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Integrated TCGA analysis implicates 
lncRNA CTB‑193M12.5 as a prognostic factor 
in lung adenocarcinoma
Xuehai Wang, Gang Li, Qingsong Luo, Jiayong Xie and Chongzhi Gan* 

Abstract 

Background:  Lung cancer is a malignant tumor with the highest incidence and mortality around the world. Recent 
advances in RNA sequencing technology have enabled insights into long non-coding RNAs (lncRNAs), a previously 
largely overlooked species in dissecting lung cancer pathology.

Methods:  In this study, we used a comprehensive bioinformatics analysis strategy to identify lncRNAs closely associ-
ated with lung adenocarcinoma, using the RNA sequencing datasets collected from more than 500 lung adenocarci-
noma patients and deposited at The Cancer Genome Atlas (TCGA) database.

Results:  Differential expression analysis highlighted lncRNAs CTD-2510F5.4 and CTB-193M12.5, both of which were 
significantly upregulated in cancerous specimens. Moreover, network analyses showed highly correlated expression 
levels of both lncRNAs with those of differentially expressed protein-coding genes, and suggested central regulatory 
roles of both lncRNAs in the gene co-expression network. Importantly, expression of CTB-193M12.5 showed strong 
negative correlation with patient survival.

Conclusions:  Our study mined existing TCGA datasets for novel factors associated with lung adenocarcinoma, and 
identified a largely unknown lncRNA as a potential prognostic factor. Further investigation is warranted to character-
ize the roles and significance of CTB-193M12.5 in lung adenocarcinoma biology.
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Background
Lung cancer is the leading cause of cancer-related mortal-
ity worldwide, with a particularly low 5-year survival rate 
for patients suffering from this disease at its advanced 
stages. In the US, lung cancer is estimated to account 
for approximately one quarter (26%) of all cancer-related 
deaths in the year 2017 [1]. In China, which currently 
hosts the largest population in the world, 730,000 new 
cases of lung cancer were estimated for the year 2015, 
along with more than 610,000 deaths [2]. Across the 
globe, as incidence and mortality generally continue 
with rise, lung cancer has become a major public health 

problem, and is therefore under intensive biomedical and 
clinical research.

Breakthroughs in ‘omics’ technologies, such as genom-
ics, transcriptomics, and proteomics, have opened ave-
nues for a systematic approach for understanding and 
treating cancer [3, 4]. In particular, a flurry of recent 
cancer profiling studies have focused on RNA sequenc-
ing (RNA-Seq), a rapidly maturing development of the 
next-generation sequencing technology. Compared with 
microarray analysis, RNA-Seq profiling allows for larger 
dynamic range, and higher sensitivity and throughput [5]. 
As a result, RNA-Seq profiling has been used in several 
recent studies of lung cancer molecular pathogenesis, 
including discovery of novel mutations in key oncogenes 
and genomic rearrangements in squamous cell lung can-
cer [6] and adenocarcinoma [7], identification of potential 
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biomarkers in non-small cell lung cancer (NSCLC) [8], 
and quantification of expression of marker genes [9].

One revelation largely enabled by high-throughput 
sequencing analysis was that non-coding RNAs make up 
the majority (approx. 85%) of transcriptome. Based on 
transcript length, non-coding RNAs can be divided into 
short non-coding RNAs (sncRNAs, <  200 nucleotide) 
and long non-coding RNAs (lncRNAs, > 200 nucleotide) 
[10]. Deregulation of lncRNAs has been well recognized 
in cancer, and has been suggested to modulate tumor 
development at chromosomal, transcriptional, and post-
transcriptional levels [10, 11]. In lung cancer, the list of 
implicated lncRNAs is expanding rapidly [11]. How-
ever, much still remains unknown about the mechanics 
and significance of lncRNAs in many aspects of this dis-
ease, such as carcinogenesis, development, metastasis, 
response to anti-cancer treatment, and prognosis.

In this study, we took advantage of large-scale expres-
sion profiles and a systems biology strategy to identify 
lncRNAs that were significantly regulated in lung cancer 
specimens, and were strongly co-expressed with a large 
pool of protein-coding genes (PCGs). In order to detect 
co-expression pattern among the lncRNAs and PCGs in 
our TCGA datasets, weighted gene co-expression net-
work analysis (WGCNA) was applied. WGCNA has been 
established as an effective data mining method for find-
ing clusters or modules of highly correlated biomolecules 
and identifying intramodular “hubs”, including genes 
[12], miRNAs [13], and metabolites [14]. Consequently, 
WGCNA has been successfully applied in several lung 
cancer profiling investigations, such as identification 
of differential mRNA expression [12] and lncRNAs 
expression profile signature [15] in lung squamous cell 
carcinoma.

In the present study, we used RNA-Seq datasets from 
The Cancer Genome Atlas (TCGA) database to identify 
novel lncRNAs associated with lung cancer. LncRNA 
profiling and protein-coding transcript profiles of lung 
cancer were extracted from TCGA. Afterwards, these 
datasets were subjected to a battery of analyses, includ-
ing differential expression analysis, co-expression net-
work and cluster analyses, KEGG pathway enrichment, 
and survival analysis. After several rounds of screening, 
two largely uncharacterized lncRNAs, CTD-2510F5.4 
and CTB-193M12.5, were identified. Both lncRNAs were 
significantly upregulated in cancerous specimens and 
co-expressed with 304 protein-coding genes, suggest-
ing a wide spectrum of target PCGs under the modula-
tion of these two lncRNAs. More importantly, expression 
levels of CTB-193M12.5 also showed significant nega-
tive correlation with the prognosis of the patients from 
whom the RNA-seq datasets were derived. Together, our 
results provide a promising lncRNA candidate for further 

validation and characterization by “wet bench” and clini-
cal research.

Methods
Data collection and preprocessing
The data used in this study were obtained from The Can-
cer Genome Atlas database (https://portal.gdc.cancer.
gov/), including protein-coding transcript and lncRNA 
profiles of lung adenocarcinoma specimens and the cor-
responding patient clinical follow-up data. RNA-Seq data 
(presented as Fragments Per Kilobase Million) were col-
lected on Illumina HiSeq platforms.

The two datasets came from a total of 592 specimens, 
which consisted of 59 normal and 533 cancerous tissues. 
Notably, there are 57 pairs of cancerous and the corre-
sponding adjacent tissue in the datasets. Before further 
processing, quantile normalization was performed on the 
‘Level-3’ read counts to standardize the data.

Next, we selected lncRNAs and PCGs whose normal-
ized FPKM values were larger than 1 (in RNA-seq analy-
ses, genes with a FPKM value no great than 1 are typically 
considered as not expressed) in more than 50% of all 57 
specimen pairs, and extracted the expression of these 
retained lncRNAs and PCGs from all 593 specimens for 
further analysis.

Screening for differentially expressed lncRNAs 
and protein‑coding genes
Expression profiles of lncRNAs and PCGs were analyzed 
separately, in order to identify the differential expression 
of these genes in normal and cancerous tissue samples. A 
previously reported approach was used in screening for 
differentially expressed genes [16]. Briefly, for lncRNAs 
and PCGs with an expression of 0 in more than 30% of 
either normal or cancerous tissues, Filter B was applied, 
while Filter A was applied for the remaining lncRNAs 
and PCGs.

Filter A. fold_change > 2 or fold_change < 0.5 and sta-
tistically significant (p  <  0.01, paired Student’s t test), 
where fold_change values calculated as indicated in 
Table  1. A fold_change value of greater than two indi-
cates that compared with normal specimen, expression 

Table 1  Calculation of  fold_change values for  lncRNAs 
and PCGs screened with Filter A

fold_change = (A2 * (B1 + B2)/B2 * (A1 + A2)) > 2

Cancerous  
sample

Normal  
sample

Number of samples  
where expression is 0

A1 B1

Number of samples  
where expression is not 0

A2 B2

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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of the gene is upregulated in the cancerous specimens, 
whereas a fold_change of less than 0.5 indicates down-
regulated expression in cancerous specimens.

Filter B. fold_change  >  2 or fold_change  <  0.5 and 
statistically significant (p  <  0.01, Fisher’s exact test), 
where fold_change values were calculated as fold_
change  =  non-zero expression in cancerous specimen/
non-zero expression in normal specimen.

Subsequently, we performed hierarchical cluster analy-
sis using the R package heatmaps. Based on the z-scores 
derived for the expression levels of selected genes in all 
samples, we calculated the Euclidean distances of all gene 
pairs, which were then used to detect gene clusters.

Co‑expression network analysis of the expression 
of lncRNAs and PCGs
For detection of gene co-expression modules, co-expres-
sion network analysis was performed on both expression 
profiles using an R package WGCNA [17].

Briefly, following FPKM normalization, the Pearson’s 
correlation coefficient (PCC) cor(i, j) was calculated for 
each pair of retained lncRNAs and PCGs from the corre-
sponding expression levels. Next, a similarity co-expres-
sion matrix was computed as follows:

where aij represents connection strength between nodes 
i and j.

Afterwards, the similarity matrix was transformed to 
an adjacency matrix (AM) using a power β = 14, based 
on the scale-free topology criterion described in the 
WGCNA package documents [17]. Then, a topological 
overlap matrix (TOM) was derived from the AM, and 
was in turn converted into a dissimilarity TOM, from 
which a dendrogram was mapped via hierarchical clus-
tering. By applying the dynamic tree cutting technique, 
clusters were obtained from the dendrogram. The result-
ing clusters are co-expression modules containing lncR-
NAs and PCGs that are considerably interconnected.

Analysis of correlation between co‑expression modules 
and clinical status
After identifying co-expression modules, we selected the 
Blue module, a co-expression of five lncRNAs and 304 
PCGs, as our evidence suggested that it was the mod-
ule most positively correlated with lung cancer. Then, 
through clustering of PCCs, two lncRNAs closely cor-
related to PCGs were selected from the Blue module. In 
parallel, we also screened for PCGs in the module based 
on the strength of their correlation with the five lncR-
NAs. The PCGs were classified into two groups, namely 
those with high level of correlation to the five lncRNAs, 

aij =
(

0.5×
(

1+ cor
(

i, j
)))β

and those with low level of correlation. The former 
group was then selected for KEGG pathway enrichment 
analysis.

Kaplan–Meier survival analysis
To investigate the impact of the expression levels of two 
candidate lncRNAs on prognostic survival of patients, 
Kaplan–Meier survival analysis was performed using 
GEPIA (http://gepia.cancer-pku.cn/), a web-based 
interactive toolkit for analyzing gene expression profil-
ing datasets [18]. We compared the prognostic survival 
of patients groups based on the expression level of the 
either lncRNA. Briefly, patients were assigned into either 
the high expression or low expression group based on the 
expression level of each lncRNA in their specimens, and 
the prognostic survival was analyzed using the survival 
analysis feature with default parameters.

To further validate the results, another web-based 
interactive toolkit, Kaplan–Meier plotter was applied 
[19]. Kaplan–Meier plotter (http://kmplot.com/analysis/) 
is a comprehensive online platform that offers assess-
ment of the effect of 54,675 genes on survival based on 
10,293 cancer samples. In particular, we focused on the 
dataset of 2437 lung cancer patients with a mean follow-
up of 49  months. We selected all databases related to 
NSCLC (GSE1918, GSE29013, GSE30219, GSE31210, 
GSE3141, GSE37745, GSE50081), which included a total 
of 673 patients, to assess the prognostic value of the two 
candidate lncRNAs in lung adenocarcinoma carcinoma.

LncRNA function predication and target gene enrichment 
analysis
Next, we used RIblast, an RNA–RNA interaction predic-
tion algorithm package to predict target mRNAs [20]. 
Using a seed-and-extension approach, RIblast discov-
ers seed regions using suffix arrays, and extends these 
regions based on an RNA secondary structure energy 
model. We used 27,519 mRNA sequences obtained from 
The RefGene database (http://varianttools.sourceforge.
net/Annotation/RefGene) to establish the RIblast dataset. 
The predicted target genes were sorted by sum_energy, 
and the top 100 genes were selected for GO enrichment 
analysis.

Results
Preprocessing of the datasets
We used RNA-seq datasets (presented as FPKMs) col-
lected from 592 specimens consisting of 533 cancerous 
and 59 normal specimens, including 57 pairs of matched 
cancerous and normal adjacent tissue samples. Moreover, 
the datasets contain expression levels of 14,448 lncRNAs 
and 19,069 protein-coding genes. Upon obtaining the 
expression profiles, we performed quantile normalization 

http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/
http://varianttools.sourceforge.net/Annotation/RefGene
http://varianttools.sourceforge.net/Annotation/RefGene
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to standardize the datasets. Afterwards, we selected 
lncRNAs and PCGs whose expression levels are greater 
than 1 in more than 50% of the 57 matched specimen 
pairs. After the selection, a total of 679 lncRNAs and 
12,040 PCGs were used for further analysis.

Expression analysis of lncRNAs and PCG
We compared the expression levels of lncRNA against 
those of PCGs in both normal (Fig. 1a) and in cancerous 
tissue samples (Fig. 1b). In both types of tissues, expres-
sion levels of lncRNAs are much lower than those of 
PCGs, which is consistent with previous reports [21, 22]. 
Furthermore, we compared global expression differences 
in the expression of PCGs (Fig. 1c) and lncRNAs (Fig. 1d) 
in both types of specimens. As shown in these figures, 
both PCG and lncRNA showed significant differences. In 
particular, the expression of PCGs and lncRNAs in can-
cerous specimens are generally low. In terms of expres-
sion levels between normal and cancerous specimens, 
lncRNAs showed grater variance than PCGs, suggest-
ing an interesting possibility that lncRNA expression is 
more specific, whereas PCGs are expressed more stably, 

between normal and cancerous states in lung cancer. 
Moreover, this higher level of specificity lends lncRNAs 
to be more suitable targets for targeted therapy of lung 
adenocarcinoma.

Analysis of differential expressions of PCG and lncRNAs
As described in a previous section, 679 lncRNAs and 
12,040 PCGs were retained for differential expression 
analysis, during which fold change of the expression level 
of each PCG or lncRNA was calculated as aforemen-
tioned. A total of 119 differentially expressed lncRNAs 
and 1934 PCGs were identified. Table 2 presents an over-
view of the numbers of differentially expressed lncRNAs 
and PCGs. Interestingly, while comparable numbers of 
differentially expressed PCGs showed significant up- or 
down-regulation, the majority of differentially expressed 
lncRNAs was downregulated in cancerous specimens as 
compared with normal ones, suggesting that in lung can-
cer, lncRNAs are more inclined to be downregulated.

Next, we performed clustering analysis on these dif-
ferentially expressed lncRNAs and PCGs. As shown in 
the resulting heatmaps, differentially expressed lncRNAs 
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(Fig.  2a) and PCGs (Fig.  2b) consistently distinguished 
normal specimens from cancerous ones.

KEGG enrichment analysis
After identifying differentially expressed PCGs, we per-
formed a KEGG pathway enrichment analysis using the 
R package clusterProfiler for overview of the biologi-
cal significance of these genes [23]. As shown in Fig.  3, 

Table 2  An overview of  differentially expressed lncRNAs 
and PCGs

lncRNAs PCGs

Upregulated in lung cancer 29 899

Downregulated in lung cancer 90 1035

Total 119 1934

SampleClass
Cancer
Normal

−3

−2

−1

0

1

2

3

a b

Fig. 2  Heatmaps showing clustering patterns of differentially expressed a PCGs and b lncRNAs between normal and lung cancer specimens
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Fig. 3  KEGG enrichment analysis of protein-encoding genes that are significantly a upregulated and b downregulated in lung cancer samples as 
compared with normal samples
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nine KEGG pathways were enriched among significantly 
upregulated genes, which encompass a variety of cellular 
processes, including cell cycle, DNA replication, ECM-
receptor interaction, and several metabolism-related 
pathways. On the other hand, five KEGG pathways were 
enriched among downregulated genes, including sign-
aling cascades such as Rap1 signaling pathway and the 
complement and coagulation cascades.

Identification of co‑expression modules
lncRNAs have been known to regulate gene expression in 
a number of ways, assuming roles including decoys, scaf-
folds, guides, and signals [10]. We postulate that for an 
lncRNA to regulate the expression of a PCG, their expres-
sion profiles are expected to exhibit similar patterns. 
Therefore, using the R package WGCNA, we mapped a 
weighted co-expression network of lncRNAs and PCGs 

and identified co-expression modules. Although the 
WGCNA approach has been highly automated through 
continued algorithm optimization, several key param-
eters still needed to be fine-tuned empirically in order to 
ensure that the co-expression network to be constructed 
is scale-free [17]. To this end, we finally determined a β 
value of 14 (Fig. 4a, b).

Subsequently, the expression matrix was transformed 
a topological overlap matrix, to which we applied the 
average-linkage method for sequence clustering. Next, 
we employed a dynamic tree cutting procedure to detect 
co-expression clusters (i.e. modules). Again, after opti-
mization, the minimal number of genes in each cluster 
was set at 30 in order to fulfill the criteria of dynamic tree 
cutting. Afterwards, another round of clustering analysis 
(height = 0.25) was performed, where closely associated 
modules were merged into larger ones.
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In the end, WGCNA analysis identified six co-expres-
sion modules (Fig.  4c). Table  3 summarizes the distri-
bution of lncRNAs and PCGs among these modules. 
Altogether, a co-expression network of 1303 PCGs and 

89 lncRNAs was constructed. Notably, we also computed 
and plotted the correlation of each module with the clini-
cal status of the corresponding samples, as a measure the 
strength of correlation between the lncRNAs and PCGs 
in that module and lung cancer. As shown in Fig. 4d, the 
Blue module showed the strongest positive correlation 
(module-trait weighted correlation = 0.74) with cancer-
ous specimens, and the turquoise module a negative cor-
relation that is close to perfect (module-trait weighted 
correlation = − 0.92).

Next, we performed a second KEGG enrichment 
analysis for each co-expression module with clusterPro-
filer. From the 1303 PCGs in the six modules, a total of 
26 KEGG pathways were enriched. As shown in Fig. 5, a 
distinct set of pathways were enriched from each mod-
ule, with no overlapping, suggesting largely independent 
sets of functions exerted by genes in each co-expression 

Table 3  A summary of  the six co-expression modules 
revealed with WGCNA analysis

Module color No. lncRNAs No. PCGs

Blue 5 304

Brown 13 141

Green 1 63

Red 1 39

Yellow 4 67

Turquoise 45 709

Cell cycle

Progesterone-mediated oocyte 
maturation

Fanconi anemia pathway

Antifolate resistance

Oocyte meiosis
p53 signaling pathway

blue

Amino sugar and nucleotide sugar 
metabolism

Vascular smooth muscle contraction
red

turquoise

Complement and coagulation 
cascades

Staphylococcus aureus infection
Phagosome

Osteoclast differentiation

brown

PPAR signaling pathway

ECM-receptor interaction

AGE-RAGE signaling pathway in 
diabetic complications green

Amoebiasis

Focal adhesionBiosynthesis of amino acids

DNA replication

Protein digestion and absorption

Cellular senescence

Carbon metabolism

Base excision repair

One carbon pool by folate

Mismatch repair

Glycolysis / Gluconeogenesis

KEGG Pathway

Module

Fig. 5  KEGG pathway analysis of the six modules



Page 8 of 16Wang et al. Cancer Cell Int  (2018) 18:27 

module. Furthermore, by comparing with the KEGG 
pathways enriched from differentially expressed genes, 
we noticed that six out of the nine pathways enriched 
in upregulated genes were also enriched from the Blue 
module. As described above, our correlation analy-
sis indicates that this co-expression module shows the 
strongest positive correlation with cancerous specimens. 
Moreover, among the 14 KEGG pathways enriched from 
this module, many have been established as key cascades 
closely related to the initiation, growth, and dissemina-
tion of lung cancer, including cell cycle and senescence, 
DNA damage repair, and p53 signaling [24–26]. These 
enriched KEGG pathways suggest high relevance of the 
genes in the Blue module to lung cancer.

Analysis of the correlation between lncRNAs and PCGs 
in the Blue module
Due to its strong positive correlation with cancerous 
specimens, as well as the versatile enriched KEGG path-
ways of significance in lung cancer, we looked further into 
the Blue module. For all five lncRNAs and the 304 PCGs 
in the module, we extracted the expression level PCC for 
each lncRNA-PCG pair, and performed cluster analysis 
based on these PCCs. As shown in Fig. 6, two lncRNAs, 
namely CTD-2510F5.4 and CTB-193M12.5, showed the 
strongest overall co-expression with the PCGs, suggest-
ing central roles for these lncRNAs in this co-expression 
module.

Next, we examined the annotated functions of 304 
PCGs in the module. Based on overall strength with the 
five lncRNAs, we selected 178 PCGs (PCC  >  0.6) and 
performed KEGG pathway enrichment analysis (Table 4). 
Notably, out of the 15 KEGG pathways enriched, a pre-
dominant majority (13 pathways) overlapped with those 
enriched from all PCGs in the module, suggesting that 
these 178 PCG are representative of the major functions 
of the protein-coding genes in the Blue module.

Analysis of the expression level of lncRNAs in the Blue 
module
We analyzed the expression levels of the five lncRNAs in 
the Blue module between cancerous and normal tissues 
(Fig.  7). All five lncRNAs were significantly upregulated 
in lung cancer samples as compared with normal sam-
ples (p < 0.001 for all, Mann–Whitney test). In particular, 
CTD-2510F5.4 and CTB-193M12.5 showed most intense 
upregulation.

Construction of an lncRNA‑PCG regulatory network
Next, we set out to construct an lncRNA-PCG regula-
tory network of the five lncRNAs in the Blue module and 
the 178 highly correlated PCGs selected in the previous 
section. Protein–protein interaction data were retrieved 
from Human Integrated Protein–Protein Interaction 
rEference database and visualized with Cytoscape. A 
regulatory network with 683 connections and 182 nodes 
was constructed. As shown in Fig.  8, the majority of 
the connections concentrated on a few nodes, suggest-
ing significant roles of the corresponding lncRNAs and 
PCGs. Notably, two lncRNAs, CTD-2510F5.4 and CTB-
193M12.5, had 172 and 81 connections, respectively 
(Table 5). These connections constituted approx. 25 and 
12% of all connections in the regulatory network, which 
pointed to the centrality of these two ‘hub’ lncRNAs.

To highlight the highly connected genes, we selected 
only nodes with more than 15 connections. These nodes 
corresponded to three lncRNAs and ten PCGs (Table 5). 
From the ten PCGs, six KEGG pathways were enriched 
(Fig.  9a), which encompass essential aspects of cancer 
biology, including cell cycle and senescence, DNA repli-
cation, and viral carcinogenesis [24, 27, 28].

A closer analysis of the correlation between the lncR-
NAs and ten PCGs revealed that all ten PCGs were 
significantly correlated to CTD-2510F5.4, nine to CTB-
193M12.5, and one to RP11-467L13.7 (Fig.  9b). The 
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strong correlation of CTD-2510F5.4 and CTB-193M12.5 
to these genes suggested strongly roles of these two lncR-
NAs in regulating the expression of these PCGs, which 
in turn, modulate the cancer initiation and development 
through a host of cellular processes, such as cell cycle and 
death, and DNA replication.

Prognostic analysis of CTD‑2510F5.4 and CTB‑193M12.5 
expression levels and patient survival
Evidence so far suggest high relevance of CTD-
2510F5.4 and CTB-193M12.5 in lung cancer, including 

dysregulated expression in and close correlation with the 
disease. To assess the clinical relevance of these lncRNAs, 
we performed prognostic survival analysis to examine 
whether the expression levels of these lncRNAs signifi-
cantly correlate to the survival of patients who provided 
the specimens. As shown in Fig.  10, high expression of 
both lncRNAs were significantly negatively correlated 
with patient overall survival (OS; Logrank p = 0.0013 for 
CTD-2510F5.4; Logrank p = 0.0053 for CTB-193M12.5), 
suggesting potentials of both lncRNAs as prognostic 
indicators.

Table 4  KEGG pathway enrichment analysis of PCGs with a high overall correlation with the five lncRNAs in the Blue co-
expression module

Description GeneRatio p value q value Count

Cell cycle 15/79 2.71E−12 2.56E−10 15

DNA replication 8/79 3.18E−09 0.000000151 8

Biosynthesis of amino acids 9/79 7.29E−08 0.0000023 9

Carbon metabolism 10/79 0.000000378 0.00000895 10

Glycolysis/Gluconeogenesis 8/79 0.000000524 0.00000992 8

One carbon pool by folate 5/79 0.00000181 0.0000286 5

Fanconi anemia pathway 5/79 0.000302021 0.003766033 5

Cellular senescence 8/79 0.000318021 0.003766033 8

Oocyte meiosis 7/79 0.000369272 0.003887073 7

Progesterone-mediated oocyte maturation 6/79 0.000679229 0.0064348 6

p53 signaling pathway 5/79 0.000810879 0.006983646 5

Mismatch repair 3/79 0.00186508 0.014724313 3

Pentose phosphate pathway 3/79 0.004048799 0.029505417 3

Antifolate resistance 3/79 0.004447883 0.030098454 3

Fructose and mannose metabolism 3/79 0.005315566 0.033571995 3
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To further validate the prognostic value of CTD-
2510F5.4 and CTB-193M12.5 in lung cancer, an inde-
pendent dataset consisting of 673 lung adenocarcinoma 
patients from seven GEO datasets was subjected to 
Kaplan–Meier survival analysis. As shown in Fig.  11, 
the two lncRNAs showed opposite direction of corre-
lation of OS. Of note, in this analysis, CTD-2510F5.4 
expression showed positive correlation with prog-
nosis (Logrank p  =  0.00087), which was inconsistent 
with our results. However, CTB-193M12.5 expression 
level was negatively correlated to patient OS (Logrank 
p = 3e−07), which was in accordance with our analysis 
of the TCGA profiles.

CTB‑193M12.5 target prediction and function analysis
Target genes of CTB-193M12.5 were predicted with 
RIblast, an RNA–RNA interaction prediction algorithm 
[20]. Based on the levels of intramolecular and intermo-
lecular free energy between lncRNA-mRNA sequence, 
a list of target PCGs were generated (Additional file  1: 
Table S1). After sorting by sum_energy, the top 100 genes 
were subjected to GO enrichment analysis. No molecular 
function pathway was significantly enriched. Biological 
process pathway and cellular component pathway terms 
(false discovery rate  <  0.05, gene number  >  20) were 
sorted by significance, and the top ten enriched terms 
were retained (Fig. 12).

RNASEH2A

CDCA7 FAM83D

KIF22

TOP2A

MYBL2

DDX11

CKAP2

CCNF

CHTF18
MRGBP

ATAD2

POC1A
FAM136A

RFC4

DONSON

SHMT2
NCAPD3 BORA
SNHG1

DSCC1KIF2C

CDC20

SASS6

NCAPG2

CENPW

NUSAP1
CENPM

CDCA4

APOBEC3B

KPNA2

RFC5
MCM8

CCNB1

CCNA2

E2F1

MSH2
DSN1

PAQR4

TRIB3
CDCA5

MTHFD2

PSAT1

MIS18A

TCF19

CDCA8

MAFG-AS1

DUS4L

FIGNL1

PMAIP1

UBE2T
RECQL4

HMGA1

PGK1
ASF1B

TPI1
PRC1

KNOP1

BRIX1 PCLAF

BOP1
CHAF1B

MCM7

CHEK2

MYO19

CENPO

CDKN3

TPBG

RMI2

CHAF1ACDC7

PPAT

UBE2C

SLC5A6

TYMS

CENPU

CENPLINTS13

ZWILCH

WASF1
CENPH

SPDL1

ZC3HAV1L

XPO5
SFXN1

ANLN
FBXL19 DBF4

DKC1PTTG1
HDGF

CENPN
RRM2INCENP

RAC3
PRR11CTD-2510F5.4

ILF2
GMNN

AURKB

ASNS

NDE1
MCM4

NCAPH

RP11-467L13.7

CTB-193M12.5

CDT1

RBL1

SPAG5

DTYMK

GPSM2
UBE2S

ECT2

FOXM1

TRIP13

RAD51AP1

KIF20A

PPIF

NDC1

CCT3

TPX2

RUSC1

CEP55
CKS1B

AURKA
DTL

BIRC5

TK1

KNSTRN
PSRC1

HSPD1

SUV39H2

CCT5

RFWD3NCAPD2

TUBA1C

BARD1

TACC3
FBXO5

MTHFD1L
FANCG

FAAP24

NLN
WDR76

FANCI

KIF20B

KIF11

DHFR

MCM6

PFKP

PUS7

CCNB2

MRPL15

EZH2

ENO1

MCM2

TUBG1

RACGAP1

TMSB10

KIF3C

PKM

KIFC1

NETO2
MKI67

ATAD3A

JPT1
ZWINT

NUP155

TBRG4

LMNB2
GPI

PRTFDC1

RPL39L

TIMELESS

LMNB1

H2AFX

GAPDH

FEN1

PAICS

C19orf48ALDOA

BUB1

lncRNA

Gene

Fig. 8  An interaction network constructed with the five lncRNAs and 178 highly correlated PCGs (Pearson’s correlation coefficient > 0.6) in the Blue 
module



Page 11 of 16Wang et al. Cancer Cell Int  (2018) 18:27 

The most significantly enriched term was ‘cellular mac-
romolecule metabolic process’, also with the greatest gene 
number. This term refers to chemical reactions and path-
ways involving macromolecules, including essential meta-
bolic processes of DNA and glycoprotein. It is known that 
an important hallmark of cancer cells is a profound change 
in metabolism. Most tumor cells are characterized by higher 
rates of glycolysis, lactate production, and biosynthesis of 
lipids and other macromolecules [29]. These results hint 
at possible roles of CTB-193M12.5 in regulating lncRNAs 
implicated in DNA and/or glycoprotein metabolism.

Discussion
Recent investigations have provided good evidence that 
opens avenues to the largely unknown roles of lncRNAs, 
which are estimated to make up for approximately 85% of 

the genome. More than 3000 lncRNAs have been iden-
tified so far; however, functions and biological roles for 
only 1% of them have been proposed, much fewer char-
acterized [10]. Insights into the function of the few char-
acterized lncRNAs suggest a surprising diverse variety of 
cellular processes, from chromatin modification, tran-
scription, splicing, and translation to cellular differentia-
tion, cell cycle regulation, and stem cells reprogramming 
[10].

Recent emergence and maturation of the RNA 
sequencing technology has greatly facilitated identifying 
lncRNAs associated with various diseases. Traditional 
hybridization-based approaches such as DNA microar-
ray suffer from several limitations, including reliance on 
sequenced genomes, high background levels, and a rela-
tively narrow dynamic range. More importantly, compar-
ison of expression profiles across different experiments 
is often difficult and requires complex data processing. 
In contrast, RNA-Seq enjoys a number of advantages, 
including very low background signal and large dynamic 
range of detection. Furthermore, RNA-seq enables high-
throughput sequencing of transcriptomes at single-base 
resolution, whose quantification across experiments 
can also be performed with simple normalization algo-
rithms. Together, these factors have made RNA-seq 
an ideal choice for screening for lncRNAs with clinical 
significance.

Consequently, databases of publicly available RNA-seq 
profiles have been constructed and showing continu-
ous growth, although many of the datasets remain to be 
mined with comprehensive bioinformatics tools in order 
to reveal identifies of potential key master regulators that 
could provide hints for validation and clinical applica-
tion. In this study, we used transcriptome datasets col-
lected with RNA-seq to screen for potential lncRNAs 

Table 5  Nodes with  more than  15 connections in the net-
work shown in Fig. 8

Node Degree Type

CTD-2510F5.4 172 lncRNA

CTB-193M12.5 81 LncRNA

PCLAF 33 PCG

MCM2 28 PCG

CDC20 24 PCG

RP11-467L13.7 24 LncRNA

AURKA 21 PCG

MCM7 18 PCG

AURKB 16 PCG

CCNA2 16 PCG

CCNB1 16 PCG

CDT1 16 PCG

ENO1 16 PCG
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Fig. 9  a KEGG pathways enriched from the ten PCGs selected from the lncRNA-PEG interaction network. b An interaction network between these 
ten PCGs and all five lncRNAs in the Blue module



Page 12 of 16Wang et al. Cancer Cell Int  (2018) 18:27 

markers associated with lung cancer. The expression 
profiles were analyzed with a series of analytical tools. 
As a first step, lncRNAs and protein-coding genes that 
showed significant up- or down-regulation were iden-
tified (Fig.  1). From 592 specimens (59 normal and 533 

cancerous specimens), 679 lncRNAs and 12,040 PCGs 
were selected for differential expression analysis, and 
119 lncRNAs and 1934 PCGs were found to be differ-
entially expressed. The large number of differentially 
expressed lncRNAs is consistent with the versatile roles 

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low CTD−2510F5.4 TPM
High CTD−2510F5.4 TPM

Logrank p=0.0013
 HR(high)=1.6

 p(HR)=0.0014
 n(high)=239

n(low)=239

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall Survival

Months
Pe

rc
en

t s
ur

vi
va

l

Low CTB−193M12.5 TPM
High CTB−193M12.5 TPM

Logrank p=0.0053
 HR(high)=1.5

 p(HR)=0.0056
 n(high)=239

n(low)=239

a
b
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Fig. 11  Kaplan–Meier analysis of lung adenocarcinoma-specific overall survival of 673 patients with tumors expressing different levels of a CTD-
2510F5.4 and b CTB-193M12.5
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and regulatory mechanisms of lncRNAs unveiled thus 
far, and suggests a vast unchartered territory of the roles 
of these biomolecules in lung cancer biology [10, 11, 30].

The next step was to detect similar patterns of expres-
sion among these differentially expressed lncRNAs and 
PCGs. There were two purposes to this analysis, namely 
to identify lncRNAs and PCGs that may function in 
pathways in the same cellular processes, and to iden-
tify lncRNAs (hubs) that potentially play central roles 
in modulating the expression of targets within the co-
expression module [17, 31].

Unlike sncRNAs, lncRNAs are poorly conservative and 
highly versatile in modulating biomolecules. A plethora 
of mechanisms by which lncRNAs regulate gene expres-
sion have been reported [10]. Due to their large size and 
therefore the ability to adopt complex conformations, 
lncRNAs can bind to DNAs, RNAs, and proteins. These 
interactions, in turn, enable lncRNAs to act as activa-
tors, blockers, and scaffolds of their interacting partners, 
including DNA, mRNAs, miRNAs, transcription factors, 
and chromatin regulators [11]. At the transcriptional 
level, transcription of lncRNA upstream of a target can 
facilitate or impede that of the latter through modulating 
DNA conformation, RNA Pol III activity, or the associa-
tion of transcription factors and promoters. In addition, 
lncRNAs also regulate alternative splicing, or serve as 
mRNA stabilizers and a sncRNA repertoire. Further-
more, lncRNAs can modulate genome activity through 
affecting histone modification, DNA methylation, and 
chromatin structure [10, 11, 32].

Of the 119 lncRNAs and 1934 PCGs that showed dif-
ferential expression between normal and cancerous spec-
imens, six co-expression modules were detected with 
weighted co-expression network analysis. Among these 
modules, the Blue module showed the strongest positive 
correlation with lung cancer (Fig. 4d). The five lncRNAs 
in this module, despite brief mentioning as part of signifi-
cantly regulated genes in a handful of previous reports 
[33–38], remain almost entirely uncharacterized. Inter-
estingly, all five lncRNAs showed upregulation in lung 
cancer specimens, suggesting potential tumor-promoting 
roles.

Similar to protein-coding genes, lncRNAs can be clas-
sified into two major groups, tumor suppressor lncRNAs 
and onco-lncRNAs [39]. Several lncRNAs have been pro-
posed as oncogenic in lung cancer, including MALAT1 
(a diagnostic and prognostic biomarker in NSCLC) [40], 
AK126698 (mediates cisplatin resistance in NSCLC) 
[41], and lncRNA-DQ786227 (implicated in chemical 
carcinogenesis) [42]. All three onco-lncRNAs showed 
upregulation in lung cancer, similar to the five lncRNAs 
in the Blue module. Conceivably, these lncRNAs may be 

novel onco-lncRNAs of clinical relevance to lung cancer, 
although further research is warranted for validation.

As for the 304 PCGs, KEGG pathway analysis showed 
that they were enriched in processes closely related to 
lung cancer biology, such as p53 signaling, cellular senes-
cence, DNA replication, and metabolism [24, 25]. These 
enriched pathways may be used as a basis for gaining 
deeper insights into the five lncRNAs.

Following detection of co-expression networks, we 
chose the Blue module due to its strong correlation with 
lung cancer, and determined the hub genes in this mod-
ule. To suppress background noise, 178 PCGs with strong 
over correlation with the five lncRNAs (PCC > 0.6) were 
selected and subjected to regulatory network analysis. Two 
lncRNAs, namely CTD-2510F5.4 and CTB-193M12.5, 
were identified as hubs of the resulting network. In addi-
tion, both lncRNAs also showed the strongest overall cor-
relation with all 304 PCGs in the Blue module, further 
supporting their centrality in this co-expression module. 
Moreover, survival analysis showed significant correlation 
between expression of either lncRNA and poor prognos-
tic overall survival, suggesting CTD-2510F5.4 and CTB-
193M12.5 as potential prognostic indicators.

Currently very little is known about either lncRNA. As 
a result, neither has an official Human Genome Nomen-
clature Committee symbol. CTD-2510F5.4 (GenBank 
accession AC099850.7) is the transcript of the gene 
ENSG00000265415, which is located to chromosome 
17 (chromosome 17: 59,065,973–59,264,225). CTD-
2510F5.4 has been reported to show consistent increased 
expression in relation to p53 mutations in lung adenocar-
cinomas [33]. Moreover, CTD-2510F5.4 was also found 
to be differentially expressed in another study that used 
RNA-seq data from TCGA and two independent experi-
ments of more than 60 lung adenocarcinoma specimens, 
which supports the validity of our results.

Functions of CTD-2510F5.4 remain to be char-
acterized. Proline rich 11, a gene neighboring 
ENSG00000265415, was recently suggested as a weak 
prognostic factor in non-mucinous invasive lung adeno-
carcinoma [43], suggesting a possible mechanism by 
which elevated CTD-2510F5.4 expression contributes to 
poor prognosis. As suggested by KEGG pathway analy-
sis, CTD-2510F5.4 may also be implicated in key lung 
cancer-related cellular processes such as senescence. 
Upon induction of cellular senescence with overexpres-
sion of oncogene B-RAF, CTD-2510F5.4 was shown to be 
downregulated as compared with control cells [34]. Since 
oncogene-induced senescence (OIS) is an important 
defense mechanism against lung cancer initiation [44], a 
hypothesis could be proposed, in which aberrant overex-
pression of CTD-2510F5.4 contributes to survival of cells 
overexpressing the tumor-promoting B-RAF despite OIS, 
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and thereby exert oncogenic functions. More research 
is, obviously, needed for validation of this hypothetical 
mechanism.

The other hub lncRNA, CTB-193M12.5 (GenBank 
accession AC026401.7), is the product of the gene 
ENSG00000280206, which is located to chromosome 
16 (chromosome 16: 15,570,622–15,708,653). CTB-
193M12.5 was found to be upregulated in lung squamous 
cell carcinomas in a recent report analyzing RNA-seq 
profiles [37], which is consistent with our finding of the 
overexpression of this lncRNA in lung cancer specimens. 
In addition, expression of this lncRNA was reported to 
be dramatically increased in gastric cancer tissues [37] 
and in triple negative breast cancer cell lines and pri-
mary tumors (Cancer RNA-seq Nexus database, analysis 
title GSE58135) [45]. We also tried to gain insights into 
the potential functions of CTB-193M12.5 by predict-
ing its target PCGs and enriched pathways. The most 
significantly enriched term suggests the roles of CTB-
193M12.5 in DNA and/or glycoprotein metabolism, both 
are known to be crucial in cancer progression [29].

In summary, starting from TCGA gene transcript pro-
files collected from 592 lung cancer specimens, through 
integrated bioinformatics analyses, we identified two 
largely unknown lncRNAs CTD-2510F5.4 and CTB-
193M12.5. Expression levels of both lncRNAs were 
significantly increased in lung cancer specimens, and 
showed strong correlation with those of more than 300 
differentially expressed protein-coding genes. Moreover, 
further analysis placed these lncRNAs in the center of the 
regulatory network consisting of the lncRNAs and PCGs 
in a co-expression module that showed the strongest pos-
itive correlation with lung cancer. Most importantly, high 
expression of CTD-2510F5.4 and CTB-193M12.5 signifi-
cantly correlated to poor overall prognostic patient sur-
vival, and the prognostic value of the latter was further 
supported by an independent validation.

Altogether, these results provide evidence that, for the 
first time, correlate CTB-193M12.5 with prognosis of 
lung cancer patients, and thereby can be used as the basis 
for further investigation towards elucidating its biological 
significance and clinical applications.

Conclusions
Through mining existing TCGA datasets for novel fac-
tors, this study identified and validated a largely unknown 
lncRNA CTB-193M12.5 as a promising prognostic factor 
for lung adenocarcinoma.
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