Skip to main content
. 2018 Feb 23;9:802. doi: 10.1038/s41467-018-03090-6

Fig. 2.

Fig. 2

Adult zebrafish and medaka orient with respect to the direction of a magnetic field also in absence of visible light. ac Schematics of the experimental setup and procedure.  a, b In the experiment, fish are automatically released from the center of an arena and Helmholtz coils are used to deflect (change in declination) the GMF 45° towards West (NW, red) or East (NE, purple). c Before the experiment, fish are acclimated in white light (WL) or in darkness (D) for 60 min and tested under WL or infrared illumination (D-IR). Each fish is tested in randomized order under both conditions that differ by a 90° deflection of the MF . d For zebrafish, the bearing (BE) is determined as the angle from the center of the arena to the point where the fish crosses a virtual circle (radius of 6 cm). The change in preferred direction, i.e. the angular difference between the two conditions (NE−NW) is calculated for each fish. e, f Distribution of the angular differences for zebrafish (AB strain) in WL and D-IR. g For medaka, the spatial preference (SP) is assessed during the second minute after release. h Distribution of the angular differences for medaka (Cab strain) in D-IR. Each dot in the circular plots represents the individual angular difference, the arrow indicates the mean vector, double arrows indicate axial symmetry computed by doubling the angles. The number of fish, the mean angle with the 95% confidence interval (CI), and p values for the Rayleigh test for circular uniformity as well as the V-test (testing for circular uniformity against the alternative hypothesis of a mean angular difference of 90°) are reported. Statistical tests were performed on the axial data when such symmetry was observed