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Systems/Circuits

Local Corticotropin-Releasing Factor Signaling in the
Hypothalamic Paraventricular Nucleus

Zhiying Jiang, Shivakumar Rajamanickam, and Nicholas J. Justice
The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston,
Houston, TX, 77030

Corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN) initiate hypothalamic-pituitary-
adrenal axis activity through the release of CRF into the portal system as part of a coordinated neuroendocrine, autonomic, and behav-
ioral response to stress. The recent discovery of neurons expressing CRF receptor type 1 (CRFR1), the primary receptor for CRF, adjacent
to CRF neurons within the PVN, suggests that CRF also signals within the hypothalamus to coordinate aspects of the stress response. Here,
we characterize the electrophysiological and molecular properties of PVN-CRFR1 neurons and interrogate their monosynaptic connec-
tivity using rabies virus-based tracing and optogenetic circuit mapping in male and female mice. We provide evidence that CRF neurons
in the PVN form synapses on neighboring CRFR1 neurons and activate them by releasing CRF. CRFR1 neurons receive the majority of
monosynaptic input from within the hypothalamus, mainly from the PVN itself. Locally, CRFR1 neurons make GABAergic synapses on
parvocellular and magnocellular cells within the PVN. CRFR1 neurons resident in the PVN also make long-range glutamatergic synapses
in autonomic nuclei such as the nucleus of the solitary tract. Selective ablation of PVN-CRFR1 neurons in male mice elevates corticoste-
rone release during a stress response and slows the decrease in circulating corticosterone levels after the cessation of stress. Our exper-
iments provide evidence for a novel intra-PVN neural circuit that is activated by local CRF release and coordinates autonomic and
endocrine function during stress responses.
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Significance Statement

The hypothalamic paraventricular nucleus (PVN) coordinates concomitant changes in autonomic and neuroendocrine function
to organize the response to stress. This manuscript maps intra-PVN circuitry that signals via CRF, delineates CRF receptor type 1
neuron synaptic targets both within the PVN and at distal targets, and establishes the role of this microcircuit in regulating
hypothalamic-pituitary-adrenal axis activity.

rons in the hypothalamic paraventricular nucleus (PVN), leading
to the release of pituitary Adrenocorticotropic hormone (ACTH)
(Valeetal., 1981). ACTH, in turn, travels through the circulation
and causes the release of glucocorticoids by the adrenal glands to
marshal cognitive and metabolic resources to cope with acute
threats, and to prepare the organism for future stress events
(Dallman and Yates, 1967; Vale et al., 1981; Swanson et al., 1983;

Introduction

The stress response is a conserved mechanism vital for survival, in
which the activation of the hypothalamic—pituitary—adrenal
(HPA) axis serves a pivotal function. HPA axis activity is initiated
by the release of corticotropin-releasing factor (CRF) from neu-
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McEwen and Sapolsky, 1995; Ulrich-Lai and Herman, 2009).
HPA axis activity is exquisitely regulated, and CRF release is coor-
dinated with multiple other endocrine and autonomic circuits to
achieve a unified stress response (Leach and Taylor, 1980; Sutton et
al., 1982; Gosnell et al., 1983; Brown and Fisher, 1985; Spina et al.,
1996). Dysregulation of the HPA axis has been implicated in both
endocrine and anxiety-related disorders including depression
and post-traumatic stress disorder (Yehuda et al., 1991; Conta-
rino et al., 1999; Chrousos, 2000; Pervanidou and Chrousos,
2010). We identified a population of neurons in the PVN that
present a new control and integration locus for the regulation of
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the HPA axis and coordination of the stress response (Justice et
al., 2008; Ramot et al., 2017). These neurons express the primary
receptor for CRF, CREF receptor type 1 (CRFR1), allowing them
to respond to locally released CRF to regulate and coordinate
neuronal activation at the level of the PVN, and to modulate HPA
axis output (Ramot et al., 2017). However, the electrophysiolog-
ical and molecular phenotype of these neurons and how they
interface with well characterized neuronal circuits that control
and coordinate responses to stress, remain unclear.

The PVN contains cell bodies of diverse neuronal types, which
have been classified based on their anatomic, molecular, and elec-
trical properties (Swanson and Kuypers, 1980; Swanson et al.,
1983; Liposits, 1993; Herman et al., 2003; Ulrich-Lai and Her-
man, 2009; Biag et al., 2012). Type I neurons are magnocellular
neurons that secrete arginine vasopressin (AVP) or oxytocin
(OT; Hoffman et al., 1991), express a pronounced A-type K™
current-mediated transient outward rectification and project to
the posterior pituitary to release AVP or OT directly into the
circulation. Type II neurons are neurosecretory parvocellular
neurons that synthesize and secrete CRF or thyrotropin-releasing
hormone (TRH), and project to the median eminence to control
hormone release from the anterior pituitary and initiate the HPA
and hypothalamic—pituitary—thyroid axes, respectively (Vale et
al., 1981; Hoffman et al., 1991; Tasker and Dudek, 1991; Luther
and Tasker, 2000; Lechan and Fekete, 2006). Type III neurons are
termed non-neurosecretory parvocellular neurons, express a
Ca’*-dependent low-threshold spike (LTS), project to the brain-
stem and spinal cord, and control sympathetic activity (Stern,
2001; Luther et al., 2002; Lee et al., 2008), thus they are referred to
as preautonomic or presympathetic neurons.

Although each type of PVN neuron has distinct efferent pro-
jection targets, emerging evidence suggests that neurons within
the PVN communicate with one another to coordinate neuroen-
docrine responses to stress (Neumann et al., 1996; Ferguson etal.,
2008; Son et al., 2013). A CRF-mediated intra-PVN microcircuit
has been revealed by the recent discovery of a novel population of
neurons in the PVN that express CRFR1 (Justice et al., 2008;
Ramot et al., 2017). Here, we electrophysiologically and anatom-
ically characterize this new population of CRFRI1-expressing
neurons in mice. We establish their local and long-range connec-
tivity using channelrhodopsin-2 (ChR2)-assisted circuit map-
ping and rabies virus-based monosynaptic tracing. Finally, we
selectively ablate these neurons to determine their role in HPA
axis regulation. These experiments define an intra-PVN microcir-
cuit that signals via CRF to control HPA axis responses, mediates
local cross talk between different populations of PVN neurons, and
transmits PVN output to brainstem autonomic targets.

Materials and Methods

Animals. All procedures were approved by the University of Texas Health
Science Center at Houston Institutional Animal Care and Use Commit-
tee, in accordance with National Institutes of Health guidelines. Mice
were group-housed, bred, and raised in a facility with controlled temper-
ature and humidity, and had ad libitum access to food and water. Exper-
iments were conducted with CrfrI-gfp, Crfrl-cre, and Crf-cre mice. Both
males and females were used except in diphtheria toxin receptor (DTR)
experiments in which only males were used. The Crfr1-gfp mouse line has
been previously characterized (Justice et al., 2008). The Crfrl-cre mouse
was generated using a similar bacterial artificial chromosome (BAC)
transgenesis strategy as the Crfr1-gfp mouse. Briefly,a BAC (rp23-239f10,
Children’s Hospital Oakland Research Institute, Oakland, CA) containing
the entire genomic locus of CRFR1 was modified using recombineering (Liu
etal., 2003; Chan et al., 2007). A cassette encoding iCre-p2A-tdTomato-PA
was inserted in the first exon at the site of the ATG start codon for CRFR1.
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Modified BAC DNA was purified and injected into single-celled oocytes to
generate transgenic offspring (Genetically Engineered Mouse Core, Baylor
College of Medicine, Houston, TX). Three independent transgenic lines
were recovered, of which one (CRFR1-cre) had the best colocalization of
Cre/ "““tomato with CRFR1-GFP. The Crf-cre transgenic mouse line was pur-
chased from The Jackson Laboratory [B6(Cg)-Crhtml(cre)Zjh/J, stock
#012704] and has been previously validated (Taniguchi et al., 2011; Wam-
steeker Cusulin et al., 2013a; Chen et al., 2015). Crfrl-gfp;crf-cre mice were
generated by crossing Crfr1-gfp transgenic mice with Crf-cre knock-in mice.
Crfr1-gfp;Crf-cre;Ai9 mice were generated by further crossing the Crfr1-gfp;
Crf-cre mice with Ai9 mice. Crfrl-cre;Ai9 mice were generated by
crossing Crfrl-cre transgenic mice with Ai9 mice. Mice for all exper-
iments were maintained on a C57BL/6 background.

Stereotaxic surgeries. Under deep isoflurane anesthesia, glass capillaries
were lowered into the brains of 8- to 10-week-old mice using a stereotaxic
apparatus (Stoelting) using the following coordinates (distance from
bregma): Anterior-Posterior, —0.2 to —0.3 mm; Medial-Lateral, 0.2
mm; Dorsal-Ventral, —5.1 mm. Recombinant viruses were bilaterally
injected with a Nanoject II Auto-Nanoliter Injector (Drummond Scien-
tific) in the following volumes for each injection site: AAV2-EF1a-DIO-
hChR2(H134R)-EYFP (UNC Vector Core, Chapel Hill, NC; 3.9 X 10'?
GC/ml, 100 nl), helper viruses carrying TVA-mCherry and Rabies G
(rAAV1-EFla-FLEX-TVA-mCherry, 4 X 10'* GC/ml, and rAAV1-CA-
FLEX-G, 4 X 10'* GC/ml, 1:1 mixture, 100 nl), AAV-EFla-DIO-
hChR2(H134R)-p2A-Ruby (Baylor College of Medicine (BCM), Houston,
TX; 150 nl), AAV-EF1A-FLEX-synaptophysin-eYFP (BCM, 100 nl),
AAV-EF1a-FLEX-DTR-YFP (BCM, 3.98 X 10'* GC/ml, 300 nl), AAV-
EF1a-DIO-eYFP (UNC Vector Core, 4.21 X 10'* GC/ml, 100 nl), AAV-
hsyn-DIO-mCherry (UNC Vector Core, 3.9 X 10 2. GC/ml, 100 nl), or
pseudotyped rabies virus EnvA-SADAG-eGFP; (a gift from Dr. Benja-
min Arenkiel, BCM, 300-500 nl). Mice were allowed to recover for at
least 3 weeks before being used in experiments. For rabies viral tracing
studies, mice were killed 7 d after the second injection. For DTR-
mediated cell ablation, mice (both control and DTR mice) were given a
single dose of diphtheria toxin (DT; 50 pg/kg, i.p.), at least 72 h before
being used in experiments (Saito et al., 2001).

Acute brain slices preparation and in vitro electrophysiology recordings.
Electrophysiological experiments were conducted in acutely prepared
hypothalamic slices, as previously described (Nahar et al., 2015; Ramot et
al., 2017). Briefly, mice (8 —12 weeks old) were deeply anesthetized with
Avertin (intraperitoneally) and transcardially perfused with ice-cold cut-
ting solution containing the following (in mM): 75 sucrose, 73 NaCl, 26
NaHCO;, 2.5 KCl, 1.25 NaH,PO,, 15 glucose, 7 MgCl,, and 0.5 CaCl,,
saturated with 95% O,/5% CO,. The brains were quickly removed from
the skull and blocked, and the caudal face of the block was glued to the
specimen plate of the buffer tray then immersed in ice-cold cutting so-
lution. Coronal slices (280 wm) containing either the hypothalamic PVN
or nucleus of the solitary tract (NTS) were sectioned using a Leica VT
1000S Vibratome and transferred to a holding chamber with artificial
CSF (aCSF) containing the following (in mM): 123 NaCl, 26 NaHCO;,
2.5KCl, 1.25 NaH,PO,, 10 glucose, 1.3 MgCl,, and 2.5 CaCl,, and satu-
rated with 95% O,/5% CO, at 31-33°C for 30 min, then maintained at
room temperature for at least 1 h to allow for recovery before any elec-
trophysiological recordings.

Individual slices were transferred from the holding chamber to a re-
cording chamber in which they were submerged and continuously per-
fused with aCSF. Whole-cell patch-clamp recordings were performed in
the PVN or NTS under infrared-differential interference contrast visual-
ization at ~32°C on a fixed-stage, upright microscope (model BX51WI,
Olympus) equipped with a water-immersion 40X objective. Pipettes
with a resistance of 3—5 M{2 were pulled from borosilicate glass (outer
diameter, 1.5 mm; inner diameter, 1.1 mm; Sutter Instruments) using a
horizontal puller (P-97, Sutter) and filled with an internal patch solution
containing the following (in mM): 142 K-gluconate, 10 HEPES, 1 EGTA,
2.5 MgCl,, 4 Mg-ATP, 0.3 Na-GTP, and 10 Na,-phosphocreatine, ad-
justed to pH 7.25-7.35, osmolality 295-305 with KOH. The liquid junc-
tion potential was not corrected, and series resistance (Rs) was bridge
balanced. For all recordings, series resistance (Rs) >25 M() were not
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included in analysis. For experiments in the hypothalamus, neurons were
excluded from analysis if their input resistance was <500 M().

To excite channelrhodopsin in brain slices in optogenetic experi-
ments, an optical fiber was placed close to the recording site (15—
30 wm above the slice, 100-200 wm away from the tip of the recording
electrode) to deliver light from a laser source (473 nm PSU-III-LED laser
system, Opto Engine). Laser light was delivered in pulses, with a pulse
duration of 0.5-5 ms and an intensity 3.5-6 mW. For laser-induced
spiking of ChR2-expressing neurons and laser-evoked EPSCs/IPSCs,
light pulses were adjusted to the minimum power required to evoke a
reliable single-peak response from trial to trial; for laser activation of CRF
neurons while recording CRFR1 neurons, 5 ms light pulses were used for
all experiments, because the response is not time locked to a laser, and
5 ms is sufficient to evoke a reliable single action potential in most ChR2-
expressing neurons that we tested. Laser frequencies for each experiment
were specified in the results.

Single-cell reverse transcription PCR. Single-cell reverse transcription
PCR was performed as previously described (Gémez-Lira et al., 2005;
Lazarenko et al., 2009; Pfeffer et al., 2013; Ramot et al., 2017).

Reagents. The following drugs were kept at —20°C as stock solutions
and were dissolved in aCSF to their final concentration on the day of the
experiments: CRF peptides (30 nm; courtesy of Dr. J. Rivier, The Salk
Institute, La Jolla, CA), bL-AP5 sodium salt (AP5; 50 um; Tocris Biosci-
ence), DNQX disodium salt (DNQX; 10-20 um; Tocris Bioscience), pi-
crotoxin (50 uMm; Tocris Bioscience), Antalarmin hydrochloride (300 nwm;
Tocris Bioscience), bicuculline (Bic; 10—40 wm; Sigma-Aldrich), tetro-
dotoxin (TTX; 0.5-1 um; Tocris Bioscience). When DMSO was used as
solvent, the final concentration of DMSO in the perfusate was =0.1%.

Immunofluorescence and imaging. For histology studies, adult mice
(8—12 weeks old) were deeply anesthetized with Avertin then transcardi-
ally perfused with PBS followed by 4% paraformaldehyde (PFA) in PBS.
Brains were removed, fixed in 4% PFA at 4°C overnight, then equili-
brated in 30% sucrose, sectioned (30 uMm, coronal sections) into four
series of sections on a frozen sliding microtome (SM 2000R, Leica), and
stored in cryoprotectant solution at —20°C. Brain sections were rinsed
with PBS and incubated with primary antibodies [goat anti-GFP, 1:1000,
catalog #600-101-21, Rockland (RRID:AB_218182); rabbit anti-CRF,
1:1000, rc70, courtesy of Dr. Wylie Vale, The Salk Institute, La Jolla, CA;
goat anti-CRFR1, 1:100, catalog #EB07553, Everest Biotech (RRID:
AB_2229860); rabbit anti-GFP, 1:1000, catalog #A6455, Invitrogen (RRID:
AB_221570); rabbit anti-vasopressin, 1:1000, catalog #H-065-07, Phoenix
Pharmaceuticals; mouse anti-oxytocin, 1:500, catalog #MAB5296, Millipore
(RRID:AB_2157626); mouse anti-chromogranin A (CGA), catalog #NBP2-
29428, Novus Biologicals] with 2% normal donkey serum and 0.4%
Triton X-100 at 4°C overnight. They were then incubated in respective sec-
ondary antibodies (all secondaries were obtained from Jackson Immuno-
Research: Alexa Fluor 488 donkey anti-goat, catalog #705-546-147 (RRID:
AB_2340430); Alexa Fluor 488 donkey anti-rabbit, catalog #711-546-152
(RRID:AB_2340619); Alexa Fluor 594 donkey anti-goat, catalog #705-586-
147 (RRID:AB_2340434); Alexa Fluor 647 donkey anti-rabbit, catalog #711-
606-152 (RRID:AB_2340625); Alexa Fluor 647 donkey anti-mouse, catalog
#715-606-150 (RRID:AB_2340865); 1:1000] at room temperature for 1 h.
Sections were washed in PBS then mounted and imaged on a confocal mi-
croscope (model TCS SP5, Leica ). For identification of CRF soma in pseu-
dotyped rabies virus (PTRV) experiments, mice were treated with colchicine
(10 ug; 8 mg/ml, i.c.v.) 48 h before being killed.

Image acquisition and processing. Images were captured using a confo-
cal microscope (model TCS SP5, Leica) and processed with Fiji Image].
For immunofluorescence studies, z-stacks of ROIs (with six to eight op-
tical sections; 1 wm/section; pinhole = 1 airy unit; line average = 3;
pixels, 1024 X 1024) were captured at 10X, 20X, 40X, and 63X using
neuroanatomical landmarks found in a mouse brain atlas (Paxinos and
Franklin, 2008). Images presented in this article were produced by max-
imal projection of the z-stacks, with brightness and contrast adjusted in
Image].

Colocalization analysis was performed on selected brain regions in at
least three mouse brains for each experiment (as shown by sample size n).
One single focal plane (1 wm) from each 40X magnification image stack
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containing the ROI (two to three sections/mouse) was quantified using
CellProfiler 2.2.0.

Immobilization stress and corticosterone measurements. For immobili-
zation stress, mice were fixed to flat cutting boards with adhesive tape in
the prone position for 2 h. Blood samples were collected by submandib-
ular bleed under basal conditions and at different time points during
immobilization stress exposure. Serum samples were stored at —20°C
until assayed using a MILLIPLEX MAP Rat Stress Hormone Magnetic
Bead Panel-Endocrine Multiplex Assay (EMD Millipore) following the
manufacturer manual.

Experimental design and statistical analysis. Data are presented as the
mean * SEM. Electrophysiological data were analyzed with Clampfit
10.7 (Molecular Devices), and all statistical analyses were performed with
SigmaPlot 11.0 (Systat Software), and details are indicated in the results
of each section. Difference were considered as significant at p < 0.05
(*p < 0.05, **p < 0.01). Input resistance was calculated from short —10
mV hyperpolarization steps at approximately —60 mV. Resting mem-
brane potential was measured in zero current (I = 0) mode for at least 3
min. Threshold was defined as the mean potential of the trace in which a
spike was first induced. Parameters of the spike (amplitude, half-width,
and afterhyperpolarization) were calculated using the first spike above
threshold. Spike amplitude is defined as peak-to-peak amplitude (depo-
larization peak minus afterhyperpolarization peak). Afterhyperpolariza-
tion is defined as the afterhyperpolarization peak minus the mean
potential of the trace. Spike frequency adaptation (SFA) was defined as
(last IST)/(first ISI) (Inter-spike interval, ISI). Measurements were taken
in the last trace before depolarization block or the trace with +25 pA
depolarization current for 3 s (SFA ratio = 1.0 represents no adaptation,
while a larger SFA ratio represents higher adaptation). Sag ratio was
defined as the [voltage difference at the steady state of a hyperpolariza-
tion current (Fig. 1, A2)/(voltage difference at the beginning of a hyper-
polarization current (Fig. 2A, Al)] smaller Sag ratio represents more
hyperpolarization-activated currents.

For pharmacological and optogenetic studies, baselines were calcu-
lated from firing rates (average number of spikes/s, in hertz) before drug
application or laser exposure (3—10 min). Bath-applied drug effects were
calculated from the last 3 min during drug application. Optical effects
were calculated from the average firing rate during laser exposure (2—
5 min). A two-tailed paired Student’s t test was used to compare the
baseline and treatment within the group, and ANOVA and post hoc tests
were used to compare the effects between groups. Sample size n repre-
sents the number of neurons recorded. All experiments include both
male and female mice, with the exception of corticosterone measure-
ment, in which only male mice were used. A minimum of three mice were
used for each experimental group. For Figures 5 and 9, sample size n
represents the number of animals used.

Results

PVN-CRFRI1 neurons respond to CRF in the PVN

A BAC transgenic mouse, which expresses GFP under the control
of the entire promoter/enhancer complement of CRFRI1, ex-
presses GFP in a population of neurons in the PVN (Justice et al.,
2008; Ramot et al., 2017). These neurons do not express any
classical markers of PVN neurons, including corticotropin re-
leasing factor (CRF), TRH, AVP, and OT (Ramot et al., 2017). To
verify that the expression of GFP is indeed in cells that express
CRFR1 protein, we stained sections of CRFR1-GFP brain sec-
tions containing the PVN with antibodies for CRFR1. Immuno-
fluorescent signal is visible in cells that express the CRFR1-GFP
transgene (Fig. 1A-C). CRFR1-GFP neurons intercalate with
CRF neurons in the PVN. In animals carrying the CRFR1-GFP
transgene and CRF-Cre with a tomato reporter (Ai9), we can see
GFP " neurons both within and surrounding the tight cluster of
CRF neurons in the PVN (Ramot et al., 2017). At high magnifi-
cation, we observe many interaction points between these two
neuronal populations. After staining for CRF peptide and CGA, a
large dense core vesicle (LDCV) marker, we see colocalization of
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CRF-positive, CGA-positive puncta overlying interaction sites
with CRFR1-GFP neurons (Fig. 1D-G, arrows), suggesting that
CRF neurons release CRF onto CRFR1-GFP neurons in the PVN.

Next, we examined whether CRFR1 neurons are functionally
responsive to CRF peptide. Although we see expression of GFP
that coincides with CRFR1 immunoreactivity (Fig. 1A-C), the
presence of GFP does not formally prove that CRFR1 is func-
tional or localized appropriately to respond to release of CRF
within the PVN. To determine whether CRFRI1 is functional in
PVN neurons expressing CRFR1-GFP, we recorded from GFP ™
neurons in the PVN and bath applied CRF. Action potential
thresholds were determined as described in the Materials and
Methods; neurons were held at a membrane potential ~5 mV
below the firing threshold. In acutely prepared hypothalamic
slices from CRFR1-GFP animals, bath application of CRF (30 nm)
significantly increased the firing rate of CRFR1-GFP neurons
(Fig. 1H, top panels, from 0.03 = 0.02 Hz to 1.22 = 0.34 Hz, n =
7, Z = 2.366, p = 0.016, Wilcoxon signed rank test). Next, we
preincubated hypothalamic slices in DNQX (10-15 uM; AMPA
receptor and kainate receptor antagonist), AP-5 (50 um; NMDA
receptor antagonist), and Bic (10 um; GABA , receptor antagonist) or
picrotoxin (50 uM; GABA , receptor antagonist) to block fast syn-
aptic transmission. In synaptic blockers, exogenous CRF admin-
istration increased the firing rate of CRFR1-GFP neurons (Fig.
1H, middle panels, from 0.08 = 0.03 Hz to 1.12 = 0.34 Hz, ¢, =
—3.042, p = 0.023, paired t-test), indicating that CRF acts di-
rectly on GFP ™ neurons. To determine whether this is due to
activation of CRFR1, we preincubated slices with the selective
CRFR1 antagonist Antalarmin (300 nm). In Antalarmin, CRF no
longer increased action potential firing in CRFR1-GFP PVN neu-
rons (Fig. 1 H, bottom panels; from 0.05 = 0.02 Hz t0 0.18 = 0.12
Hz, n = 7, Z = 1.859, p = 0.078, Wilcoxon signed rank test;
change in firing rate: 1.05 % 0.34 Hz in fast synaptic blockers vs
0.13 = 0.10 Hz with antalarmin preincubation; p = 0.007, one
way ANOVA on ranks). Together, these data demonstrate that
CRFR1-GFP neurons in the PVN express functional CRFR1 and
that it is localized appropriately to respond to bath application of
CRF. Moreover, CRF is excitatory and increases action potential
firing rate in CRFR1-GFP PVN neurons. We also observed that
exogenous CRF decreased spontaneous excitatory postsynaptic
currents (sEPSC) amplitude (82.26 * 4.6% of baseline; t,) =
3.86, p = 0.02, paired ¢ test) without significantly changing the
frequency of events (89.44 + 17.33% of baseline; ¢, = 0.61,p =
0.58, paired t test). Exogenous CRF failed to change the sponta-
neous excitatory postsynaptic currents (SEPSC) amplitude or fre-

<«

(Figure legend continued.) induced typical ChR2-mediated currents (bottom trace), whereas
photostimulation with the same intensity and duration failed to induce photocurrent in CRF
neurons infected with control virus (middle trace). ¢, Sample traces of action potential firing in
a CRF-ChR2 neuron with 5 and 50 Hz optical stimulation (laser duration, 1-5 ms), firing slows
with 50 Hz stimulation. D, Entrainment of CRF-ChR2 neurons to direct optical stimulation:
percentage change in spike fidelity and ChR2-mediated CRF neurons firing (n = 8). E, Sche-
matic experimental setup for optogenetic activation of CRF release in the PVN. CRFRT-GFP;
CRF-cre animals were injected in the PVN with AAVs encoding Cre-dependent ChR2 with a
2A-Ruby reporter. Recordings were performed on green fluorescent neurons (CRFR1-GFP) while
activating CRF neurons with laser light. F, Activation of CRF neurons by optical stimulation
causes an increase in action potential firing in a neighboring CRFR1-GFP neuron in the presence
of synaptic blockers (top traces, 1 Hz; middle traces, 20 Hz). Note that action potentials are not
correlated with laser pulses. The excitatory effect is blocked by Antalarmin preincubation, indi-
cating that the increase in firing is mediated by CRFR1 receptors (bottom traces). Right panels,
Quantification of the change in firing rate of CRFR1-GFP neurons with optical activation of CRF
neurons in synaptic blockers and with Antalarmin preincubation. *p < 0.05.
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quency (n = 3). These findings suggest that in addition to direct
excitation, CRF also decreases inhibitory synaptic strength to in-
crease CRFR1 neuronal excitability.

CRFR1 neurons are activated by local CRF release

To functionally characterize synapses between CRF and CRFR1
neurons, we expressed channelrhodopsin in CRF neurons in the
PVN by stereotaxically injecting the PVN of crfr1-gfp; crf-cre mice
with Cre-dependent ChR2-RFP virus (AAV-EF1la-DIO-hChR2
(H134R)-p2A-Ruby; Fig. 2A). Using an optical fiber to deliver a
473 nm blue laser to the slice, we elicited large photocurrents
(peak, 1313.15 = 94.09 pA; steady state, 248.49 = 37.24 pA; n =
7; Fig. 2B, bottom trace), while there were no photocurrents
evoked in controls (crf-cre mice injected with AAV-syn-DIO-
mCherry; n = 14; Fig. 2B, middle). In addition, 473 nm laser
pulse trains (1-5 ms) reliably evoked action potential firing in
ChR2-RFP-positive CRF neurons up to 20Hz with 96% fidelity,
which could last for over 10 minutes (Fig. 2C,D). PVN CRF
neurons are glutamatergic and release glutamate in the lateral
hypothalamus (Fiizesi et al., 2016). However, we observed laser-
evoked EPSCs in only 2% (1 of 43) of recorded CRFR1-GFP
neurons. Nevertheless, in the presence of synaptic blockers
DNQX (15 uM), AP-5 (50 uM), and Bic (10 um) or picrotoxin (50
uM), laser stimulation for 1-3 min led to an increase in action
potential firing in 7 of 12 neurons with 1 Hz (5 ms pulses) optical
stimulation (Fig. 2F, top panels; 0.07 = 0.04 Hz at baseline vs
0.23 * 0.10 Hz during laser exposure; t, = —2.17, p = 0.07,
paired ¢ test), and in 6 of 9 neurons with 20 Hz (5 ms pulse)
optical stimulation (Fig. 2F, middle panels; 0.18 = 0.06 Hz at
baseline vs 0.49 * 0.11 Hz during laser exposure; t5) = —3.33,
p = 0.02, paired ¢ test). Excitation of CRFR1 neurons by optoge-
netic stimulation of CRF neurons was blocked by Antalarmin, a
selective CRFR1 antagonist (Fig. 2F, bottom panels; from 0.18 =
0.06 Hz at baseline to 0.11 = 0.05 Hz during laser exposure; n =
7,Z = —1.52, p = 0.16, Wilcoxon signed rank test). These data
indicate that CRFR1 neurons in the PVN are excited by CRF
released from adjacent CRF neurons.

Electrical properties of CRFR1 neurons in the hypothalamic
paraventricular nucleus
Next, we investigated the electrophysiological properties of
CRFR1 " neurons in the PVN. Different classes of PVN neurons
have been characterized previously using electrophysiological
methods combined with immunohistochemical and anatomical
labeling (Luther and Tasker, 2000; Stern, 2001; Luther et al.,
2002). To determine which classes PVN CRFR1 neurons belong
to, we obtained whole-cell patch-clamp recordings from PVN-
CRFR1 neurons, identified by the expression of GFP. CRFRI1-
GFP " neurons in the PVN display many of the passive
electrophysiological characteristics described for PVN neurons
previously, such as a high-input resistance (1.09 = 0.09 G€), n =
22),and aresting membrane potential between —55and =70 mV
(average, —65.12 * 0.73 mV; n = 77; Tasker and Dudek, 1991;
Stern, 2001). In addition, CRFR1-GFP neurons display an aver-
age spiking threshold of —53.70 = 0.96 mV, with an average spike
amplitude of 70.91 = 1.47 mV and a half-width of 1.79 * 0.10
ms, with an afterhyperpolarization of —2.22 = 0.46 mV (n = 24).
We observe three subtypes of GFP ™ neurons in the PVN,
according to their response to a —100 pA hyperpolarization cur-
rent (Fig. 3A). The majority of neurons (44 of 55; 80%) fired at
least one action potential in response to a hyperpolarization cur-
rent (LTS; Fig. 3A, B, type A), resembling the electrophysiological
properties of non-neurosecretory preautonomic neurons in rats
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Figure 3.

Electrophysiological and molecular properties of CRFR1-GFP neurons in the PVN. A, Representative responses of CRFR1-GFP neurons to a negative current injection step (—100 pA, 500

ms). B, Eighty percent of the CRFRT-GFP neurons fire at least one action potential in response toa — 100 pA hyperpolarization current (type A), 11% express a small “hump” (type B), and 9% show
noLTS (type ). C, Majority CRFR1-GFP neurons express a small sag in response to a hyperpolarization current. The arrow points out the “sag,” indicative of the presence of hyperpolarization-activated
channels. D, A current—frequency plot showing high spike frequency adaptation of CRFR1-GFP in response to a series of depolarization currents. E, A representative image, and summary table of
single-cell reverse-transcription PCR results. F, Summary and location information for 50 identified PYN CRFR1-GFP neurons.

(Stern, 2001; Luther et al., 2002). Eleven percent (6 of 55) of
CRFR1-GFP neurons displayed a weak LTS (small-amplitude
hump; Fig. 34, B, Type B), and 9% (5 of 55) did not have a LTS or
a transient outward rectification (Fig. 3A,B, Type C), electrical

properties that define neurosecretory parvocellular neurons in
rats. CRFR1-GFP neurons never displayed transient outward rec-
tification, the electrical characteristic of magnocellular neurons
(Luther and Tasker, 2000), consistent with our previous reports
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with GFP expression from the validated CRFR1-GFP transgene (B). €, The merged image showing neurons expressing both reporters (arrowheads). Scale bar, 100 um. D, Schematic experimental
design for pseudotyped rabies virus assisted monosynaptic retrograde tracing. E, Quantification of monosynapticinputs to CRFR1 neurons in the PVN. Note that CRFR1 neurons receive ~90% of their
synaptic inputs from within the hypothalamus, especially from the PVN itself. PM, Premammillary nucleus; PO, preoptic area; Pe, periventricular nucleus; LH, lateral hypothalamus. F, Selective
expression of TVA-mCherry in CRFR1 neurons within the PVN. G, Retrograde labeled presynaptic neurons within the PVN. H, Merged image showing the presence of starter neurons, which initiate
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Insets, Higher-power micrographs of CRF-positive PTRV traced neurons. D, Quantification of CRF ™ input neurons. E-G, We also identified many presynaptic neurons (green, left) as positive for AVP
(middle). The merged image shows the abundance of AVP * magnocellular neurons that are presynaptic to CRFR1 PVN neurons. H, Quantification of AVP ™ input neurons. /-K, Presynaptic OT *
neurons were also labeled by monosynaptic tracing, but were less frequent. L, Quantification of OT ™ input neurons. Scale bars: 100 wm for C, G, K; 5 um for inserts.

that CRFR1 is not expressed by OT or AVP neurons (Ramot et al.,
2017). Together, these data are consistent with the majority of
CRFR1-GFP neurons in the PVN being preautonomic neurons,
with a small proportion being neurosecretory parvocellular, and
none being magnocellular PVN neurons.

After classifying PVN CRFR1-GFP neurons, we further char-
acterized their electrical properties. In response to a hyperpolar-
ization current, CRFR1-GFP neurons show a very small voltage
sag at the beginning of the hyperpolarization (Fig. 3C; Sag ra-
tio, 0.94 = 0.01; n = 24), suggesting that PVN CRFR1-GFP neu-
rons express hyperpolarization-activated channels. When PVN
CRFRI1-GFP neurons are injected with a depolarizing current,
they display a varied degree of spike frequency adaptation, as
shown in a deflected current—frequency (I-F) curve (Fig. 3D; SFA
ratio, 3.54 = 0.43; n = 21). In response to a 10-25 pA depolar-
ization current, the firing rate of CRFR1 neurons decreased,
spikes became small, or the neurons became silent, entering a
state called depolarization block (Fig. 3D; Luther and Tasker,
2000; Herman et al., 2014). This suggests that PVN CRFR1-GFP
neurons are restrained from spiking very fast (only up to ~12 Hz)
under physiological conditions.

Molecular properties of CRFR1 neurons in the hypothalamic
paraventricular nucleus

To examine which neurotransmitters are released by CRFR1 neu-
rons, we performed single-cell reverse transcription PCR (Fig.
3E). From 50 identified PVN CRFRI1-GFP neurons, we found
that 42 (84%) of the neurons express GAD1 and/or GAD2, 13
(26%) express the vesicular GABA transporter (Vgat), and 27
(54%) express vesicular glutamate transporter 2 (VgluT2; Fig.
3F). VgluT2 * (putative glutamatergic) neurons are distributed
throughout the anterior to posterior extent of the PVN, while
Vgat™ neurons are preferentially localized to the anterior and
dorsal regions of the PVN (Fig. 3F). Interestingly, 21 (42%) of the
PVN CRFR1-GFP neurons express both GAD2 and VgluT2, and
8 (16%) PVN CRFRI-GFP neurons express both Vgat and
VgluT?2, suggesting that these neurons might functionally release
both neurotransmitters, as has been described in other systems
(Root et al., 2014; Shabel et al., 2014; Yoo et al., 2016).

Monosynaptic projections to CRFR1 neurons in the PVN
To identify monosynaptic inputs to CRFR1 neurons in the PVN,
we targeted CRFR1 neurons using PTRV tracing in CRFR1-Cre
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failed to induce photocurrents in the CRFRT neurons infected with control virus (middle trace). €, Sample traces of action potential firing from a CRFR1-ChR2 neurons with 5 and 20 Hz optical
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in CRFRI-GFP neurons was verified by
creating CRFR1-GFP; CRFR1-Cre; Ai9
mice and comparing the expression pat-
terns of GFP and tdTomato. In these mice,
we observed a very similar expression pat-
tern of GFP and tdTomato (Fig. 4A-C),
indicating that CRFR1-Cre is expressed in
the same population of neurons in the
PVN as CRFRI-GFP. Helper viruses
(AAV-EFla-FLEX-TVA-mCherry and AAV-
CA-FLEX-G, 1:1 mixture) were stereo-
taxically injected in CRFRI1-Cre mice,
which allows subsequent infection and
packaging of PTRV (EnvA-SADAG-
eGFP) by CRFR1™ neurons in the PVN
(Fig. 4D). PTRV then “jumps” one retro-
grade synapse to infect monosynaptically
connected cells (Wickersham et al., 2007;
Wall et al., 2010; Watabe-Uchida et al.,
2012). “Starter” neurons, which are in-
fected both by helper viruses and PTRV,
are labeled with red and green fluores-
cence, while neurons that make mono-
synaptic inputs onto CRFR1 neurons are
labeled with only green fluorescence (Fig.
4F-H). In Cre-negative (wt) mice with
identical viral injections, no neurons were
visible expressing either mCherry or eGFP
(n = 3). Using this technique, we found
that CRFR1 neurons receive the vast ma-
jority of their synaptic inputs from
within the PVN or from other hypotha-
lamic nuclei (~90%; Fig. 4E). CRFR1
neurons also receive monosynaptic in-
puts from previously identified long-
range sources of afferent projections to
the PVN, such as the lateral septum (LS)
and medial septum (MS; Fig. 41), bed
nucleus of stria terminalis (BST; Fig. 4] ), preoptic area (POA;
Fig. 4K), supraoptic nucleus (SON; Fig. 4L), dorsomedial hy-
pothalamus (DMH) and ventromedial hypothalamus (VMH; Fig.
4M), arcuate nucleus (ARC; Fig. 4M), and brainstem (Fig. 4N).
These data demonstrate that CRFR1 neurons in the PVN receive
both local and long-range synaptic connections.

To further examine the molecular identity of neurons presynap-
tic to CRFR1 neurons in the PVN, we stained sections of PTRV-
traced PVN-CRFR1 neurons for CRF, AVP, and OT. Within the
PVN, 24.5 = 2.1% (n = 4), monosynaptically labeled neurons ex-
press CRF (Fig. 5A-D), suggesting that synapses occur between CRF
and CRFR1 neurons in the PVN, consistent with immunohisto-
chemical observations (Fig. 1D-G). In addition, we observed mono-
synaptic connections to CRFR1 neurons from AVP (21.5 * 6.9%,
n = 3; Fig. 5SE-H ) and OT (8.9 = 3.2%, n = 3; Fig. 5I-L) neurons.
These data demonstrate that CRFR1 PVN neurons are highly inter-
connected with other neuron types within the PVN. Together with
long-range connections, hypothalamic connections, and intra-PVN
connections, PVN-CRFRI neurons are positioned to integrate mul-
tiple aspects of PVN signaling.

neurons .-

Figure 7.

CRFR1 neurons synapse in the PVN
Next, we investigated which neurons in the PVN are postsynaptic to
CRFRI neurons using channelrhodopsin-2-assisted circuit map-

AAV-Flex-Synaptophysin-eYFP

CRFR1-syn-eYFP .-~

Mapping of PYN-CRFR1 neuron projections. A, Schematic of experimental design for synaptophysin-assisted map-
ping of projections of PVN-CRFR1 neurons. B, Selective expression of synaptophysin-eYFP in CRFR1-cre neurons the PVN. C-H,
Representative images of synaptophysin-eYFP fluorescence in the LS (€), BST (D), PAG (E), lateral parabrachial nucleus (LPB) and
LC(F), VLM (G), and NTS (H). Scale bar, 100 m.

ping (Petreanu et al., 2007). We expressed ChR2 in CRFR1 neurons
by injecting the PVN of CRFR1-Cre animals with Cre-dependent
ChR2-EYFP AAV (AAV2-EFla-DIO-hChR2(H134R)-EYFP; Fig.
6A). After infection, we were able to evoke photocurrents (peak,
1419.08 == 149.83 pA; steady state, 278.30 = 38.35 pA; n = 6; Fig. 6B,
bottom trace) in infected neurons using a 473 nm blue laser, while
no photocurrents were observed in mice infected with control virus
(n = 12; Fig. 6B, middle trace). In addition, trains of 473 nm laser
pulses drove CRFR1 neuronal firing reliably (3.5-5 mW, 1-5ms) up
to ~12 Hz. At 20 Hz, we observed substantial failures (Fig. 6C,D),
consistent with the relatively high-spike frequency adaptation and
the curved I-F plot with current injections observed when recording
from CRFR1-GFP neurons (Fig. 3D), in sharp contrast to those ob-
served in CRF neurons, which can fire up to 20 Hz. In this configu-
ration (optically driving CRFR1 neuron firing while recording from
nearby neurons within the PVN; Fig. 6E), we observed evoked IPSCs
(eIPSCs) in 22 of 111 (20%) neurons (Fig. 6F—J), with an average
delay of 3.1 £ 0.36 ms (Fig. 6G). eIPSCs had an average reversal
potential of —75.40 = 1.58 mV (n = 4) and could be blocked by the
selective GABA , receptor antagonist bicuculline (40 uwm; Fig. 6F, H;
from 87.53 *+ 23.32 pA inaCSF to 6.70 * 0.23 pA in Bic; 5, = 3.46,
p = 0.018, paired  test; voltage clamp (VC) = —60 mV or —40 mV),
then recovered after washout (see Fig. 6F ). In addition, laser-evoked
IPSCs were blocked by TTX (0.5 uM, voltage-gated sodium channel
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PVN-CRFR1 neurons make long-range projections to NTS. 4, Schematic of the experimental design. B, A micrograph of the NTS from a CRFR1-Cre mouse injected with ChR2 into the PVN.

Green, CRFR1-ChR2-YFP; blue, anti-tyrosine hydroxylase (TH) staining. €, Representative traces of laser-evoked EPSCs in a NTS neuron, which are blocked by AP5/DNQX and restored after washout.
Gray lines, Individual traces; dark lines, averaged traces. D, Summary histogram of laser-evoked EPSCs in the NTS, which are blocked by AP5/DNQX (n = 6, p << 0.05, paired t test). E, Plot of the delay

before an eEPSC from light onset in NTS neurons (n = 7). **p << 0.01.

blocker), and partially rescued by 4-AP (1 mM, nonselective potas-
sium channel blocker; Fig. 61,]), confirming that CRFR1 neurons
make inhibitory monosynaptic connections within the PVN. We did
not observe any evoked EPSCs (eEPSCs) when we recorded in this
configuration within the PVN. Of the 22 neurons that received syn-
aptic connections from PVN-CRFR1 neurons, 10 displayed charac-
teristics of neurosecretory parvocellular neurons (CRF or TRH; 26
total parvocellular neurons recorded), 4 of magnocellular neurons
(AVP or OT; 46 total magnocellular neurons recorded), and 8 of
non-neurosecretory preautonomic neurons (39 total preautonomic
neurons recorded; (Luther and Tasker, 2000; Stern, 2001; Luther et
al., 2002). Based on these observations, we conclude that CRFR1
neurons make exclusively GABAergic synapses locally on multiple
cell types within the PVN.

Mapping the projections of PVN-CRFR1 neurons

To identify long-range synaptic targets of PVN-CRFR1 neurons,
we selectively expressed presynaptically localized synaptophysin-
enhanced yellow fluorescent protein (syn-eYFP; AAV-FLEX-
synaptophysin-eYFP) in PVN-CRFR1 neurons and looked at
presynaptic terminal fields identified by syn-eYFP fluorescence
(Fig. 7A, B). We observed dense syn-eYFP-rich terminal fields in
the LS (Fig. 7C), BST (Fig. 7D), periaqueductal gray (PAG; Fig.
7E), parabrachial nucleus (PB) and locus ceruleus (LC; Fig. 7F),
ventromedial medulla (VLM; Fig. 7G), and NTS (Fig. 7H ). These
data are consistent with electrophysiological data that a majority
of CRFRI neurons are preautonomic neurons that project to
brainstem nuclei (Fig. 1E; Stern, 2001; Li et al., 2002).

CRFR1 neurons make long-range excitatory synapses in

the NTS

Using the same optogenetic strategy we used to identify local
connections, we examined long-range connections made by
PVN-CRFRI1 neurons (Fig. 84). In CRFR1-cre animals PVN-
injected with Cre-dependent ChR2-YFP-encoding virus, we
could observe dense ChR2-eYFP fibers in the NTS (Fig. 8B). Op-
tical stimulation of PVN-CRFR1-ChR?2 axonal terminals in NTS
evoked eEPSCs in 19 of 43 (44%) neurons, with an average delay
of2.17 £ 0.21 ms (Fig. 8E) and an average amplitude of 120.05 =
15.79 pA (Fig. 8D; n = 7; VC = —60 mV). eEPSCs were blocked
by the ionotropic glutamatergic blockers DNQX (20 um) and
AP5 (50 wwm; Fig. 8C,D; from 113.44 = 16.97 pA in aCSF to
17.77 *+ 1.60 pA in AP5/DNQX; t5, = 5.83, p = 0.002, paired ¢
test; VC = —60 mV) and recovered after washout with aCSF (Fig.
8C). The short latency of eEPSCs and their blockade with gluta-
mate receptor antagonists indicate that these connections are
monosynaptic glutamatergic synapses. We did not observe
eIPSCs in NTS neurons, suggesting that PVN-CRFR1 neurons
make exclusively glutamatergic synapses in the NTS, in contrast
to local synapses made by CRFR1 neurons, which are GABAergic
(Fig. 6F, H).

PVN-CRFR1 neurons are required for HPA axis control

To evaluate the role of PVN-CRFR1 neurons in HPA axis regulation,
we used DTR-mediated conditional cell ablation to deplete PVN-
CRFRI1 neurons (Saito et al., 2001; Buch et al., 2005). Injection of
CRFR1-Cre mice in the PVN with Cre-dependent DTR-encoding
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AAVs (AAV-EF1a-FLEX-DTR-P2A-EYFP)
achieved expression of DTR in CRFR1 neu-
rons of the PVN (Fig. 9A). Following a single
dose of DT, CRFR1 neurons were selectively
deleted (CRFR1-DTR mice; Fig. 9B).
CRFR1-cre mice do not have a baseline
HPA axis phenotype when compared with
their wild-type littermates (F, o) = 1.15,p =
0.29, two-way ANOVA; data not shown).
However, after ablation of PVN-CRFR1
neurons with DT, we observed a signifi-
cant increase in circulating corticosterone
levels over the course of a 2 h immobiliza-
tion stress challenge (F; 5y = 15.08, p <
0.001, two-way ANOVA; Fig. 9C). Post
hoc statistical analysis of differences at in-
dividual time point revealed that CRFR1-
DTR mice have elevated corticosterone
levels during stress application compared
with their unablated controls (CRFR1-cre
mice injected with AAV-DIO-eGFP and
given the same dosage of DT; 60 min: con-
trol, 140.8 * 10.5 ng/ml, n = 9; DTR,
150.0 = 20.2 ng/ml, n = 12; t(,4, = 2.29,
p = 0.03, Holm-Sidak method). Further-
more, corticosterone levels fell more
slowly in CRFR1-DTR mice. Two hours
after release from immobilization stress,
CRFRI-DTR mice had significantly
higher levels of circulating corticosterone
(control: 78.5 * 7.4 ng/ml, n = 9; DTR:

200 1

100 o

50

Plasma Corticosteorone (ng/ml)
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* P=0.056

**

Immobilization Stress

150.0 * 20.2 ng/ml, n = 12; t(14) = 2.53, 01

p = 0.01, Holm-Sidak method; Fig. 9C).
Given the elevations in corticosterone lev-
els at multiple time points of a stress chal-
lenge after removal of CRFRI PVN
neurons, we conclude that PVN-CRFR1
neurons are required as an inhibitory
mechanism that appropriately controls
HPA axis activity during the stress re-
sponse.

Figure9.

Discussion

We have characterized a novel population of neurons in the PVN
that express CRFR1 receptors and respond to locally released
CRF. CRFR1 neurons then feedback to influence CRF neuron
activity and coordinate activity across the PVN between different
cell types. CRF neurons, as initiators of the HPA axis, send their
primary projections to the median eminence, where they release
CREF to the portal system to activate ACTH release by pituitary
corticotropes (Vale et al., 1981). However, experiments pre-
sented here suggest that CRF is also released by PVN neurons
within the PVN, either by somatodendritic release or collateral
axonal projections. Somatodendritic release of neuropeptides in
the PVNis not unprecedented. Intra-PVN signaling has been shown
both within the same neural population (Lambert et al., 1993;
Oliet et al., 2007; Iremonger and Bains, 2009; Wamsteeker
Cusulin et al., 2013b; Haam et al., 2014) as well as between
different populations (Son et al., 2013), mediated by somato-
dendritic release of neuropeptides from AVP and OT neurons.
This study describes intra-PVN signaling by CRF, which func-

60 120 180 240
Time (min)

Selective ablation of PVN-CRFR1 neurons cause HPA axis hyperactivity. 4, Selective expression of AAV-FLEX-DTR-YFP
in the PVN. B, DT injection ablates CRFR1 neurons in the PVN (gray, nuclear counterstaining with ToPro). C, Ablation of CRFR1
neurons in adult mice increases peak corticosterone release during an immobilization stress and delays the fall in circulating
corticosterone levels after release from immobilization (n = 9, and n = 12, for CRFR1-control and CRFR1-DTR, respectively; p <
0.01, two-way ANOVA). Controls are CRFR1-Cre littermates injected with control virus (AAV-DIO-eYFP), then injected with DT after
3 weeks of recovery. *p << 0.05; **p < 0.01.

tions to coordinate the activity of the HPA axis as well as
hypothalamic-autonomic systems.

Electrophysiological signature of CRFR1 neurons

CRFRI-GFP neurons do not express AVP or OT, only a very
small percentage uptake circulating fluorogold and only 7% are
CREF positive, suggesting that the majority of PVN-CRFR1 neu-
rons are non-neurosecretory, preautonomic neurons (Ramot et
al., 2017). Consistent with this, we found that the majority of
PVN-CRFRI1 neurons express a low threshold spike, the electro-
physiological signature of preautonomic neurons in rats (Stern,
2001; Luther et al., 2002; Lee et al., 2008). In addition, PVN-
CRFR1 neurons project to the NTS and PB, brainstem nuclei central
to autonomic regulation (Figs. 7, 8). Therefore, we propose that
CRFR1 ™ neurons in the PVN are a subtype of previously classified
“preautonomic” neurons. Optogenetic activation of CRFR1 neu-
rons evokes spiking up to 12 Hz (Fig. 6C,D), which is significantly
slower than the maximum optogenetically driven action potential
frequency in CRF neurons of 20 Hz (Wamsteeker Cusulin et al.,
2013a). This difference is most likely due to the intrinsic properties of
CRFR1 neurons compared with CRF neurons, although failures at
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Figure 10.  Proposed model for intra-PVN CRF signaling. CRFR1 neurons (green) receive

monosynapticinputs from both CRF neurons (red) and AVP neurons (blue) from within the PUN,
together with other hypothalamic inputs, to coordinate PVN activity during stress. CRFR1 neu-
rons make inhibitory synapses onto CRF neurons, functioning as a synaptic negative feedback
on HPA axis activity. CRFR1 neurons also synapse on other resident PVN neurons to coordinate
activity of CRF neurons with other endocrine axes. CRFR1 neurons also send excitatory long-
range projections to potentiate autonomic tone during stress.

higher stimulation frequencies is possibly due to the kinetics of ChR2
(Boyden et al., 2005).

One specific electrophysiological signature of PVN-CRFR1
neurons is their excitation by CRF. CRF binding likely in-
creases the excitability of CRFR1 PVN neurons by enhancing
hyperpolarization-activated cation currents via HCN channels
as has been shown in rat hypothalamic PVN neurons (Qiu et al.,
2005). In addition, CRFRI can couple with either the Gs—cAMP-
PKA pathway (Perrin et al., 1993) or the Gg—PLC-PKC pathway
(Dautzenberg and Hauger, 2002; Blank et al., 2003) to alter excit-
ability. Although PVN neurons have been more thoroughly char-
acterized morphologically and electrophysiologically in rats
(Armstrong et al., 1980; Swanson and Kuypers, 1980; Swanson
and Sawchenko, 1980; Luther and Tasker, 2000; Stern, 2001; Lu-
ther et al., 2002; Simmons and Swanson, 2009), genetic strategies
in the mouse have revealed the existence of this novel population
of CRFR1 neurons in the PVN. Given the increasing availability
of transgenic rat strains (e.g., rat CRFR1-cre), we will likely be
able to identify this same population of CRFR1 ¥ neurons in the
rat PVN. Future studies will reveal additional electrophysiologi-
cal properties based on molecular classification, as well as key
intracellular signaling pathways that are important for excitation
in response to CRF.

The nature of the CRF/CRFR1 connections in the PVN

PVN-CRFRI1 neurons are activated by CRF, and this activation is
blocked by selective CRFR1 antagonists, indicating that CRFR1
receptors are functional and excitatory in PVN-CRFR1 neurons
(Fig. 1). Moreover, optical activation of CRF neurons causes ac-
tivation of neighboring CRFR1 neurons in the PVN, indicating
that CRF inputs from within the PVN are sufficient to activate
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CRFR1 neurons (Fig. 2). By virtue of the positioning of CRFR1
neurons in close proximity to CRF neurons and visible physical
interaction sites between these neurons (Fig. 1), they could signal
either through wired synapses or volume transmission of neuro-
peptides. We recorded from CRFR1 neurons while optogeneti-
cally activating CRF neurons and only saw evoked EPSCs in 1 of
43 (2%) CRFRI1 neurons, while 13 of 21 (62%) CRFR1 neurons
displayed increased firing in response to CRF neuron optical ac-
tivation (1-20 Hz) even when glutamatergic and GABAergic
transmission are blocked (Fig. 2F, top and middle). This activa-
tion is eliminated by the selective CRFR1 antagonist Antalarmin
(Fig. 2F, bottom), indicating that communication between CRF
and CRFR1 neurons is occurring via CRF, and not by fast chem-
ical synapses. It is surprising that we fail to see a stronger excit-
atory effect with 20 Hz optical stimulation compared with 1 Hz,
in contrast to observations made in recordings from magnocel-
lular neurons in the PVN and SON (Gainer et al., 1986; de Kock
et al., 2003; Dayanithi et al., 2012). However, our understanding
about the optimal optogenetic stimuli to release CRF remains
limited, and other unknowns within this system might also con-
tribute to this discrepancy. While electrophysiological experi-
ments suggest that CRF is the relevant signaling molecule
between CRF and CRFR1 neurons in the PVN, when we trace
synaptic connectivity using rabies viral tracing, which requires a
tight synapse to transduce the virus (Ugolini, 1995), we observe
retrograde trans-synaptic labeling, indicating that CRF neurons
do make synapses onto CRFR1 neurons in the PVN. We also see
points of contact between these two types of neurons using im-
munofluorescent labeling, and CRFR1-apposed CRF fibers are
often positive for CGA and CRF, suggesting that CRF is released
at these appositions by large, dense core vesicles (Fig. 1D-G).
Future studies, using either ultrastructural resolution electron
microscopy or dual electrophysiological recordings are needed to
further clarify the nature of this connection.

Intra-PVN CREF signaling influences HPA axis activity

CRF neurons excite CRFR1 neurons, which send recurrent
GABAergic synapses, establishing a novel local microcircuit in
the PVN that we propose functions to provide inhibition to CRF
neurons, likely in the context of persistent CRF neuron activity.
The functional importance of this microcircuit is supported by
our experiments in which ablation of CRFR1 neurons in the PVN
elevates HPA axis activity (Fig. 9), suggesting that this mecha-
nism is required for negative feedback to limit HPA axis activity.
In our recent work, we found that selective deletion of CRFR1
within the PVN (SimI-cre; CRFRIfl/fl) decreases basal cortico-
sterone levels after chronic social defeat stress (Ramot et al.,
2017). We suggest that the discrepancy in the polarity of the
CRFR1 neuron influence on HPA axis activity is due to the depo-
larizing shift in the reversal potential for GABA ,-mediated syn-
aptic events that occurs following chronic stress (Hewitt et al.,
2009; Gao et al., 2017). After chronic stress, local GABAergic
connections become depolarizing, functioning to maintain HPA
axis tone (Ramot et al., 2017).

CRFR1 neurons are poised to integrate activity across

the hypothalamus

Neurons in the PVN receive their inputs from diverse brain re-
gions, such as the BST, AHA, medial preoptic area (MPO), LH,
suprachiasmatic nucleus or nuclei (SCN), ARC, DMH/VMH,
PAG, PB, LC, and NTS (Cunningham and Sawchenko, 1988;
Liposits and Paull, 1989; Boudaba et al., 1996, Boudaba et al,,
1997; Li et al., 1998; Cséki et al., 2000; Wittmann, 2008; Ulrich-
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Lai et al., 2011; Ziegler et al., 2012). In our rabies viral tracing
studies, we found that CRFR1 neurons in the PVN receive ~90%
of their monosynaptic inputs from within the hypothalamus
(~90%; Fig. 4), of which over one-third are from other neurons
within the PVN, indicating that CRFR1 neurons likely function
to integrate activity within the hypothalamus, especially within
PVN itself. Indeed, intrahypothalamic monosynaptic connec-
tions to PVN play an important role in energy homeostasis (Ata-
soy et al., 2012; Wu et al.,, 2015; Fenselau et al., 2017) and
sympathetic control of cardiovascular function (Son et al., 2013;
Dergacheva et al., 2017). Within the PVN, CRFR1 neurons may
function to coordinate activity between CRF and AVP neurons,
consistent with the dramatic synergism of CRF and AVP in evok-
ing ACTH release by pituitary corticotropes (Buckingham, 1982;
Salata et al., 1988). CRFR1 neurons also likely serve an important
function in autonomic circuits that transit the PVN, given that
majority of CRFR1 neurons are preautonomic neurons.

PVN-CRFRI1 neurons express Vgat and/or VgluT2, suggesting
that they can release GABA, glutamate, or both neurotransmitters to
their downstream partners (Fig. 3 E, F). Using optogenetic tools, we
found that intra-PVN projections are exclusively GABAergic (Fig.
6), and long-range projections to NTS are exclusively glutamatergic
(Fig. 8), indicating that the valence of efferent connections made by
PVN-CRFR1 neurons is spatially defined. Based on tracing and con-
nectivity experiments, we propose a model in which, during a stress
response when CRF neurons are highly active, CRF is released locally
in the PVN to activate CRFR1 neurons (Fig. 10). These neurons feed
back onto CRF neurons to inhibit their activity, functioning as alocal
negative feedback microcircuit to limit HPA axis hyperactivity. In
addition, in response to CRF, CRFR1 neurons excite downstream
autonomic nuclei to potentiate autonomic tone, which might be
critical during an extended stressor. Given the high degree of con-
nectivity (both afferent and efferent) with local and long-range tar-
gets, it is likely that CRFR1 PVN neurons function in additional
integration and modulation capacities. In these ways, CRFR1 neu-
rons function to help orchestrate the coordinated endocrine and
autonomic output of the PVN.
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