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Associative learning is crucial for daily function, involving a complex network of brain regions. One region, the nucleus basalis of Meynert
(NBM), is a highly interconnected, largely cholinergic structure implicated in multiple aspects of learning. We show that single neurons
in the NBM of nonhuman primates (NHPs; n � 2 males; Macaca mulatta) encode learning a new association through spike rate modu-
lation. However, the power of low-frequency local field potential (LFP) oscillations decreases in response to novel, not-yet-learned stimuli
but then increase as learning progresses. Both NBM and the dorsolateral prefrontal cortex encode confidence in novel associations by
increasing low- and high-frequency LFP power in anticipation of expected rewards. Finally, NBM high-frequency power dynamics are
anticorrelated with spike rate modulations. Therefore, novelty, learning, and reward anticipation are separately encoded through differ-
entiable NBM signals. By signaling both the need to learn and confidence in newly acquired associations, NBM may play a key role in
coordinating cortical activity throughout the learning process.
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Introduction
In any complex environment, animals must both learn new asso-
ciations and continue to recall and consider previously formed
associations between stimuli, behavior, and outcomes to func-

tion adaptively (Poldrack and Packard, 2003). Both recall and
learning depend on the coordinated action of multiple neuronal
systems. Converging lines of evidence suggest that brain regions
such as the basal forebrain and prefrontal cortex drive these pro-
cesses across species. A group of neurons in the basal forebrain,
the nucleus basalis of Meynert (NBM), is the primary source of
cholinergic innervation to the cortex in primates and humans
(Mesulam et al., 1983; Mesulam and Mufson, 1984; Struble et al.,
1986; Liu et al., 2015). This could mean that the NBM acts as a
possible modulator of cortical function, such as in learning
(Bakin and Weinberger, 1996; Miasnikov et al., 2008, 2009). Fur-
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Significance Statement

Degradation of cells in a key brain region, the nucleus basalis of Meynert (NBM), correlates with Alzheimer’s disease and Parkinson’s
disease progression. To better understand the role of this brain structure in learning and memory, we examined neural activity in the
NBM in behaving nonhuman primates while they performed a learning and memory task. We found that single neurons in NBM encoded
both salience and an early learning, or cognitive state, whereas populations of neurons in the NBM and prefrontal cortex encode learned
state and reward anticipation. The NBM may thus encode multiple stages of learning. These multimodal signals might be leveraged in
future studies to develop neural stimulation to facilitate different stages of learning and memory.
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thermore, NBM neurons have been shown to encode salience,
attention, and novelty (Richardson and DeLong, 1986, 1990;
Voytko et al., 1994; Voytko, 1996; Masuda et al., 1997; Wein-
berger, 2003).

In addition, structural dysfunction in the NBM has been cor-
related with a variety of mental health and neurological disorders
(Mesulam, 2013; Grothe et al., 2014; Kilimann et al., 2014; Grat-
wicke et al., 2015; Liu et al., 2015). Degeneration of the NBM
occurs in patients with dementia and Alzheimer’s disease, corre-
lating with impaired learning and memory (Mesulam, 2013). De-
spite its centrality, network connections to multiple regions, and
seeming importance in neurodegenerative diseases, the NBM’s
role in learning and memory is poorly understood. Debate on the
role of the NBM in learning and memory is largely due to the
highly variable responses observed in the NBM during a wide
variety of tasks (Richardson and DeLong, 1986, 1990; Wilson and
Rolls, 1990; Voytko et al., 1994; Masuda et al., 1997; Weinberger,
2003). Previous studies examining the role of the NBM in learn-
ing and memory using lesions, stimulation, behavioral para-
digms, and/or physiological recordings in humans and animal
models have not been able to elucidate a unitary role (Wenk,
1997; Ridley et al., 1999; Barefoot et al., 2002; Gibbs and Johnson,
2007; Miasnikov et al., 2008, 2009; Rabiei et al., 2014).

We compared the relative roles of the NBM and dorsolateral
prefrontal cortex (dlPFC) in learning by recording neural activity
in nonhuman primates (NHPs) performing an associative learn-
ing task. We chose the dlPFC because this region is strongly im-
plicated in integrating cognitive functions such as learning,
attention, error prediction, and decision making (Wallis and
Miller, 2003; Tsujimoto and Sawaguchi, 2005; Ichihara-Takeda
and Funahashi, 2008; Asaad and Eskandar, 2011; Kahnt et al.,
2011). In addition, neurons in the NBM have been shown to
project to the macaque dlPFC, specifically the principal sulcus
(Mesulam et al., 1983). Interestingly, there are no observed pro-
jections from the dlPFC back to the NBM (Mesulam and Mufson,
1984). Because the dlPFC has been shown to play a significant
role in learning and memory (Asaad and Eskandar, 2011), we
hypothesized that the NBM could play a role as either a precursor
or modulatory structure relative to the learning-related activity
seen in the dlPFC.

We found differentiable response profiles and physiological
properties, confirming a multifunctional role of the NBM. Single
NBM neurons responded primarily to a combination of novelty
and early learning through spike rate modulation not seen in
dlPFC neurons. Conversely, in the NBM and, to a lesser extent, in
the dlPFC, low-frequency population activity encoded learned
states, as represented by theta band (4 – 8 Hz) power in the local
field potential (LFP). In contrast, high-frequency LFP power (65–
200 Hz) encoded reward anticipation in both the NBM and
dlPFC. Strikingly, the spike rates in the NBM were anticorrelated
with the simultaneously recorded LFP activity relative to learning
state, contrary to spike–LFP relationships demonstrated in many
previously reported brain regions (Ojemann et al., 2013; Yazdan-
Shahmorad et al., 2013). These results suggest that NBM encodes
multiple aspects of the learning process and potentially signals
these features to cortex via different types of network activity.

Materials and Methods
Animals
Two adult male NHPs (Macaca mulatta), “R” (12 kg, 10 years old) and
“P” (12 kg, 14 years old) were provided with a balanced diet supplemented
with fruits and treats. Subjects were housed in a climate-controlled environ-
ment with a 12 h/12 h light/dark cycle and veterinarian-supervised behav-

ioral and social enrichment. Fluid was restricted (70 ml/kg) such that the
subjects received the majority of their daily fluid during task performance.
All animal care and experimentation was overseen and approved by the
Institutional Animal and Care Use Committee at the Massachusetts General
Hospital.

Electrophysiology
A titanium head post and recording chamber (Crist Instruments) were
surgically implanted in accordance with applicable Department of Agri-
culture guidelines. A magnetic resonance image (MRI) scan was acquired
and used to plan the recording chamber placement coordinates. The
chamber was stereotactically mounted and positioned to provide opti-
mal access to the structures of interest. A second postoperative T1-MRI
was performed with fiducial markers to enable mapping of electrode
trajectories and to estimate the distance to reach each target brain region.
A custom microdrive (Patel et al., 2014) with a 1 mm spaced grid was
used to acutely lower two FHC tungsten microelectrodes (600 – 800 k�)
daily, one to each structure, dlPFC and NBM. A cannula guide tube
facilitated access through piercing of the dura mater. Cannula lengths
were estimated to penetrate 2 mm into the cortex to minimize damage to
the brain.

Using custom MATLAB programs (The MathWorks, RRID:
SCR_001622), a 3D image of each animal’s brain was reconstructed, which
allowed for the anatomical visualization of the electrode trajectory (Bakker et
al., 2015). This trajectory was further confirmed by physiologically mapping
the electrode path (Williams et al., 2005). The mapping of the NBM trajec-
tory was performed by sampling the neuronal activity in the cortex, caudate,
and putamen, providing control data to compare neuronal firing and to
verify cessation of neuronal activity upon traversal of the internal capsule
and anterior commissure. For subcortical structures, neuronal activity began
at �18 mm above target, depending on cannula length. A physiological
trajectory map was not necessary for the dlPFC. Due to the anatomical po-
sitioning of this structure, recordings were performed immediately upon
exiting the cannula into cortex, within the confirmed coordinate calculations
and depth.

After recordings were complete, a second 3D reconstruction was made
to include each anatomically mapped recording site relative to the target
brain structures. This process was done by reconstructing, on a slice-by-
slice basis, the ventral pallidum (VP), NBM, and dlPFC (area along the
principal sulcus) in P’s and R’s MRIs. Reconstruction was performed
relative to three atlases showing the overlap of histology with MRI struc-
tures in model macaque brains, as in the Scalable Brain Atlas (Bakker et
al., 2015, RRID:SCR_006934). The three atlases were the Calabrese atlas
(Calabrese et al., 2015), the Paxinos atlas (Paxinos et al., 2000), and the
Neuromaps Macaque atlas (Dubach and Bowden, 2009; Rohlfing et al.,
2012). We classified the recording as VP or NBM based on tip of the
electrode overlapped the 3D-reconstructed VP and NBM regions in the
brain. Daily coordinates, cannula length, and recording depths were used
to identify the individual recording sites for each structure. Only neurons
and LFP recordings within the anatomic boundaries of the NBM were
physiologically screened for NBM-like characteristics (see below).

Extracellular recordings were digitized at 40 kHz using an OmniPlex
system (Plexon, RRID:SCR_014803) and stored for subsequent spike
activity (filtered to 300 –5000 Hz) and LFP (filtered to 0.5–500 Hz, down-
sampled to 1000 Hz) analyses. Neurons encountered at the calculated
target depth range were recorded regardless of characteristic firing rate.
We did not move electrodes between blocks in a single session. Experi-
mental blocks were either Novel/Familiar/Recall or Novel/Familiar/Re-
versal (see below regarding block design), resulting in differing numbers
of units per experiment type. Using Offline Sorter (Plexon, RRID:
SCR_000012), data were thresholded offline to identify possible action
potentials. Spikes were then sorted manually and clustered in feature
space using peak, valley, energy, and both first and second principal
components. We identified a total of 322 neurons, with 112 NBM units
and 210 dlPFC units.

Behavior
Two adult rhesus monkeys were trained to perform a visual–motor as-
sociation task. The subjects learned, by trial and error, to associate spe-
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cific novel visual images with a unique saccade direction to one of the
four target locations. Eye position was monitored with an infrared video
eye-tracking system (ISCAN) that provides eye coordinates to the behav-
ioral control software (MonkeyLogic; Asaad and Eskandar, 2008). Each
trial began with a central fixation point (1250 –1500 ms, with 250 ms
randomized jitter). If fixation was held, a stimulus image was presented.
Animals were required to keep holding fixation (1000–1250 ms, with 250 ms
randomized jitter) until the stimulus image was cleared and four target ob-
jects appeared, allowing the animal to make a choice (1000 ms). Once the
animal indicated a choice, the target changed color to either green or red,
indicating a correct or incorrect choice (1000 ms), respectively. For every
correct choice, the subject received liquid reward. Each block terminated
once 18 correct trials had been performed for each of the four images (Wil-
liams and Eskandar, 2006a). If an animal broke fixation or failed to meet task
criteria, the trial was aborted with no reward. Animals generally completed
two or three sessions daily consisting of three blocks each. Each block was
modular, in that the experiments were comprised of three blocks: Novel/
Familiar/Recall or Novel/Familiar/Reversal. No cues were presented to the
animal to signify block change other than changing the four images in use for
that block.

During Novel blocks, animals were expected to learn, by trial and
error, to make the correct associations of four novel images with their
correct target locations. For each session, four new images were ran-
domly chosen from a pool of 1500 pictures to be used in the Novel block.
By using new images each day, we could assess both novelty of the stimuli
and learning as the block progressed, on a trial-by-trial basis. For Famil-
iar blocks, the animals were required to recall associations between four
images that were repeated over the entirety of training and data collec-
tion. Animals were well trained in the correct target associations and
usually completed the block quickly. Little learning occurred in this
block. In addition, this block serves as a comparison with the Novel block
in that the animal performed long-term, well known associations com-
pared with learned but newly made associations at the end of the Novel
block. The Familiar block also served as a break between Novel and Recall
blocks or Novel and Reversal blocks.

During Recall blocks, animals were re tested on the associations
learned in that session’s Novel block. Little new learning occurs during
Recall blocks, but this block allows us to compare the recollection of
newly learned associations and contrasts with the long-term memory
assessed in the Familiar block. Conversely, in the Reversal blocks, animals
were presented with the same four images used during the Novel block,
but the associated targets were changed, requiring animals to learn new
associations. By reversing associations during this block, we could assess
relearning of now-recognizable stimuli and dissociate between learning
and novelty because these stimuli were already presented during the
Novel block. Overall, the modular design allowed us to examine NBM
and dlPFC activity during: (1) learning through operant conditioning,
(2) reinforcement through reward, (3) decision making during learning,
and (4) the differentiation of newly acquired associations versus well
learned associations. The average number of trials per block type across
both NHPs were 140.3 � 51.08 trials (Novel), 95.4 � 15.98 trials (Famil-
iar), 142.4 � 47.50 trials (Reversal), and 103.7 � 27.56 trials (Recall).
Familiar blocks contained very few errors, but animals still broke fixation
or did not respond on �25% of trials on any given day.

We quantified learning on a trial-to-trial basis for each image and
separately for each block and session. For each image in a block, we
estimated a “learning state,” also termed “cognitive state,” as the latent
variable of a linear time-invariant state–space process that gave rise to the
observed reaction times and correct/incorrect choices (Smith et al., 2004,
2007, Prerau et al., 2008, 2009), using the expectation–maximization
algorithm. We considered the learning of each image as an independent
realization of the learning process, yielding four “learning curves” and
their confidence bounds per block. These state estimates were standard-
ized to the [0,1] interval for comparison across macaques, blocks, and
sessions. For illustrative comparison of the state–space approach to other
learning metrics, we also calculated the ratio correct in a sliding five-trial
window and then smoothed this with a 10-trial-wide noncausal Gaussian
kernel.

Analysis: single-unit activity
After individual units were identified through spike sorting, we exam-
ined the spike waveforms to identify whether they likely originated in the
NBM. To be included in the analysis as NBM units, we used predeter-
mined criteria from the literature in that 2 of the following 3 criteria had
to be met: (1) a spontaneous firing rate of 5– 40 Hz, (2) a coefficient of
variation of the interspike interval �1, and (3) a spike duration �180 �s
(initial negative phase, 200 –10k Hz filtering) (DeLong, 1971; Richardson
and DeLong, 1986, 1990, 1991). As mentioned above, additionally, 3D
mapping had to localize the electrode tip to the NBM region. We did not
perform the same check for dlPFC units in that recordings were per-
formed at the exit of the cannula.

Individual spike times were converted to rates in 5 ms bins and then
smoothed by convolution with a Gaussian kernel (50 ms wide, non-
causal). Spike rates were then aligned to trial events: fixation, image
onset, go cue, and feedback/reward. Then, on a per-trial basis, we defined
a “baseline” period as 1 s before the onset of the fixation point. Firing
rates during each trial were converted to z-scores based on the mean and
SD of that trial’s baseline. We then took the absolute value of the z-scored
spike rate fluctuations to account for both the negative- and positive-
going changes in spike rate that we observed in NBM units (see Results).
The variable analyzed over the course of the block is single-trial changes
in spike rate driven by task cues (modulation), as opposed to a direct
encoding of learning or any other variable in the spike rate (rate coding).
We classified units as modulating their firing relative to a task event (e.g.,
Go cue) when the spike rate exceeded 4 SDs above or below the mean
pretrial spike rate for at least 10 5 ms bins. Modulation could be present
for only part of a block as long as it was detectable on at least 15 trials.

Analysis: LFP
On the same channels in which the single-unit activity was recorded, we
took the recorded and already filtered and down-sampled LFP and re-
moved line noise (60 Hz). We did this by band-pass filtering the LFP to
55– 65 Hz and its harmonics up to 180 Hz and then subtracting these
filtered signals from each individual channel. To remove the confound of
the average evoked potential and its effect in lower frequency bands, in each
block, we subtracted the average LFP evoked potential for correct or incor-
rect trials from the time courses of the corresponding individual trials. We
then performed continuous Morlet wavelet transforms for the frequency
range from 1–200 Hz, in 2 Hz steps, to get the Morlet wavelet coefficient
amplitude (MWCA, an equivalent of power) using the FieldTrip MATLAB
toolbox (Oostenveld et al., 2011) (http://www.fieldtriptoolbox.org/,
RRID:SCR_004849). We normalized the MWCA by dividing each time–
frequency point by the mean value of the pretrial baseline across all trials
in all blocks for each recording session. Normalized power was then
averaged to yield power values in the theta (4 – 8 Hz), alpha (8 –15 Hz),
beta (15–30 Hz), gamma (30 –55 Hz), and high-gamma (65–200 Hz)
bands per time point. Recording days for LFP were only excluded for
channels localized to outside of the NBM based on anatomical 3D
mapping.

Statistical analyses
Across LFP and spike rate modulation comparisons, we used the
Kruskal–Wallis test for nonequivalence of multiple medians and the
Wilcoxon rank-sum test (two-sided) for comparisons between individ-
ual medians. We additionally used the Wilcoxon signed-rank test (two-
sided) for determining whether a distribution’s mean was significantly
different from zero. Post hoc testing of Kruskal–Wallis groups used the
Tukey–Kramer method. We corrected for multiple comparisons across
frequency bands (for LFP power) and epochs (for spikes and LFP power)
by adjusting the target p-value with a Bonferroni correction. In addition
to the analyses reported here, initial exploratory analyses considered the
time of the monkey’s response (choice) as an additional epoch and ana-
lyzed the delta (1– 4 Hz) LFP frequency band. We therefore Bonferroni
corrected for comparisons across six bands and five intratrial epochs,
yielding a threshold of 0.00167. For time-resolved analysis, we further
applied a false discovery rate (FDR) correction to the p-value at each time
point and only declared a significant result at that time point if the
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Figure 1. NHPs learn and reverse associations and can do so while recalling already established associations. A, Experimental paradigm. During an associative learning task, adult rhesus
macaques associated a visual image with one of four target locations. Once the animals indicated a choice by an eye movement, the target changed color to either green or red corresponding with
a correct or incorrect choice, respectively (see Materials and Methods). Each experimental session involved three blocks of 140.3 � 51.08 trials (Novel), 95.4 � 15.98 trials (Familiar), and either
Reversal (142.4 � 47.50 trials) or Recall (103.7 � 27.56 trials) of associations learned in the same sessions’ Novel blocks (average trial numbers across both NHPs). B, Representative example of
learning behavior for a Novel/Familiar/Reversal experiment (top) and a Novel/Familiar/Recall experiment (bottom) in R. Curves are the ratio correct (Figure legend continues.)
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FDR-corrected value was beneath the Bonferroni-corrected target. We
did not test for normality because all statistical comparisons were per-
formed using nonparametric tests.

For spike rate and power modulations, we tested correlation between
firing rate modulation and behavioral variables or power modulation
and behavioral variables using Spearman’s rank correlation. For neu-
robehavioral correlations with two continuous variables (e.g., correla-
tions between spike rate or LFP power and the learning state), we first
computed a Spearman correlation coefficient between the two variables
for each time point within the trial schema (5 ms nonoverlapping sliding
window for spike rates, 50 ms nonoverlapping sliding window for LFP
power, aligned to an event of interest such as the Go or Feedback cue).
We did this for each experiment block. At each time point, we then
collected the correlation coefficients for that time point across all blocks
and then tested that distribution against a null hypothesis of zero mean
using the Wilcoxon signed-rank test. When displaying time series of such
correlations or masking by them (e.g., Fig. 4), we applied an FDR correc-
tion to control for multiple comparisons along the time axis and across
comparisons, requiring the FDR-corrected p-values to be under the
Bonferroni-corrected threshold described above. For both spike rates
and LFP, we did not accept a time point as having a significant cor-
relation unless it was part of a cluster �50 ms in length (10 time bins)
for spike rate signals and �150 ms in length (3 time bins) for LFP
power comparisons.

To analyze contrasting evolutions of spike and LFP modulation within
the Novel block, we realigned these to the standardized learning state.
Spike rates were down-sampled to 50 ms bins using MATLAB’s “deci-
mate” function to arrive at the same time scale as the LFP power calcu-
lations. On each trial and in a 500 ms window before or after each
intratrial event, we calculated the mean of either the absolute z-scored
spike rate or the z-scored LFP power change from baseline (modulation)
and then sorted each block’s trials by their learning state. Finally, we
interpolated the modulation time course for each neural variable to state
values between 0.2 and 0.8 in 0.01 standardized unit steps. Few Novel
trials had state values outside of the 0.2– 0.8 range, making data estimates
less stable outside of this range. We did not perform this analysis for
Familiar or Recall blocks because the learning state variable did not
change sufficiently during those blocks. For illustration, we fitted cubic
spline curves to these data (e.g., Fig. 9), but performed analyses directly
on the learning-aligned time courses.

To test the correlations per recording between spike rate and LFP
power, we performed Spearman correlations between spike rate and LFP
power during the Go cue epoch on a per-trial basis and averaged these
correlations per combination of single units and the simultaneously re-

corded LFP (e.g., Fig. 9). These analyses were for each experiment type
(Novel, Familiar, Recall, and Reversal). The same multiple-comparisons
statistical corrections were applied to the dataset as listed above.

Our calculations allowed comparisons and variation between groups
and independent samples to be within similar ranges. The groups that we
compared were across independent samples (whether neurons or LFP
channels), across cognitive tasks (whether learning or short or long-term
recall), and across brain regions (NBM and dlPFC). In addition to nor-
malizing data per sample or trial before performing statistical compari-
sons, the majority of analyses in this study involved correlating a
behavioral measure (accuracy, learning, etc.) with a neural measure
(such as LFP power or spike rate modulation). The resulting Spearman
correlation values resulted in similar bounded ranges between �1 to 1
across conditions and groups. These values demonstrated similar vari-
ances in both the SE, as shown in the figures, and the statistical compar-
isons, with only a few groups or comparisons demonstrating significant
differences (e.g., Figs. 3, 4, 5, 6, 7, 8).

Statistical rigor
There was no randomization of the data and no investigator was blinded
to the group allocation in the analyses or experimental design. In both
animals, we collected recording sessions until we were no longer able to
obtain new units on fresh electrode penetrations or when unrelated
health issues in R required termination of recordings. We verified that
the resulting sample size was adequately powered for the analyses per-
formed. As an example, we found (see Fig. 8) that NBM high-gamma
power (HGP) significantly correlated with learning after the Go cue. In
the 0.5 s after the Go cue, the correlation (Spearman rho) between learn-
ing state and HGP had a mean of 0.368 and SD of 0.15 across 73 inde-
pendent recording sessions. We generated surrogate data that followed
that distribution, for 500 replicates of each putative n (number of record-
ing sessions). We then tested each replicate for a nonzero median with
the Wilcoxon signed-rank test. With the Bonferroni-corrected � �
0.00167 that we used in all LFP analyses, we needed only n � 11 to have
80% power to reject the null hypothesis. Our sample size is nearly seven
times larger than the minimum necessary and similar calculations apply
to the data of other figures.

Data availability
The datasets generated during and/or analyzed during the current study
are available from the corresponding author on reasonable request.

Results
Learning behavior
We recorded neural activity as two behaving NHPs performed an
associative learning task (Williams and Eskandar, 2006). The an-
imals learned, by trial and error, to associate each of four images
with one of four target locations (Fig. 1A; see Materials and Meth-
ods). The task was subdivided into epochs, beginning with a
centralized fixation point (Fixation), followed by a stimulus pre-
sentation (Image onset). Next, four target objects appeared and
the stimulus image was cleared (Go cue), which signaled to the
animals to make a choice by looking at the target. After this eye
movement or saccade to the object, the target changed color to
provide visual correct/incorrect feedback (Feedback). Correct
choices rewarded animals with juice (Reward).

We used a modular design consisting of multiple combina-
tions of four block types: (1) Novel block, in which animals were
expected to learn, by trial and error, to make the correct associa-
tions of four novel images with their correct target locations; (2)
the Familiar block, in which the animals were required to recall
associations between four images that were repeated over the
entirety of training and data collection (animals were well trained
in the correct target associations and usually completed the block
quickly); (3) the Recall block, in which animals were retested on
the associations learned in the Novel block (this block allowed us

4

(Figure legend continued.) in a sliding five-trial window smoothed by a 10-trial noncausal
Gaussian kernel. Performance increases gradually from low levels when learning new associa-
tions (Novel, Reversal) and is consistently high when performing learned associations (Familiar,
Recall). C, Average learning state curves for both NHPs across Novel, Familiar, Reversal, and
Recall experiments. n indicates the number of blocks run per NHP and experimental condition.
D, E, evidence of learning in R and P. We compared ratio-correct (D) and learning state (E),
averaged across each block’s four target images, between the first 50 and final 50 trials of each
block. In both animals and using either metric, there is significantly greater learning (increase
from block start to block end) during Novel and Reversal blocks compared with the Recall and
Familiar blocks, in which animals perform already-learned associations. Letters “a” and “b”
above bars indicate statistically separable groups by Tukey post hoc testing after Kruskal–Wallis
test. D, R: � 2 � 161.71, p � 0.000001. E, P: � 2 � 215.7, p � 0.000001. Error bars indicate
SEM. Fi–Fiii, T1-weighted MRI with fiducial markers showing electrode trajectories for the
NBM and the dlPFC with 3D reconstructions of neighboring brain structures. We use anatomical
mapping to additionally separate VP from NBM recordings by reconstructing the areas of the VP
and NBM on the MRI and dividing recordings based on the amount of overlap between the
electrode tip and the 3D reconstructed structures (see Materials and Methods). Cd, Caudate; Pt,
putamen; Ac, anterior commissure; Op N, optic nerve; Amy, amygdala. G, Average waveform
shape of units classified as NBM or non-NBM (only including recordings which mapped in 3D to
the NBM region) illustrating differences in peak width. Shaded regions indicate SEM. H, The
three criteria per unit and the classification of the units into NBM and non-NBM. The latter were
not used for further analysis.
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Figure 2. NBM neurons modulate firing specifically in response to novel cues. A, Representative example of two NBM neurons collected on different days from R. Unit 1 suppressed firing
immediately after stimulus presentation, returning to baseline firing at the Go cue. Unit 2’s activity increased during the same period and normalized at the Go cue. This modulation lasted for the first
100 trials of the novel block, after which the spike rate showed less perievent variability (dashed horizontal line). This was particularly visible after the animal (Figure legend continues.)
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to compare the recollection of newly learned associations and
contrasts with the long-term memory assessed in the Familiar
block); and (4) the Reversal block, in which animals were pre-
sented with the same four images used during the Novel block,
but the associated targets were changed, requiring animals to
learn new associations. By reversing associations during this
block, we could assess relearning of now-recognizable stimuli
and dissociate between learning and novelty because as these
stimuli were already presented during the Novel block (Fig. 1A;
see Materials and Methods). Each experimental session con-
tained combinations of three block types such as Novel/Familiar/
Recall or Novel/Familiar/Reversal. Importantly, during Novel
blocks, both the images and their associations were new to the

animal, whereas during Reversal, only the associations were new.
Familiar blocks helped distinguish learning-related signals from
signals more closely associated with reward. During Familiar as-
sociations, the animal could strongly anticipate reward on each
trial, but basically no learning occurred. The Familiar block also
served as a break between Novel and Recall blocks or Novel and
Reversal blocks.

Both animals successfully learned, performed, and reversed
associations between each of the four images and the associated
target location (Fig. 1B). To summarize this, we integrated deci-
sion time and accuracy into a learning state (also called cognitive
state) variable that was defined for each of the four images on
every trial (Prerau et al., 2009). Having an estimate of learning for
each possible association on every trial allowed for more accurate
regression of neural activity against learning (Prerau et al., 2009)
(Fig. 1C). As expected, the learning state estimate increased dur-
ing Novel and Reversal blocks, as did the ratio correct (Asaad and
Eskandar, 2011) (Fig. 1D,E). Because there was little further
learning during Familiar and Recall blocks, the learning state
remained high during these blocks (Fig. 1C–E).

Single-neuron responses
Because the NBM may influence learning through cortical pro-
jections (Mesulam et al., 1983; Irle and Markowitsch, 1986), we
simultaneously recorded single neurons and LFPs from the NBM
and dlPFC as animals performed the task. We confirmed the
identity of NBM neurons both by anatomic mapping (Fig. 1Fi–

4

(Figure legend continued.) learned the association, as represented in the learning state estimate
to the right. Similarly, during Familiar (B, top) and Recall (B, bottom) blocks, again containing
only well learned associations, Unit 1 from A maintains a constant firing rate. Unit 2, also shown
in A (bottom), further demonstrates that novel associations alone are not sufficient to produce
NBM modulation. This unit also does not modulate to task cues during the Familiar (C, top)
block. Even during Reversal (C, bottom), when non-novel stimuli are paired with new associa-
tions, task cues do not change this unit’s firing rate. C (bottom) also illustrates that correct/
incorrect performance on any given trial does not drive firing rate. D, After the Fixation cue of
Novel blocks, when as-yet-unlearned images are presented, this unit from P increases its firing
rate. As the associations are learned (increasing trial number), this modulation ceases, as evi-
dent after trial 100 in this plot. During a Familiar block in which stimuli are salient but associa-
tions are well known, this same unit does not modulate to task cues. Compare these responses
with those shown in A–C, which is the same pattern in units from R.

Figure 3. NBM unit modulation is specific to Novel blocks. Mean Spearman rank correlations between z-scored spike rate changes (relative to baseline activity 1 s before fixation) and trial-level
variables using a sliding 50 ms window. Only Novel blocks showed median correlations significantly different from zero, as indicated by circles above the curves (Wilcoxon signed-rank test on the
distribution of Spearman coefficients at each time bin, thresholded to FDR correction through time to p � 0.05, Bonferroni corrected for testing of multiple epochs). Both trial number and learning
state correlated with spike rate modulation, suggesting that novelty of the stimulus drives modulation. n indicates the number of units per experiment in the NBM (orange). Shaded regions around
lines indicate SEM. Curves show correlations between z-scored spike rate change from baseline and learning (purple), trial number (black), accuracy (green), or reaction time (burgundy). Columns
are the different epochs of the task. Rows are the different types of blocks in the task. The Recall and Reversal blocks have fewer neurons due to loss of isolation on some cells during the final block
of a session as well as experimental design (see Materials and Methods). In the Novel blocks, NBM firing modulating was significantly correlated to both learning and trial number, both of which are
measures of stimulus novelty. No such encoding is present for any other block. Data are from 112 NBM units across two NHPs. Shaded regions around lines indicate SEM.
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Fiii; see Materials and Methods) and waveform properties of each
unit after spike sorting (Richardson and DeLong, 1990) (Fig.
1G,H). To be included in the analysis as NBM units, we used
predetermined criteria (Richardson and DeLong, 1990). Two of

the following 3 criteria had to be met: (1) a spontaneous firing
rate of 5– 40 Hz; (2) a coefficient of variation of the interspike
interval of �1; and (3) a spike duration of �180 �s (initial neg-
ative phase, 200 –10 kHz filtering) (Fig. 1G,H). Using this

Figure 4. In contrast to NBM, dlPFC neurons do not respond strongly to stimulus novelty or unlearned associations. A, Example raster plots of a dlPFC unit (R). The unit did not show substantial
cue-related modulation and this did not change as the learning state increased. This is further evident from B, which shows that dlPFC units did not demonstrate any significant correlations between
learning state and spike rate changes for the same time windows. Mean Spearman rank correlations between z-scored spike rate changes (relative to baseline activity 1 s before fixation) and
trial-level variables using a sliding 5 ms window are shown. n indicates the number of units per experiment in the dlPFC (blue). In the Novel blocks, dlPFC modulation was not significantly correlated
to both learning and trial number, both of which are measures of stimulus novelty. Data are from 210 dlPFC units across two NHPs. Shaded regions around lines indicate SEM. C, Contrast between
dlPFC and NBM activity is further illustrated in binned peristimulus time histograms (PSTHs) in the two regions. We took all units recorded during Novel blocks in R and averaged their firing around
the time of the Go cue, normalizing and z-scoring activity as per Materials and Methods. When averaging peristimulus activity at the level of the individual picture, NBM neurons as a population show
substantial modulation (absolute value of firing rate change vs pretrial baseline) just before the Go cue. As per Figure 2, this modulation diminishes with learning, seen here at approximately trial
20 (black arrow and dotted line). dlPFC neurons as a group do not show this modulation. D, Changes in spike rate with error and correct/incorrect. dlPFC neurons encoded error, especially unexpected error, more
strongly than NBM. In the Familiar block, when animals had a high degree of confidence in their responses, dlPFC neurons had significantly higher ( p � 0.0371; Wilcoxon signed-rank test) firing rates
immediately after Feedback in incorrect trials compared with correct. No such difference was found in NBM firing rates ( p � 0.9631; Wilcoxon signed-rank test). Error bars indicate SEM.
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method, we identified 322 neurons, with 112 NBM units and 210
dlPFC units.

We hypothesized that NBM neurons would respond to novel,
salient stimuli (Mesulam et al., 1983; Rigdon and Pirch, 1986;
Voytko and Lou, 1996; Wenk, 1997), whereas we have shown
previously that dlPFC neurons signal reward expectation during
learning (Asaad and Eskandar, 2011). Indeed, nearly half the
NBM units (R: 33/69, P: 21/43) changed their firing rate in re-
sponse to task cues for the first 50 –100 trials of the Novel block,
then stopped cue-linked modulation for the remainder of the
block (Fig. 2A). These cells modulated their firing only when

novel and salient stimuli were presented and ceased to modulate
when the stimuli were no longer novel. Units that modulated in
Novel blocks did not modulate in other block types (Fig. 2B–D).
Individual examples show that NBM neurons did not modulate
during Recall blocks (Fig. 2B), which represent newly formed
associations; during Reversal blocks (Fig. 2C), when the Novel
object must be associated with a different location; and finally, no
clear change in firing rate during Familiar blocks, representing
established associations with highly familiar objects (Fig. 2B–D).
Therefore, the combination of a Novel object with a new association
appears necessary for these neurons to modulate their firing.

Figure 5. Low-frequency (theta-band) LFP power encodes both learning and reward expectation in NBM and dlPFC. A, Average changes in theta power from baseline across recordings and
animals across learning states in the NBM (n � 44 recordings across two animals; left) and dlPFC (n � 49 recordings across two animals; right) for Novel blocks. Color versus gray designates 50 ms
windows in which the correlation between theta power and learning state values is or is not significant, respectively, after FDR correction. For plotting, the learning state was binned from 0 to 1 in
increments of 0.005 and trials were assigned to their nearest bin. This binning was not used for the statistical calculation. In both structures, theta power decreased after image presentation and
returned to baseline just after the Go cue early in the learning process. This modulation dissipated as the animals learned. B, C, Spearman rank correlations among theta LFP power and learning state
(purple), choice accuracy (green), and trial number (black). Red markers indicate points where the learning state and accuracy correlations are significantly different ( p � 0.05, Bonferroni corrected
for epoch and frequency band comparisons and FDR corrected through time, Wilcoxon rank-sum test). Other color markers indicate whether the mean correlation at each time point was significantly
different from zero ( p � 0.05, Bonferroni corrected for frequency bands and epochs and FDR corrected through time, Wilcoxon signed-rank test). The learning state was significantly correlated to
theta power (and more strongly correlated than accuracy) from �700 ms before the Go cue (purple arrowheads) until just after Go cue in both NBM (B) and dlPFC (C), Accuracy was significantly
correlated with theta power in the Feedback-locked analysis (green arrowheads) and this correlation exceeded the correlation with learning state both before and after Feedback. B, C, Shaded
regions around lines indicate SEM.
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The changes in firing rate could be due to novelty (number of
exposures to any given image), learning, or reward anticipation
from correct trials. To test this, we correlated the perievent mod-
ulation of each unit in 5 ms bins with the learning state, trial
number (testing novelty), decision accuracy (testing reward ex-
pectation or delivery), and reaction time (to separate the effect of
reaction time from learning state). NBM unit modulation had
significant negative correlations (p � 0.05, FDR controlled
through time) to learning state and trial number, and not to
reaction time, during Novel blocks. Significant correlations had
begun shortly after image onset and abruptly offset at the Go cue
(Fig. 3). NBM firing modulation did not correlate to learning,
accuracy, trial number, or reaction time in any other block type,
including Reversal (Fig. 3). This was consistent with a model in
which NBM neurons modulated their firing when both cues and
associations were new as the cues are presented and thus salient.
Modulation ceased once the cues were learned (still salient but no

longer novel). Interestingly, this NBM spike rate modulation oc-
curs immediately before and around the time point that the
NHPs made a choice, meaning that the NBM activity could be
tied to the decision making in Novel blocks.

In contrast, dlPFC neurons had little change in cue-linked
modulation with learning (Fig. 4A). The novelty encoding ob-
served with NBM neurons was not present in dlPFC neurons
during any block (Fig. 4A–C). Consistent with our prior findings
(Asaad and Eskandar, 2011), dlPFC neurons encoded prediction
errors, significantly changing their firing rate relative to baseline
for incorrect versus correct trials. This was most evident during
Familiar blocks, in which errors occurred in the context of a high
degree of confidence (p � 0.0371; Wilcoxon signed-rank test;
z-value � 2.0844; Fig. 4D). Specifically, errors during well learned
associations induce changes in dlPFC activity. NBM neurons had no
significant differences in spike rate modulation between correct and
incorrect trials for the Familiar block type (Fig. 4C,D).

Figure 6. Low-frequency (alpha) LFP encoding of learning, but not reward anticipation, is specific to Novel blocks. A, Same metric and statistical approaches as in Figure 5A, but in the alpha
(8 –15 Hz) band. B, C, Same metrics and statistical approaches as in Figure 5, B and C, but in the alpha band in the NBM (B) and dlPFC (C). Post-image suppression was less prominent and the post-Go
cue enhancement in NBM was stronger than the dlPFC. Alpha power generally encoded accuracy more strongly than it encoded learning and significant encoding was present as early as 1 s before
Feedback. This was consistent with a reward anticipation signal. B, C, Shaded regions around lines indicate SEM. Data include NBM: n � 44 recordings (sessions) across two animals and dlPFC:
n � 49 recordings (sessions) across two animals. Line and color markers follow the same schema as Figure 5, B and C. Shaded regions around lines indicate SEM.
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Multispectral band encoding in LFP power
Because learning often involves changes in LFP oscillations in
both cortical and subcortical structures (Brincat and Miller,
2015; Haque et al., 2015; Watrous et al., 2015), we examined

task-induced LFP power changes driven by learning, accuracy,
reaction time, and trial number in the same sliding correlation
framework. In sum, we found that theta (5–8 Hz) power early in the
trial encoded learning, theta and alpha (8–15 Hz) late in the trial

Figure 7. LFP power in beta (A, B) and gamma (C, D) bands does not encode learning processes. Correlations between LFP power and trial-level variables (learning state, accuracy, trial number,
and reaction time) are plotted and statistically evaluated as in same metrics and statistical approaches as in Figure 5, B and C. Beta-band (15–30 Hz) correlation curves are plotted for the NBM
(A) and dlPFC (B). Gamma-band (30 –55 Hz) correlation curves are plotted for the NBM (C) and dlPFC (D). There are few time points where power is significantly correlated with the learning state to a smaller
extent than in lower frequencies. Power correlations to learning state are always smaller than power correlations to accuracy (reward/anticipation). Data include NBM: n � 44 recordings (sessions) across two
animals and dlPFC: n � 49 recordings (sessions) across two animals. Line and color markers follow the same schema as Figure 5, B and C. Shaded regions around lines indicate SEM.
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Figure 8. HGP in the NBM encodes reward expectation, leading to an anticorrelation between spike and HGP modulation during learning. A, B, HGP (65–200 Hz) modulation is correlated with
trial accuracy more strongly than with learning, although both show significant correlations just after the Go cue. This correlation between learning and HGP is present during novel learning such as
Novel blocks, but not in Familiar blocks. Accuracy (which correlates with anticipated reward) showed significant correlations with HGP in both structures, continuing after Feedback when the reward
was being consumed. This encoding reached statistical significance for most of the peri-feedback period in Novel and Familiar blocks in dlPFC and the NBM and was qualitatively present in Recall and
Reversal blocks. Correlations between LFP power and trial-level variables (learning state, accuracy, trial number, and reaction time) are plotted and statistically evaluated as in same metrics and
statistical approaches as in Figure 5, B and C. NBM (n � 44 recordings across two animals). C, These correlations are present in the dlPFC, though with fewer (Figure legend continues.)
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encoded reward feedback (or reinforcement through reward), and
high gamma (65–200 Hz) encoded reward anticipation.

In early trials during Novel blocks, theta power decreased (rel-
ative to pretrial baseline) at image onset. Theta then increased
after the Go cue in both the NBM and dlPFC (Fig. 5A). As seen
with spike rate changes, both structures’ theta power modulation
attenuated as learning progressed. This was reflected in a signifi-
cant correlation between theta power and the learning state in
both NBM and dlPFC (p � 0.05 after FDR correction), starting
650 –700 ms before the Go cue (Fig. 5B,C). Unlike spike rate
modulation, neither dlPFC nor NBM theta power was signifi-
cantly correlated with trial number, suggesting that the theta-
band effect was specific to the learning process and not to
stimulus novelty. Pre-Go-cue theta power in the NBM (but not
dlPFC) also significantly correlated with decision accuracy, but
the correlation with learning state was consistently higher than
the correlation with accuracy in both structures (Fig. 5B,C). The
first time point of significant theta correlation with the learning
state was earlier in the NBM than in the dlPFC (�700 vs �650 ms
relative to the Go cue), suggesting that the learning-related theta
band signal might originate in or near the NBM, particularly
before the NHPs made their choices. The theta power/learning
state correlation also exceeded the correlation with accuracy be-
fore the Go cue during Reversal blocks, but did not reach the
prespecified significance threshold (Fig. 5B,C). This theta band
activity, however, did not correlate as strongly with learning state
during the Familiar or Recall blocks. Interestingly, however, the
correlation to learning was slightly higher during Recall blocks
than Familiar blocks, indicating a differentiation between newly
acquired associations and well learned associations (Fig. 5B,C).
This distinction in theta-band power preceding a choice could
represent the NHPs making a decision as they were learning.

Alpha power modulation in NBM and dlPFC also showed
periods of significant correlation to learning state, but correlated
more strongly to reward anticipation, reward reinforcement (as
the NHPs received a green target reinforcement cue before re-
ceiving a reward; Fig. 1) and consumption (Fig. 6A). Both before
and after Feedback, in the NBM and dlPFC, theta and alpha
power were significantly correlated with the accuracy of the ani-
mal’s choice, with a peak around the time that the NHPs would
receive the green target reinforcement cue (p � 0.05, FDR cor-
rected). When analyzed locked to the Feedback cue, the accuracy
correlation exceeded the power correlation with learning state
(Fig. 6B,C). In contrast to the learning-related theta desynchro-
nization (power decrease) that we observed before the Go cue,
reward-correlated (or accuracy-correlated) theta/alpha power
increased over the pretrial baseline and the increase amplified
over the course of a block (Fig. 6). The reward encoding was
stronger in the alpha band than in the theta band (NBM peak � �
0.42 in alpha and 0.31 in theta, dlPFC peak � � 0.44 in alpha and
0.29 in theta). After Feedback was delivered, the correlation be-
tween power and reward/accuracy sharply declined, showing

nonsignificant correlations by 450 ms (dlPFC) or 900 ms (NBM)
after reward (Figs. 5B,C, 6B,C). This was consistent with a re-
ward anticipatory-related signal that peaked when the animals
were given the green target reinforcement cue that was no longer
correlated with reward once it was consumed. Consistent with a
reward anticipation signal, Feedback-locked alpha modulation
was not specific to Novel blocks. Significant encoding also oc-
curred during Familiar blocks, during Recall of well formed as-
sociations, and Reversal of those associations (Fig. 6B,C). Beta
power, in contrast, correlated with accuracy only in a short time
window around the Choice event and never encoded learning
state more strongly than accuracy (Fig. 7A,B).

High gamma (65–200 Hz, HGP) and gamma (30 –55 Hz) LFP
power modulation also encoded reward anticipation and con-
sumption (Figs. 7B,C, 8A,B). As with theta and alpha, HGP in
the NBM and dlPFC encoded a correct trial, but modulated ear-
lier in the trial, starting at the Go cue (Fig. 8A,B). This is consis-
tent with reward anticipation, driven by confidence in a well
learned decision. HGP modulation in NBM also significantly
correlated with accuracy around the Feedback cue in Novel and
Familiar blocks (reward consumption; Fig. 8). Further, neither
structures’ HGP showed higher correlation with learning state,
reaction time, or trial number than with accuracy, suggesting a
more “pure” reward encoding in HGP compared with the lower
frequency bands. Encoding was stronger in the presence of active
learning: correlations in NBM after Go and Feedback were sig-
nificantly higher in Novel and Reversal blocks compared with
Familiar and Recall (Fig. 8C). This result indicated there was a
separation between blocks in the process of learning whether
learning a Novel association or Reversing a newly learned associ-
ation versus Recall or Familiar, when the association is recently
acquired or well learned.

Spike–LFP dissociation
Together, these results suggested that spike rate and LFP power
modulation in the NBM orthogonally encoded the learning pro-
cess, particularly in the formation of Novel associations. Spike
rate modulation increased before the Go cue and this modulation
attenuated with learning (Fig. 2). HGP modulation increased
after the Go cue and became stronger with learning (Fig. 8). To
quantify the anticorrelation, we binned the learning state in steps
of 0.01 and computed the mean HGP and spike rate modulation
around Go for each bin. The binned HGP and spike modulation
time-series had strong negative correlations in both NBM (� �
�0.53, p � 1.9e-5) and dlPFC (� � �0.47, p � 2.4e-4) (Fig.
9A,B). Spike and HGP modulation were also anticorrelated in
dlPFC around Reward (� � �0.35, p � 0.0055). At other trial
epochs, neither structure showed strong correlations between
spike and HGP modulation (Fig. 9A,B). HGP in cortex has been
believed to track the level of local spiking and correlates with
functional MRI signal (Ojemann et al., 2013; Yazdan-Shahmorad
et al., 2013; Watrous et al., 2015). Our dissociation of these signals
in NBM suggests that the spiking–HGP link is not universal.

In addition, we correlated spike rates with power per electrode
per brain region during the Go cue epoch (when the most mod-
ulation occurs during the epochs) for all five frequency bands
(Fig. 9C). We found no significant correlations both within
blocks, within frequency bands, and between block types (for
significant Spearman rho correlations: p � 0.0013, FDR con-
trolled, Wilcoxon signed-rank test; For multiple comparisons
between block types: NBM: � 2 � 16.91; p � 0.596, dlPFC: � 2 �
16.03; p � 0.655; Kruskal–Wallis test; Fig. 9C). These results
indicated that, outside of the effect of learning state, LFP power

4

(Figure legend continued.) significant points than in the NBM (n � 49 recordings across two
animals). Line and color markers follow the same schema as Figure 5, B and C. This encoding is
also present before and after Feedback, implying that it represents both reward anticipation
and consumption. Shaded regions around lines indicate SEM. C, Reward encoding in the
perievent HGP modulation was also stronger during active learning. After the Go cue, in blocks
that involve new learning (Novel/Reversal), the mean correlation between HGP and choice
accuracy was larger than this same correlation in Familiar/Recall blocks without learning ( p �
0.00013, Wilcoxon rank-sum test with FDR correction for testing across frequency bands, block
types, epochs, and regions). Error bars represent SEM.
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Figure 9. HGP is anticorrelated with spike activity modulation during learning. A, Analysis schematic for the correlation of spike rate and LFP modulation with learning state. The learning state
was binned into ascending steps of 0.01 in each block (purple arrow). We then took the mean of spike rate modulation (dark gray boxes) or HGP (light gray boxes) during 0.5 s windows on each trial
of that block. Each window was time locked to a specific event within the trial. We interpolated those mean values to the learning state bins, creating a standardized time course of event-locked
neural modulation as a function of learning within a block. The learning state was binned into ascending steps of 0.01 in each block. We then took the mean (Figure legend continues.)

Martinez-Rubio, Paulk et al. • Encoding Learning in the Nucleus Basalis of Meynert J. Neurosci., February 21, 2018 • 38(8):1942–1958 • 1955



and NBM spike rate do not demonstrate a strong, significant
anticorrelation. Instead, LFP power and NBM spike rate are an-
ticorrelated in the context of Novel learning as the NHPs made
their decisions in the task.

Discussion
Our results suggest that single NBM neurons modulated strongly
during early learning of novel cues and then ceased to respond
late in learning. At the same time, low-frequency oscillations in-
creased their modulation as the association was learned, possibly
representing populations of neurons acting in increasing syn-
chrony. We also found that novelty, learning stages, and reward
were encoded by separable neural signals in the NBM and dlPFC
(Fig. 9C). Although NBM spike activity encoded the need to form
associations for novel stimuli, LFP encoded whether they had
been formed and the anticipation of reward linked to correct
association retrieval. Low- and high-frequency LFP encoding oc-
curred in both NBM and dlPFC, generally with an earlier onset in
the NBM. This may reflect a causal relationship in which NBM
signals drive their counterparts in PFC, although proving that
causality would require further experiments such as the use of
neural stimulation and multielectrode arrays. From these current
results, we hypothesize that this LFP–spike anticorrelation in-
volves network effects of possible broadly projecting NBM neu-
rons suppressing theta-band activity. This network effect could
then change over time as the NBM neurons no longer modulate
their firing in response to a Novel association being formed.
However, without more electrodes per brain region, we did not
feel that we could demonstrate this with the current dataset.

This concept of NBM neurons driving cortical targets is sup-
ported by the fact that NBM neurons project throughout the
cortex and are the primary source of cholinergic innervation to
the cortex in primates (Mesulam et al., 1983; Baxter and Chiba,
1999; Mesulam, 2013; Liu et al., 2015). NBM cholinergic efferents
innervate the entire cortical mantle and olfactory bulb, whereas
only the limbic and paralimbic areas (such as the cingulate gyrus,
hippocampus, amygdala, and nucleus accumbens) have recipro-
cal connections back to the NBM (Gratwicke et al., 2013; Mesu-
lam, 2013; Liu et al., 2015). It is therefore not surprising that
stimulation of the NBM induces cortex-wide synchrony (Kilgard
and Merzenich, 1998). Importantly, anatomically defined NBM
subregions project to different parts of the brain (Liu et al., 2015).

Further studies and use of multichannel electrodes in multiple
regions of the NBM, for instance, could be key for differentiating
function in this structure, particularly to explain the counter-
intuitive anticorrelation between HGP LFP activity and the spik-
ing activity that we found as the NHPs learned new associations
(Fig. 9D).

Another important component to consider is that there are
subsets of NBM neurons that release a diversity of neurotrans-
mitters, including glutamate and GABA (Mesulam et al., 1983;
Wenk, 1997; Semba, 2000; Liu et al., 2015). To overcome this
heterogeneous distribution of neural types in the NBM, multi-
channel recording could sample more single-unit waveforms in
the area and potentially identify separable populations of NBM
neurons. A multichannel approach would also allow the exami-
nation of causal relationships between the NBM and cortex, par-
ticularly with LFP. With only single electrodes per region as in
this study, we could not rule out volume conductance issues and
thus could not report coherence or other synchrony/causality
measures in this study (Bastos and Schoffelen, 2015).

Nevertheless, we found clear encoding of the learning state in
theta-band modulation before the Go cue and not in other bands.
In contrast, alpha, beta, and HGP correlated best with trial accu-
racy after the Go cue, reflecting reward anticipation. In particu-
lar, power in these frequency bands demonstrated significant
correlations to trial accuracy across all block types. Our results
show significant encoding of reward reinforcement and reward
anticipation whether the animals had formed a new association
(Novel blocks), were recalling a newly made association (Recall),
were recalling a well formed association (Familiar), or were re-
versing a new association (Reversal). This could possibly indicate
a more generalizable concept: that reward anticipation and rein-
forcement induce across-frequency changes in LFP power. In
addition, these results point to an underlying mechanism in
which different modalities of neural activity can encode and co-
ordinate multiple aspects of learning, as shown in our proposed
model (Fig. 9D). There is a growing body of evidence that differ-
ent frequency bands serve to bind, coordinate, or otherwise en-
hance communication between different brain areas (Buzsáki
and Watson, 2012; Watrous et al., 2015). For example, theta-
band activity has long been associated with hippocampal mem-
ory function (Buzsáki and Watson, 2012) and recent evidence
implicates this band in corticohippocampal coordination during
learning (Benchenane et al., 2011; Brincat and Miller, 2015).
More recently, gamma-power (30 –50 Hz) and HGP (50 –200
Hz) bands have been similarly proposed to support learning
across species (Lee et al., 2014).

These separable encodings could guide the development of
closed-loop stimulation to enhance learning and memory, po-
tentially moving toward clinical therapeutics (Laxton and Lo-
zano, 2013; Widge et al., 2017). Delivering stimulation during
critical moments in memory formation has profound effects on
learning (Williams and Eskandar, 2006; Katnani et al., 2016; Ez-
zyat et al., 2017). If NBM modulation signals the beginning of a
novel learning process, then inducing that modulation at the
right time might accelerate or induce novel learning by altering
network activity. Deep brain stimulation of the NBM to treat
Alzheimer’s and Parkinson dementia has had variable results,
suggesting that this is not a straightforward strategy (Kuhn et al.,
2015; Mirzadeh et al., 2016). However, based on our observa-
tions, NBM stimulation could be targeted to specific phases of
learning or NBM activity might identify time points when stim-
ulation could be particularly effective. For instance, stimulation
during the Go cue decision point (such as when the NBM single

4

(Figure legend continued.) of spike rate modulation (blue/orange) or HGP (black) during 0.5 s
windows on each trial of that block. We interpolated those mean values to the learning state
bins, creating a standardized time course of neural modulation relative to learning within a
block. B, During Novel blocks, spike rate modulation around the Go cue is anticorrelated with
HGP modulation around the same cue in both NBM (orange) and dlPFC (blue), as well as around
the Reward/Feedback event in dlPFC. Points represent the mean modulation at each step of the
learning state, whereas curves are a cubic spline fit to those points. Inset � and p-values are
Spearman correlations and p-values between the interpolated spike and HGP modulation time
courses. C, Correlation values between spike rate and LFP power for five frequency bands on a
per trial basis for the different experiment types during the Go cue epoch. No mean Spearman
correlation values were significantly different from zero ( p � 0.0013, FDR controlled, Wilcoxon
signed-rank test). In addition, the mean Spearman correlation values were not significantly
different from one another (NBM: � 2 � 16.91; p � 0.596, dlPFC: � 2 � 16.03; p � 0.655;
Kruskal–Wallis test). D, Summary model of multimodal neural encoding of learning in NBM and
dlPFC as aligned to trial events. NBM spike rates modulate during early learning, as does theta
power, and both types of modulation diminish as learning proceeds. Theta, alpha, gamma, and
HGP encode reward anticipation. Each of these LFP power bands shows significant correlation
with trial accuracy even before the decision has been evaluated, suggesting that they encode
the animal’s confidence in its response. Both also continue to show that correlation after reward
consumption.
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units encode Novel learning) or during feedback (such as when
the NBM LFP encodes reward anticipation) could differentially
alter the underlying learning, or cognitive, state.
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