Table 4.
R2-a | R2-b | R2-c | R2-d | R2-e | R2-f | |
---|---|---|---|---|---|---|
R1-a | 0.00 ± 0.09 | −1.04 ± 0.09a | −4.25 ± 0.10 | −6.02 ± 0.12 | −6.80 ± 0.13 | −4.72 ± 0.13 |
R1-b | −0.90 ± 0.09a | −1.78 ± 0.11 | −5.13 ± 0.12 | −7.04 ± 0.16 | −7.97 ± 0.15 | −5.82 ± 0.16 |
R1-c | −4.03 ± 0.12 | −5.12 ± 0.09 | −8.57 ± 0.10b | −10.46 ± 0.14 | −11.09 ± 0.20 | −9.14 ± 0.17 |
R1-d | −5.94 ± 0.17 | −7.11 ± 0.21 | −10.73 ± 0.12 | −15.40 ± 0.14 | −15.25 ± 0.21 | −12.90 ± 0.17 |
R1-e | −6.46 ± 0.25 | −7.84 ± 0.25 | −10.45 ± 0.20 | −14.67 ± 0.17 | −14.70 ± 0.21 | −13.02 ± 0.19 |
R1-f | −5.13 ± 0.25 | −5.48 ± 0.29 | −9.04 ± 0.44 | −13.60 ± 0.51 | −13.10 ± 0.83 | −11.19 ± 0.31 |
The difference between symmetric derivatives, ΔGxy→yx, should be zero to within statistical precision. For example, ΔGsolvation (ab → ba) = (−0.90 ± 0.09) − (−1.04 ± 0.09) = 0.14 ± 0.13. The root mean square difference between symmetric derivatives is 0.35 and the root mean square precision is 0.36.
The ΔGsolvation (aa → cc) value −8.57±0.13 is inconsistent with the two substituent value of −4.37±0.03 from Table 3. This error is corrected in Table 6 through the use of soft-core interactions. (The uncertainties of the (aa) state, 0.09, and the (cc) state, 0.10, are assumed to be uncorrelated, and are thus combined using the root sum of squares to give an uncertainty of 0.13 for ΔGaa→cc.)