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Abstract 

Background:  Plasmodium falciparum malaria remains a major health burden and genomic research represents one 
of the necessary approaches for continued progress towards malaria control and elimination. Sample acquisition for 
this purpose is troublesome, with the majority of malaria-infected individuals living in rural areas, away from main 
infrastructure and the electrical grid. The aim of this study was to describe a low-tech procedure to sample P. falcipa-
rum specimens for direct whole genome sequencing (WGS), without use of electricity and cold-chain.

Methods:  Venous blood samples were collected from malaria patients in Bandim, Guinea-Bissau and leukocyte-
depleted using Plasmodipur filters, the enriched parasite sample was spotted on Whatman paper and dried. The 
samples were stored at ambient temperatures and subsequently used for DNA-extraction. Ratios of parasite:human 
content of the extracted DNA was assessed by qPCR, and five samples with varying parasitaemia, were sequenced. 
Sequencing data were used to analyse the sample content, as well as sample coverage and depth as compared to the 
3d7 reference genome.

Results:  qPCR revealed that 73% of the 199 samples were applicable for WGS, as defined by a minimum ratio of 
parasite:human DNA of 2:1. WGS revealed an even distribution of sequence data across the 3d7 reference genome, 
regardless of parasitaemia. The acquired read depths varied from 16 to 99×, and coverage varied from 87.5 to 98.9% 
of the 3d7 reference genome. SNP-analysis of six genes, for which amplicon sequencing has been performed previ‑
ously, confirmed the reliability of the WGS-data.

Conclusion:  This study describes a simple filter paper based protocol for sampling P. falciparum from malaria patients 
for subsequent direct WGS, enabling acquisition of samples in remote settings with no access to electricity.

Keywords:  Dried blood spots, Dried erythrocyte spots, Leukocyte depletion, Malaria, Plasmodium falciparum, Sub-
Saharan Africa, Whole-genome sequencing
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Background
Since the millennium, global efforts towards malaria con-
trol and elimination have played a major role in accom-
plishing an estimated 20% decrease in malaria cases 
world-wide [1]. As communities proceed towards bet-
ter control and possible elimination of this disease, it is 
paramount that the continuous genetic evolution of the 
malaria parasite populations be investigated [2, 3]. Tech-
nological advancements now  allow scientists to geneti-
cally monitor the parasites and thereby discover genetic 
adaptations as they occur [4–7]. These analyses are per-
formed through whole-genome sequencing (WGS), a 
procedure that has become feasible and affordable thanks 
to next-generation sequencing (NGS) technologies and 
protocols that circumvent the inherent obstacles pertain-
ing to library preparation of Plasmodium species [8, 9]. 
The principle obstacle to performing direct WGS of Plas-
modium species is the minute quantity of parasite DNA 
compared with the human DNA in clinical blood samples 
[8, 9]. This is circumvented by isolating the erythrocytes 
prior to DNA-extraction (also called leukocyte-deple-
tion). The blood-stage parasites are harboured within the 
erythrocytes, which in turn do not contain nuclei of their 
own. Therefore, the DNA extracted primarily belongs to 
the parasites. Unfortunately, these protocols require elec-
trical equipment and cold-chains for storage, hindering 
the collection of malaria parasites from rural areas and 
“hard-to-reach” populations. However, these populations 
represent the majority of the malaria infections world-
wide [3], arguing strongly for their representation in 
genomic research of Plasmodium falciparum specimens. 
Alternatively, by pre-processing the samples, involv-
ing for example selective amplification of the parasite 
genome (sWGA) [10–14], WGS becomes possible from 
samples that have not been leukocyte depleted, such as 
finger-prick samples. Unfortunately, such protocols con-
strict down-stream analyses to the genomic regions that 
are effectively amplified [11] while direct WGS would 
minimize sequencing bias, and allow for more down-
stream analyses.

While pre-processing of the samples is unavoidable 
for low-parasitaemia samples or archival samples that 
have not been leukocyte-depleted, direct WGS may still 
be a possibility for infections in remote areas with lim-
ited resources, if the sampling procedure is adapted 
accordingly.

This study describes a simple field applicable protocol 
for sampling of P. falciparum specimens from malaria 
patients for direct WGS. By directly precipitating and 
filtering venous blood samples to obtain leukocyte-
depleted samples and then collecting these as dried 
erythrocyte spots (DESs), samples could be processed 

without electricity and stored without cold-chain, and 
were later used for direct WGS of the infecting P. fal-
ciparum specimens. This study provides evidence that 
the quality of the sequencing data acquired are ade-
quate for further application in genomic research of P. 
falciparum.

Methods
Patients and sample collection
Blood samples (N  =  199) were collected in Bandim, 
Guinea-Bissau, which represents many general obstacles 
encountered when setting up patient sampling in sub-
Saharan Africa: the infrastructure is poor, and the con-
nection to the electrical grid is unstable and expensive 
or completely lacking. The samples were collected from 
patients with uncomplicated malaria from October 2014 
to October 2016. Inclusion criteria were: Informed con-
sent, axillary temperature above 37.5  °C or a history of 
fever within the previous 24  h. Plasmodium falciparum 
mono-infection, parasite density ≥ 1000 P. falciparum/µl, 
age ≥  6  months and absence of signs of severe malaria 
infection. Giemsa-stained thick and thin films were pre-
pared and malaria species identified using a microscope. 
Parasite densities were calculated by counting the num-
ber of P. falciparum per 200 white blood cells, or up to 
500 parasites. Approximately 2–3 ml of venous blood was 
drawn from each patient in EDTA-containing vacuum 
tubes.

Leukocyte depletion and dried erythrocyte spots 
(depicted in Fig. 1).

Venous blood samples were left to precipitate on the 
counter. Plasma and buffy coat were removed when the 
erythrocytes had precipitated using a Pasteur pipette. 
PBS was added to the remaining RBCs, creating approxi-
mately a 1:1 dilution and inverted 3–4 times. The RBC 
fraction + PBS mixture was sucked up using a sterile 
syringe and needle, and the syringe was then applied to 
the Plasmodipur filter (Europroxima, Arnhem, The Neth-
erlands, Cat. 8011Filter25U). The mixture was filtered 
according to manufacturer’s protocol. The filtered mix-
ture was left standing at room temperature for 3 h, to let 
the erythrocytes precipitate from the PBS. The PBS was 
carefully removed using a Pasteur pipette, and the eryth-
rocytes were spotted on Whatman paper #3, as 3 Pasteur 
pipette-drops per spot, and left to dry overnight in closed 
drawers. Finally, the blood spots were packed in individ-
ual zip-lock bags containing desiccant, as well as sample 
ID numbers. Samples were stored at room temperature 
(approximately 25–30 °C) in a dark box, for 2–4 months, 
before shipment to Copenhagen, Denmark. In Copenha-
gen, the samples were kept at −  20  °C, for 6–8  months 
before DNA extraction.
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DNA‑extraction
DNA was extracted using the QIAamp DNA Mini Kit 
(Qiagen, Limburg, Netherlands, Cat. 51306), according 
to WWARN procedures [15], but eluting in 35 μl elution 
buffer.

Quantitative PCR
A previously described qPCR method [16] comparing the 
presence of P. falciparum seryl-tRNA synthetase to Human 
Beta-2-microglobulin, correcting for the size difference 
between the P. falciparum and human genomes was done.

Fig. 1  Sampling diagram. Malaria patients donated 2–3 ml of venous blood, which was left to precipitate for approximately 30 min (1) prior to 
removal of the plasma and buffy coat, using a Pasteur pipette (2). A new Pasteur pipette was used to add PBS to the erythrocytes, and the tube 
was inverted 3–4 times to mix PBS and erythrocytes (3). The PBS-diluted erythrocytes were then sucked into a syringe, which was applied to a 
Plasmodipur filter, and pressure was applied until the entire sample had been filtered (4). The filtered PBS-diluted erythrocytes were then left 
to precipitate for approximately 3 h, before the PBS was removed using yet another Pasteur pipette (5). The erythrocytes were finally dotted on 
Whatman filter paper #3, as three Pasteur-pipette drops per spot (6)
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Library preparation and Miseq sequencing
DNA concentrations in extracts were measured on the 
Qubit double-stranded DNA (dsDNA) HS assay kit (Inv-
itrogen). Libraries for paired-end sequencing were con-
structed from DNA extracts ranging from <  50  ng/ml 
to 0.2  ng/µl, using the Illumina NexteraXT (Illumina, 
California, USA) Guide 150319425031942 and following 
protocol revision E. The Pooled NexteraXT libraries were 
loaded onto an Illumina MiSeq reagent cartridge using 
MiSeq reagent kit v3 and 500 cycles with a standard flow 
cell.

Filtering malaria reads
Paired end reads were analysed with MGmapper v. 2.0 
[17, 18], available from the Center for Genomic Epide-
miology (CGE). Reads were trimmed from bases with 
a quality score below 30 (Phred), and paired reads were 
mapped to the following libraries: (1) malaria, (2) proto-
zoa, (3) bacteria, (4) viruses, (5) fungi and (6) humans, 
in “bestmode”. The malaria database consists of the 3D7 
reference genome, 21 other accessible Plasmodium 
genomes from NCBI, and contigs generated from P. fal-
ciparum specimens obtained from malaria patients in 
Tanzania. The protozoa database does not contain Plas-
modium species.

Alignment and SNP‑calling
Alignment of malaria reads to the 3d7 genome was per-
formed using BWA [19], which was then sorted and piled 
with SAMtools [20], using the–aa option for “absolutely 
all” bases, to ascertain complete listing of positions with 
0 reads. SNP calling was performed with Assimpler as 
described previously [21].

Circos imaging
Genomic position information and read depth was cut 
from the pileup file generated with SAMtools, to generate 
a separate coverage file, from which average read depths 
across 2000  bp were calculated. The result was used to 
visualize read distribution using the Circos software [22].

Results and discussion
Sampling protocol overview, implementation and future 
changes
Figure 1 illustrates the sampling protocol applied, which 
was developed in order to allow sampling for direct WGS 
of P. falciparum specimens collected in Bandim, Guinea-
Bissau, where electricity is scarce, unstable and expen-
sive. The sampling procedure is described in detail in the 
methods section. Local laboratory assistants were shown 
once how to perform the procedure, and were equipped 
with Plasmodipur filters, Pasteur pipettes, falcon tubes, 
PBS-tablets, Whatman filter paper #3, desiccant, zip lock 

bags and both a written- and video-presented protocol. 
The cost of sampling was highly affected by the use of 
Plasmodipur filters for leukocyte depletion, which were 
chosen due to the unavailability of the cheaper alterna-
tive, CF11 cellulose. An alternative cellulose-product has 
since been identified [23], which can be used according 
to the CF11 cellulose protocols and, therefore, represents 
an inexpensive, yet efficient alternative to Plasmodipur 
filters [9, 23] for future implementation of this sampling 
procedure.

qPCR assessment of human:parasite DNA content
qPCR was performed on all 199 samples to analyse the 
ratios of parasite:human DNA. This was done in order to 
assess the applicability of the samples for direct WGS, as 
defined by a minimum ratio of parasite:human DNA of 
2:1. It was decided that samples with human DNA con-
tent above this ratio would require excessive sequencing 
resulting in excessive costs. Samples were categorised as 
“applicable” or “inapplicable”, according to the threshold. 
qPCR analysis revealed that 73% (N = 145) of the sam-
ples were applicable for WGS. Parasitaemia for the 199 
samples varied from 800 parasites/µl to >  81,633 para-
sites/µl, and logistic regression was performed to estab-
lish whether increasing parasitaemia would increase 
the odds of a sample being applicable for WGS, the 
input data are listed in Table 1. The acquired odds ratio 
(OR =  1.29) confirms that, the likelihood of the sample 
being applicable for direct WGS increases with increas-
ing parasitaemia. The contamination risk is inherently 
higher when applying this protocol, as it is not performed 

Table 1  Correlation between  parasitaemia and  sample 
applicability for direct WGS

OR = 1.29 (95% CI 1.07–1.58) p = 0.009

Correlation between parasitaemia and sample applicability for direct WGS 
N = 199, parasitaemias are given as parasites/µl, calculated according to a 
leukocyte count of 8000 per µl whole blood. Parasites and leukocytes were 
counted by microscopy, counting until 500 parasites or 200 leukocytes. Samples 
were grouped in five groups according to parasitaemia, corresponding to 
intervals of 10,000 parasites/µl. The minimum parasitaemia recorded in group 1 
was 800 parasites/µl, and the maximum parasitaemia recorded in group 5 was 
81,633 parasites/µl. Applicable/inapplicable count corresponds to the number 
of samples. Logistic regression was performed to investigate the relationship 
between parasitaemia of the infection and applicability of the sample for WGS. 
OR (odds ratio), CI (confidence interval) and pI-value (p) are given

Parasitaemia Applicable 
count

Applicable  
%

Inapplicable 
count

Inapplicable 
%

< 10,000 28 58 20 42

10,000 48 72 19 28

20,000 5 100 0 0

30,000 20 74 7 26

40,000 24 77 7 23

> 50,000 19 90 2 10
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under sterile conditions. It was therefore assumed that 
lower-parasitaemia samples would be more difficult to 
sample successfully, which is the reason for an inclu-
sion criteria of minimum parasitaemia of 1000 parasites/
μl. Contamination may also affect higher parasitaemia 
infections, and the risks include lysis of leukocytes prior 
to filtration (if for example the blood sample was left for 
longer than indicated at ambient temperatures), apply-
ing too much force during filtration and contamination 
by anyone handling the samples prior to DNA-extraction.

Plasmodium falciparum content, coverage and read depth
For the current study, five samples of varying parasitae-
mia (0.1–1.2%, see Table  2) were subject to paired-end 
sequencing on the Illumina Miseq. Raw sequences were 
quality-trimmed and mapped to a variety of databases, 
including a human database and a custom-made malaria 
database (see “Methods”), using MGmapper [18]. Table 2 
lists the percentages of quality trimmed raw reads map-
ping to human, malaria and other databases. On aver-
age, the parasite content was 61% across the five samples, 
ranging however from 46 to 82%. In comparison, initial 
demonstration of leukocyte depletion with Plasmod-
ipur filters revealed a median parasite content of 36.6% 
for samples ranging in parasitaemia from 0.7 to 9.9% [8], 
while demonstration of a comparable protocol applying 
CF11 cellulose resulted in an average parasite content of 
66%, for samples with parasitaemias ranging from 0.4 to 
7.3% [9]. Studies applying sWGA have demonstrated an 
average parasite content of 70% [10, 11]. The percentages 
of malaria, human and other reads in the samples ana-
lysed in the current study are not clearly correlated with 
parasitaemia of the infection, as has also been seen before 
[8]. The discrepancies may mainly be due to suboptimal 
leukocyte depletion in some samples (sample 1 contains 
35% human reads) and/or the presence of environmental 
contamination of the sample, such as bacteria (sample 5 
contains 36% “other”), as the samples are not processed 
under sterile conditions. The possibility of environmental 

contamination was anticipated, and illustrates the neces-
sity of filtering the raw reads bioinformatically.

Reads mapping to the malaria-database were aligned 
to the 3d7 reference genome, to assess the coverage and 
depth obtained for the individual samples (Table  2). 
The data clearly demonstrate the expected relationship 
between parasitaemia of the infection and resulting cov-
erage and read depth, illustrating that lower parasitae-
mia infections will require more sequencing to attain 
the same depth of coverage. The sample with lowest 
parasitaemia (sample 1, corresponding to 0.1%) resulted 
in a coverage of 87.5% of the 3d7 reference genome, 
and an average read depth of 16× (≈  370 million bp). 
These results are comparable to results obtained using 
sWGA [10], where an infection with 0.1% parasitaemia 
gave coverage of ~  90% with 400 million bp sequenced 
(depth = 17.5×). The samples with highest parasitaemia 
(sample 4 and 5) averaged on a coverage of the 3d7 refer-
ence genome of 98.4% and a read depth of 83× (sample 
4 (1% parasitaemia) =  67 ×  depth and 97.8% coverage 
and sample 5 (1,2% parasitaemia) = 99× depth and 98.9% 
coverage). Although similar read depths have not been 
demonstrated for sWGA studies on P. falciparum, the 
sWGA studies indicate that a 3d7 reference genome cov-
erage above 90% is difficult to achieve at 1% parasitaemia 
[10], or solely the core genome coverage is assessed, also 
just surpassing 90% coverage [11], which is likely due to 
low amplification of certain regions in the genome. The 
overall distribution of read depth acquired in the current 
study, is depicted in Fig. 2 as circular diagrams represent-
ing each of the five samples across all 14 3d7 reference 
chromosomes. Together with the chromosomal-per-
centage of uncovered bases (percentage of chromosome 
size not covered, Fig.  3), the data indicate a relatively 
evenly distributed sequencing depth across the genome, 
including subtelomeric regions, with lower-parasitae-
mia samples capable of generating comparable data to 
higher-parasitaemia samples, given the extra sequencing 
capacity. Also for sWGA studies, it has been shown that 

Table 2  Samples selected for WGS

Parasitaemia is given as parasites/µl (as described in Table 1, and in “Methods”) as well as in percentage, which is calculated according to an assumed erythrocyte 
count of 4000,000 erythrocytes per µl whole blood. Sequencing reads were mapped to a variety of databases, including a human database and a malaria database, 
using MGmapper (see “Methods”) [18]. The percentage of raw reads mapping to human, malaria and other databases are listed, as well as the average read depth of 
the sample and coverage as compared to the 3d7 reference genome

Sample Parasite 
count

Leukocyte 
count

Parasitaemia 
(paras./μl)

Parasitaemia 
(%)

Malaria (%) Human (%) Other (%) Average read 
depth

Coverage

1 98 200 3920 0.1 46.1 35.2 18.7 16× 87.5

2 214 200 8560 0.2 67.1 13.7 19.2 15× 88.4

3 420 200 16,800 0.4 62.2 6.4 31.4 41× 95.3

4 500 102 39,216 1.0 81.7 3.5 14.8 67× 97.8

5 500 83 48,193 1.2 48.1 15.6 36.3 99× 98.9
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Fig. 2  Read distribution across reference genome. From outermost ring: 3D7 reference genome chromosomes 1–14 (number written in roman 
letters, chromosomes illustrated to scale). Histograms representing read depths averaged over 2000 bp for sample 5, sample 4, sample 3, sample 2 
and sample 1 (such that parasitaemia decreases from outer to inner most ring). The image was produced using the Circos software (see “Methods”) 
[22]

Fig. 3  Chromosomal distribution of uncovered bases. The percentage of uncovered bases of each chromosome (number of uncovered bases on 
chromosome/size of chromosome *100) is depicted for each sample
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lower-parasitaemia samples mimic higher-parasitaemia 
samples in read distribution across the genome [10, 11].

Relatively small “dents” in the read depths can be seen 
centrally on chromosomes 4 and 7 (Fig. 2), mirrored by 
peaks of uncovered bases for these chromosomes on 
Fig.  3. These areas correspond to clusters of var genes 
located in these chromosomes, and may be caused by dif-
ficulty in mapping to these highly variable regions, but 
may also be caused by difficulties in sequencing these 
regions due to their increased tendency to form second-
ary structures in general [24]. The same “dents” have 
been shown for sWGA protocols [10].

SNP‑analysis
The samples subject to whole-genome sequencing in this 
study have previously been subject to targeted sequenc-
ing [21], for analysis of resistance-conferring mutations 
in pfmdr1, pfdhfr, pfcrt, pfdhps and pfk13. The WGS data 
were, therefore, compared to the targeted sequencing 
data in order to assess the reliability of the WGS data. 
The results are listed (see Additional file  1: Table  S1A), 
and the percentages of the genes covered by the WGS 
data are listed (see Additional file 1: Table S1B). All resist-
ance-conferring SNP data for these five samples were 
confirmed. The only gene to not be covered 100% in the 
samples with lowest parasitaemia was pfcrt, which con-
tains 12 AT-rich introns and, therefore, is expected to be 
more difficult to sequence, align and assemble. This not 
only confirms the reliability of the WGS data, but also 
illustrates that reliable SNP-analyses can be performed 
based on samples with coverage around 90% and an aver-
age read depth of 16×.

Conclusion
This study shows that venous blood collected and pro-
cessed without use of electricity, stored as dried erythro-
cyte spots at ambient temperatures in rural settings can 
be used for direct WGS of P. falciparum. Sampling for 
direct WGS was successful for infections with as few as 
1000 parasites/µl. The method thus enables sampling for 
direct WGS, in areas where previously described proto-
cols are unsuitable.

Additional file

Additional file 1: Table S1A. SNP analysis was performed for all five 
samples for pfdhfr, pfmdr1, pfcrt, pfdhps and pfk13. The data confirmed 
previously performed SNP analysis for the samples, performed through 
targeted sequencing [21]. Grey fields indicate mutations found in the 
samples. Table S1B. Coverage of the genes analysed for polymorphisms 
in Additional file 1: Table S1A are listed for each sample.
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