicated dilution at 37°C for 1 h. Z-EDIII
and Z-EDI sandwich ELISAs were the same as described above, except that the antigens (200 ng/well)
were captured by use of a murine anti-MBP monoclonal antibody (New England BioLabs). Bound IgG was
detected with an alkaline phosphatase-conjugated anti-human secondary antibody by incubation with
a p-nitrophenyl phosphate substrate (Sigma), and absorbance at 405 nm was measured on an Epoch
plate reader (BioTek). The mean binding signal for each serum was calculated from duplicates by
subtracting the mean absorbance of the background signal obtained from positive serum with no
antigen (for ZIKV E80) or MBP (for Z-EDIII and Z-EDI). Statistical analysis was performed using the
Mann-Whitney U test in Prism 7.0b for nonparametric comparison of recombinant antigen reactivities
between sera from ZIKV and DENV patients.

Molecular modeling and structural analysis. For amino acid conservation analysis by ConSurf (33),
eight flavivirus E protein sequences (from ZIKV, four serotypes of DENV, St. Louis encephalitis virus,
Japanese encephalitis virus, and yellow fever virus) were used. The ConSurf algorithm assigns a relative
conservation score to each residue and normalizes the score such that the average is zero and negative
and positive deviations denote the degrees of conservation and variation, respectively. The relative
conservation scores were then converted to values ranging from 1 to 9 (1 for most variable [cyan], 5 for
average [white], and 9 for most conserved [purple]) to generate a heat map that was used to color the
molecular surface of the ZIKV E protein structure.

For type-specific epitope mapping, structures of monoclonal antibody complexes with E or E
fragments (Protein Data Bank [PDB] IDs 4UIF [34], 5A1Z [34], 4UIH [34], 3IYW [35], 4C2I [36], 3J05 [37],
3J6U [36], 3UAJ [38], 3UC0 [38], and 1ZTX [39]) were aligned to the reference E protein structure by use
of PyMol (The PyMOL Molecular Graphics System, version 1.8; Schrödinger, LLC). For cross-reactive
epitope mapping, antibody structure complexes with E or E fragments (PDB IDs 4UT9 [40], 4UT6 [40],
4UTA [40], 3I50 [41], 2R29 [42], 3UZQ [43], 4FFY [44], 5AAM [45], 4L5F, 4BZ2, 4AL8 [46], 3UYP [43], 3UZE
[43], and 3UZV [43]) were aligned to the reference E protein structure by use of PyMOL. Contact residues
in the E protein-antibody interface were then identified by a 5.0-Å cutoff distance between any atoms
in E and any atom in the antibody. All molecular figures were drawn with PyMOL.

RESULTS
Computational prediction of ZIKV-specific antibody-binding regions. ZIKV E

protein shares 55 to 58% sequence identity with DENV E proteins and contains highly
conserved epitopes that are responsible for extensive cross-reactivity with polyclonal
serum antibodies (47). However, people infected with ZIKV develop some antibodies
that neutralize ZIKV but not DENV, demonstrating the presence of epitopes that are
unique to ZIKV (26, 48, 49). To identify E protein antigenic regions that may be targets
for ZIKV-specific antibodies, we generated and compared surface maps of known DENV
antibody epitopes and a map of surface amino acid conservation between different
flaviviruses, including ZIKV and the 4 DENV serotypes (Fig. 1). Surface amino acid
sequence conservation analysis has been used to identify conserved and variable
regions between proteins (50). Our rationale is that such conservation analysis com-
bined with the knowledge of conformational epitopes of E protein can guide prediction
of ZIKV-specific antigenic regions.

To perform comparative epitope mapping of E protein, we superimposed experi-
mentally determined structures for type-specific and cross-reactive antibody-E protein
complexes onto a reference E structure. Analyzing the residues at the interface between
the E protein and the antibody showed that there are two possible cross-reactive
antibody-binding sites on the surface of E protein: one site is at the tip of EDII, which
contains the fusion loop, and the other is located on the EDIII surface formed by
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�-strands A, B, E, and G (Fig. 1B). Next, we used the ConSurf algorithm (33, 51) to obtain
a conservation score for each amino acid position across 8 different E proteins from
clinically relevant flaviviruses (Fig. 1C). Projecting the ConSurf conservation scores onto
the molecular surface of the ZIKV E structure showed that most of the solvent-exposed
outer surface is variable between flaviviruses, whereas the surface adjacent to the stem
region, the transmembrane helices, and the regions contributing to intermolecular
assembly are largely conserved. The correlations between cross-reactive epitopes and
the conserved regions and between virus-specific epitopes and variable regions were
evident across the maps. Accordingly, we identified three regions that we predicted
would be recognized by ZIKV type-specific antibodies: a region around the solvent-
exposed “glycosylation loop” on EDI and the edge of EDI, a region on the outer surface
of the flexible hinge region formed between EDI and EDII, and a region on the “lateral
ridge” of EDIII (Fig. 1C).

Expression of ZIKV recombinant antigens. Following our prediction that epitopes
recognized by ZIKV type-specific antibodies are located mainly on EDI and EDIII, we
designed two constructs of Z-EDI and Z-EDIII fused to maltose binding protein (MBP)
for periplasmic expression in E. coli. Soluble recombinant Z-EDI and Z-EDIII were readily
purified by amylose affinity chromatography, with yields of �3 mg of purified protein
from 1 liter of bacterial culture (Fig. 2A and B). Size exclusion chromatography (SEC)
analysis showed that the recombinant antigens behaved as monomeric proteins in
solution (Fig. 2C), and the Ellman assay (52) confirmed the presence of intact intramo-
lecular disulfide bonds in the Z-EDI and Z-EDIII antigens. Moreover, Z-EDIII was able to
bind to the mouse monoclonal antibodies ZV-2, ZV-48, and ZV-67, which recognize
conformational epitopes (48). We also expressed the entire ectodomain of ZIKV E
protein (Z-E80) to use as a reference antigen to evaluate the performances of Z-EDI and
Z-EDIII.

Immune sera from people exposed to DENV and ZIKV. To evaluate recombinant
antigens for serological detection of ZIKV infection, we assembled panels of 22 late-
convalescent-phase samples (collected �12 weeks after infection) and 43 early-
convalescent-phase samples (collected 2 to 12 weeks after infection) from individuals
who were exposed to ZIKV, DENV, or both through travel or residence in areas of
endemicity (see Tables S1 to S4 in the supplemental material). We categorized the
serostatus of each sample in the panels as primary flavivirus immune (evidence of only
one serotype of DENV or ZIKV), secondary flavivirus immune (evidence of more than
one serotype of DENV or both ZIKV and DENV), or naive (no evidence of DENV or ZIKV)
by using a combination of neutralizing activity, RT-PCR, and/or IgG seroconversion as
described in Materials and Methods.

Evaluation of ZIKV E80, EDI, and EDIII antigens for serological detection of
remote infections (>12 weeks postinfection). Although ZIKV-immune sera reacted

FIG 2 Analysis of purified recombinant antigens by SDS-PAGE and size exclusion chromatography (SEC).
Purified Z-EDI (A) and Z-EDIII (B) antigens (6 �g/lane) were subjected to SDS-PAGE under reducing
conditions and then stained with Coomassie brilliant blue. Molecular size markers and their apparent
masses are shown on the left. (C) SEC overlays of purified EDI, EDIII, and MBP antigens. Protein samples
in PBS were subjected to SEC on a Superdex75 10/300GL column. mAU, milli-absorbance units.
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strongly with ZIKV E80, immune sera from individuals infected with DENV consistently
showed high levels of cross-reactivity with recombinant ZIKV E80 antigen in a standard
IgG ELISA (Fig. 3A). Using an anti-MBP monoclonal antibody to capture MBP fusion
proteins, we developed a sandwich ELISA to measure serum IgG levels to Z-EDI and
Z-EDIII (Fig. 4A and B). At late convalescence, ZIKV-immune sera recognized Z-EDIII and
Z-EDI antigens significantly better than DENV-immune sera (P � 0.0001 by the Mann-
Whitney test). Consequently, the Z-EDI and Z-EDIII antigens may be useful for specific
detection of remote (�12 weeks) ZIKV infections in areas with endemic DENV trans-
mission.

Evaluation of ZIKV E80, EDI, and EDIII antigens for serological detection of
recent infections (2 to 12 weeks postinfection). At early convalescence, immune sera
collected from ZIKV-infected individuals had high levels of IgG that bound to Z-E80,
Z-EDI, and Z-EDIII (Fig. 3B and 4C and D). However, DENV-immune sera collected during
the early convalescent phase also reacted strongly with the Z-EDI and Z-EDIII antigens.
To dissect Z-EDI and Z-EDIII cross-reactivities during early convalescence, the data were
regrouped and the IgG binding activities compared between ZIKV-immune sera and
primary or secondary DENV-immune sera (Fig. 4C and D). The IgG reactivities of Z-EDI
and Z-EDIII were practically indistinguishable between ZIKV- and DENV-immune sera in
secondary cases. While the reactivities to naive and primary DENV2 or -3 sera were
mostly at the baseline level, five of the six primary DENV samples collected during the
DENV1 epidemic in Sri Lanka showed high reactivity to Z-EDI and Z-EDIII. Recently,
individuals with prior DENV1 infection were shown to produce high levels of Z-EDIII-
cross-reactive antibodies in early convalescence (53, 54). A conserved lysine residue
(K394) on the lateral ridge of ZIKV and DENV1 EDIII was suggested to be responsible for
a common mode of binding to DENV1 antibody. However, introducing an alanine at
this site (K394A mutation) did not change the reactivity of Z-EDIII against DENV1-
immune sera from Sri Lanka (Table S5). As our initial IgG assays were performed using
a 1:20 dilution of serum, we further diluted the early-convalescent-phase samples in an
attempt to improve specificity. Dilution of early-convalescent-phase serum to dilutions
of up to 1:180 was not adequate to improve the specificity of Z-EDI and Z-EDIII against
secondary DENV- or DENV1-immune sera (Fig. S1). One major difference in the com-
positions of antigen-specific antibody populations in early versus late convalescence
may be the presence of high levels of IgM. However, depleting total IgM from
early-convalescent-phase primary ZIKV samples did not increase IgG binding to Z-EDI
or Z-EDIII (data not shown), indicating that IgM does not outcompete IgG for antigen

FIG 3 Binding of recombinant E80 antigen to sera from patients with remote (A) and recent (B) ZIKV
and/or DENV infection. Sera from primary (filled symbols) and secondary (unfilled symbols) ZIKV- and
DENV-infected patients were diluted 1:20, and the IgG antibodies bound to recombinant E80 antigen
were measured by ELISA. Sera collected �12 weeks after infection were defined as remote infections, and
sera collected within the first 12 weeks were considered to represent recent infections. The horizontal
lines represent the means.
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binding in our assay. Taken together, the results showed that IgG cross-reactivity with
the Z-EDI and Z-EDIII antigens in DENV-immune sera was pronounced in early-
convalescent-phase samples (�12 weeks) from secondary DENV and primary DENV1
infections but not at the late convalescent (�12 weeks) phase.

Longitudinal analysis of ZIKV EDI and EDIII cross-reactivities in DENV-immune
samples. Next, we evaluated sequential serum samples collected as part of a hospital-
based study in Nicaragua from 24 children with laboratory-confirmed primary and
secondary DENV3 infections (collected before the introduction of ZIKV to the region)
(Table S6). This study allowed us to define the time course of cross-reactivity with the
Z-EDI and Z-EDIII antigens as well as to compare cross-reactivity with Z-EDI and Z-EDIII
in primary DENV infections with that in secondary DENV infections in individuals
infected with the same serotype of DENV. All eight primary DENV3 cases showed
minimal to no cross-reactivity to Z-EDI and Z-EDIII �1, 6, and 12 months after DENV
infection (Fig. 5A and B). However, most secondary DENV-immune samples showed
reactivity to Z-EDI and Z-EDIII 14 to 23 days after DENV3 infection. By 6 months after
infection, only 4 of 16 subjects still maintained cross-reactive antibodies to Z-EDIII (Fig.
5A), based on a stringent cutoff of an optical density (OD) of 0.3 (the lowest OD
observed for the Z-EDIII antigen with any ZIKV-immune sample used in this study).
While a trend of declining cross-reactivity was also observed for Z-EDI antibodies, 7 of
16 subjects exhibited cross-reactivity to the secondary DENV3 cases even at 12 months

FIG 4 Binding of Z-EDI and Z-EDIII with remote (A and B) and recent (C and D) convalescent-phase sera from patients infected
with ZIKV and/or DENV. Primary (filled symbols) and secondary (unfilled symbols) human serum samples were diluted 1:20, and
the IgG antibodies bound to Z-EDI (A and C) or Z-EDIII (B and D) were measured using a sandwich ELISA. Sera collected �12
weeks after infection were defined as remote infections, and sera collected within the first 12 weeks were considered to
represent recent infections. Statistical significances are indicated at the top of the graphs (Mann-Whitney U test). P values of
�0.0001 were considered statistically significant. The horizontal lines represent the means.
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postinfection (Fig. 5B). We concluded that among people exposed to secondary DENV
infections, cross-reactive Z-EDIII antibodies typically decline to background levels by 6
months postinfection.

DISCUSSION

As ZIKV is emerging in areas with intense DENV transmission and, more recently,
clinical trials of DENV vaccines, there is an urgent need for simple serological assays to
distinguish ZIKV infections from DENV infections. Our comparative analysis of surface
amino acid conservation among flavivirus E proteins and homology epitope mapping
pointed to three regions on ZIKV E protein as potential targets of ZIKV type-specific
antibodies. Here we evaluated the utility of recombinant Z-EDI and Z-EDIII antigens,
which display two of the three predicted ZIKV-specific antigenic regions. Our results
demonstrate that Z-EDIII and, to a lesser extent, Z-EDI are strong candidate antigens for
serological tests to differentiate ZIKV infections from DENV infections when samples are
collected �12 weeks after infection. The recombinant antigens performed equally well
for both primary and secondary infection samples, indicating that specificity was not
reduced by high levels of cross-reactive antibodies characteristic of secondary flavivirus
infection.

In contrast to that in late convalescence, we observed a high level of cross-reactivity
in early-convalescent-phase DENV samples (2 to 12 weeks after infection). Early-
convalescent-phase cross-reactivity was more pronounced in secondary than in primary
DENV cases. Among individuals exposed to primary DENV infections, we observed low
to undetectable levels of antibodies that cross-reacted with Z-EDI and Z-EDIII, except in
the case of primary DENV1 infections. Recent studies defined an epitope on EDIII that
is conserved between DENV1 and ZIKV (55). A single point mutation at this epitope

FIG 5 Patterns of cross-reactivity of Z-EDIII (A) and ZED-I (B) antigens with longitudinal DENV samples.
Intensities of serum binding in sandwich ELISAs for Z-EDIII and Z-EDI are shown as heat maps.
Longitudinal samples (collected 14 to 23 days, 6 months, and 12 months postinfection) from patients
with primary (left of the dashed line) or secondary (right of the dashed line) DENV3 infection were diluted
1:20, and the IgG antibodies bound to Z-EDI or Z-EDIII were measured using a sandwich ELISA. The
resulting normalized OD values are represented by a color scale (green, lowest values; yellow, middle
values; and red, highest values).
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failed to eliminate the cross-reactivity, indicating the need for additional mutations to
ablate the epitope as well as the possibility of other conserved epitopes between ZIKV
and DENV1. In secondary DENV cases, we consistently observed high levels of cross-
reactivity at early convalescence, irrespective of serotype or geographic location of
sample collection.

Our longitudinal analysis of Z-EDI and Z-EDIII reactivities, spanning from early to late
convalescent phase, showed that flavivirus-cross-reactive IgG antibodies comprise a
transient population that is produced early after infection and declines thereafter,
whereas ZIKV-specific responses are more stable over time (26). While the cellular
mechanisms responsible for the differential decline of cross-reactive and type-specific
serum antibodies are not known, one possible explanation is that many of the cross-
reactive antibodies are derived from early plasmablasts or extrafollicular B cells that are
not maintained as long-lived plasma cells or memory B cells.

Development of serological tests for diagnosing ZIKV infection in the context of
prior flavivirus infection is a challenging and complex problem that remains a major
unmet need. To date, there are only three serological assays for ZIKV approved by the
U.S. Food and Drug Administration, under an emergency use authorization (56), and a
few other commercial tests are available in countries outside the United States or for
research purposes. These assays use either NS1, recombinant E, or another, unspecified
ZIKV antigen (57). The Centers for Disease Control and Prevention MAC (IgM) ELISA
exhibits well-publicized limitations, including false-negative results (58), false-positive
results due to cross-reactive antibody from DENV infection (59), and persistence of ZIKV
IgM beyond the previously presumed 12-week window (60). Our findings of cross-
reactive IgG binding in early convalescence indicate that this period will be the most
challenging for optimization of assay specificity. Thus, there is roughly a 10-week period
(weeks 2 to 12) following infection when current and next-generation serodiagnostic
results may remain ambiguous. One important step forward is found in a recent report
evaluating an NS1-based blockade-of-binding assay for ZIKV diagnosis (61). This assay
leverages a ZIKV type-specific monoclonal antibody recognizing a nonconserved
epitope on ZIKV NS1 (62). Again, a certain secondary DENV group displayed reduced
specificity in this NS1-based assay during early convalescence. It may be that a
combination of antigens is required to achieve optimal sensitivity and specificity for
serum antibody detection, particularly during early convalescence.

Additional issues preclude optimal implementation of many currently available
serological assays. First, the serum panels used to evaluate these assays come from
remnant clinical specimens or archived sera not collected systematically and specifically
for analysis of clinical performance in diagnosing individuals with multiple flavivirus
exposures. Second, sera from individuals with a single flavivirus infection history and
residing in regions where flavivirus infection is not endemic are not representative of
the populations for whom improved diagnostics are most critical, namely, those
residing in the tropics, where individuals experience multiple and frequent flavivirus
exposures. We are involved with ongoing studies designed to address this shortcoming.
Third, sensitivity in different IgM assays can be less than 80%, particularly outside the
range of 6 to 60 days, when IgM assays perform best. Lastly, not only have false-positive
ZIKV test results been reported due to current or previous DENV infection, but DENV
tests may also be positive following confirmed ZIKV infections. The cumulative expe-
rience with ZIKV serodiagnosis, to date, clearly indicates that novel approaches will be
required.

There are a few notable limitations to our study. Our goal was to explore recombi-
nant ZIKV E antigens for development of improved serodiagnostics. The moderate
sample size to which we had access allowed us to achieve that goal; however, a larger
sample size will be necessary to define more precise cutoff values and to fully evaluate
sensitivity and specificity. Ideally, a candidate diagnostic test would be evaluated in a
large cohort of patients with PCR-confirmed infection status, representing multiple
serotypes of DENV and other flavivirus exposures, and with availability of longitudinal
specimens collected at early and late times after infection.
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Diversity in infecting strains of ZIKV may elicit antibodies that target different
epitopes or different permutations of the same antigenic region of E protein. While we
evaluated only a single construct for each of the Z-EDI and Z-EDIII antigens, we believe
that these antigens (from a ZIKV isolate from French Polynesia) are likely to be
representative of the vast majority of ZIKV strains in circulation. In fact, E protein amino
acid sequences from ZIKV isolates from several different times and places vary by only
�1%, and both African and Asian lineage strains perform similarly in binding and
neutralization assays, suggesting that ZIKV exists as a single serotype (26, 63).

While the present work provides the platform for incorporating Z-EDI and Z-EDIII
into a suitable antigen-antibody binding assay for the purposes of surveillance, vaccine
efficacy studies, and risk reduction counseling, further modification of Z-EDI and Z-EDIII
may improve their utility in the early convalescent phase of ZIKV infection. Cross-
reactive antibodies may be depleted using recombinant DENV antigens, but depletion
techniques are tedious and time-consuming (26). Introducing amino acid variation
through protein engineering is an attractive strategy to eliminate cross-reactive
antibody-binding sites while preserving unique epitopes within Z-EDIII and Z-EDI
antigens. The high signal we observed for IgG binding to Z-EDIII with a simple ELISA
format is encouraging, although a combination of Z-EDI and Z-EDIII as well as fusion of
antigens to protein scaffolds may also be tested for improvement of the sensitivity of
the assay. Finally, we observed that some individuals are strongly IgG seropositive for
only one of the Z-EDI or Z-EDIII antigen, raising the possibility that a multiplex platform
employing a panel of antigens may improve sensitivity (64). This approach also has the
advantage of allowing the design of expanded antigen panels to detect antibodies
specific for additional pathogens that cause clinical presentations similar to those for
DENV and ZIKV.

In conclusion, we have demonstrated that Z-EDI and Z-EDIII contain important
epitopes that can be used to resolve current serodiagnostic limitations. Ultimately, this
work can lead to development of crucial point-of-care ZIKV diagnostics amenable to
field use in resource-limited settings. In the process, much can be learned about the
epitopes targeted by durable type-specific and cross-reactive human antibodies gen-
erated upon ZIKV exposure, which is important for the design of highly efficacious
DENV and ZIKV vaccines.
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