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Advanced glycation end-products (AGEs) and its cell receptor
RAGE (receptor for AGEs) have been implicated in the
pathogenesis of numerous diseases (atherosclerosis,1 cor-
onary artery disease,2,3 hypertension,4,5 cerebral vascular
disease,6 hyperthyroidism,7 Alzheimer disease,8 and end-
stage renal disease,9 and diabetes).10,11 The adverse effects of
AGEs are through nonreceptor- and receptor-mediated me-
chanisms. Nonreceptor-mediated mechanisms include en-
hanced synthesis of extracellular matrix, trapping of
subendothelial low-density lipoprotein (LDL), and cross-
binding with collagen. In receptor-mediated mechanism,
there is an interaction of AGEs with RAGE resulting in the

increased generation of oxygen radicals, activation of nuclear
factor kappa B (NF-κB), and increased expressions of pro-
inflammatory cytokines and cell adhesion molecules.7 AGEs
and AGE–RAGE interaction cause potential biological da-
mage and hencewehave coinedAGE andRAGE as “stressors.”
Stress is defined as a process of altered biochemical home-
ostasis produced by physiological or psychological or envir-
onmental stressors.12 The body is equipped with anti-AGE–
RAGE defense mechanisms such as degradation of AGE with
enzymes and AGE receptor, and circulating soluble AGE-
receptor called sRAGEwhich competeswith RAGE for AGE, to
counterbalance the effects of stressors (AGE and RAGE) and
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Abstract Adverse effects of advanced glycation end-products (AGEs) on the tissues are through
nonreceptor- and receptor-mediated mechanisms. In the receptor-mediated mechanism,
interaction of AGEs with its cell-bound receptor of AGE (RAGE) increases generation of
oxygen radicals, activates nuclear factor-kappa B, and increases expression and release of
pro-inflammatory cytokines resulting in the cellular damage. The deleterious effects of AGE
and AGE–RAGE interaction are coined as “AGE-RAGE stress.” The body is equipped with
defense mechanisms to counteract the adverse effects of AGE and RAGE through
endogenous enzymatic (glyoxalase 1, glyoxalase 2) and AGE receptor-mediated (AGER1,
AGER2) degradation of AGE, and through elevation of soluble receptor of AGE (sRAGE).
Exogenous defense mechanisms include reduction in consumption of AGE, prevention of
AGE formation, and downregulation of RAGE expression.We have coined AGE and RAGE as
“stressors” and thedefensemechanismsas “anti-stressors.”AGE–RAGEstress is definedas a
shift in the balance between stressors and antistressors in the favor of stressors. Measure-
ments of stressors or antistressors alone would not assess AGE–RAGE stress. For true
assessment of AGE–RAGE stress, the equation should include all the stressors and
antistressors. The equation for AGE–RAGE stress, therefore, would be the ratio of AGE þ
RAGE/sRAGE þ glyoxalase1 þ glyoxalase 2 þ AGER1 þAGER2. This is, however, not
practical in patients. AGE–RAGE stress may be assessed simply by the ratio of AGE/sRAGE.
A high ratio of AGE/sRAGE indicates a relative shift in stressors from antistressors,
suggesting the presence of AGE–RAGE stress, resulting in tissue damage, initiation, and
progression of the diseases and their complications.
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we have coined this as antistressors. Excessive levels of AGE
and RAGE because of increased consumption of AGE, defi-
ciency in the AGE degradative enzymes or receptors, reduced
amount of sRAGE, and increased expression of RAGE would
lead to AGE-RAGE stress. A shift in the balance between
stressors (AGE and RAGE) and antistressors in favor of
stressors, we have coined as AGE–RAGE stress. The ratio of
AGEs/sRAGE has been reported as one of the important risk
marker or biomarker for disease states.13 AGE/sRAGEmay be
one of themost important determinants of AGE–RAGE stress.

This review focuses on the AGE–RAGE stress, stressors,
and antistressors. It also discusses the consequences of AGE–
RAGE interaction and defense mechanisms such as degrada-
tion of AGE, downregulation of RAGE, enhancement of levels
of sRAGE, and lowering of AGEs levels.

Stressors (AGE and RAGE)

1. AGEs
AGEs comprise of chemical structures such as N-ε-car-
boxymethyl-lysine (CML), N-ε-carboxyethyl-lysine (CEL),
pyrraline, pentosidine, and argpyrimidine.14 CML mod-
ifications of proteins are predominant AGEs.15 AGEs are
heterogeneous groups of irreversible adducts formed by
nonenzymatic glycation and glyoxidation of proteins,
lipids, and nucleic acid with reducing sugars.16,17 There
are two sources of AGEs, in vivo, endogenous, and exo-
genous. Endogenous AGE formation in normal individual
occurs slowly. Hyperglycemia accelerates formation of
AGEs.18 Endogenous sources comprise of glycation, polyol
pathway, and glyoxidation. Glycation is nonenzymatic

reaction of proteins, lipids, and nucleic acids with redu-
cing sugars.16,17 In the polyol pathway, aldolase reductase
or sorbitol dehydrogenase acts on glucose to form inter-
mediary products which bind to proteins to form
AGEs.19,20 Formation of AGE through glyoxidation path-
way involves reactive oxygen species (ROS). Generation of
superoxide anions in the mitochondria or redox-sensitive
mechanism that generates hydroxyl radicals forms
glyoxal and methylglyoxal (MGO). These agents react
with different biomolecules to produce AGEs.20,21 Exo-
genous sources of AGEs include foods high in AGE content
(red meat, cheese, crispy brown crackers, fatty cookies
sweetened with sugars, cream, and animal fat),22 cooking
at high temperature in dry heat (frying, broiling, grilling,
roasting, and baking),23 and cigarette smoking.24

In humans, there is a significant increase in plasma levels
of AGEswithin 2 hours following oral intake of single AGE-
rich diet.25 There is a positive correlation between dietary
AGE content and serum/tissue levels of AGEs.26 About 10%
to 30% of AGE (CML) is absorbed in the gastrointestinal
tract and is delivered to the liver and other organs.27

Thirty-three percent of the absorbed AGEs is excreted in
the urine and the rest accumulates in the body.28

2. Receptor for AGE
There are mainly three receptors for AGEs: (a) full-length
RAGE, (b) cleaved RAGE (cRAGE), and (c) endogenous se-
cretory RAGE (esRAGE). Full-length RAGE (►Fig. 1) is a
multiligand receptor and amember of the immunoglobulin
superfamily of cell surface molecule.29 It has three extra-
cellular domains including v-type that possesses ligand

Fig. 1 Diagrammatic representation of full-length RAGE and sRAGE. Full-length RAGE consists of intracellular tail, transmembrane domain, and
extracellular domain, comprising of C1, C2, and V domain. V domain binds with AGE. sRAGE is comprised of cRAGE and esRAGE. Both cRAGE and
esRAGE lack transmembrane domain and intracellular tail. AGE, advance glycation end-product; RAGE, cell bound receptor for AGE; sRAGE,
soluble receptor for AGE; cRAGE, cleaved RAGE; esRAGE, endogenous secretory RAGE; C, constant; V, variable.
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binding properties, and two c-type immunoglobulin do-
mains C1 and C2, a transmembrane helix, and a short
cytosolic tail.30 The fourth transmembrane domain anchors
RAGE in the membrane and is connected to the highly
charged fifth intracellular domain that interacts with cyto-
solic transduction molecule. RAGE is expressed in a wide
range of cells including monocytes, macrophages, endothe-
lial cells, adipocytes, and podocytes. Besides AGEs, S100,
calgranulin,31 amphoterin32 amyloid-B, and other fibrillar
proteins33 can bind with RAGE.

Adverse Effects of AGE and RAGE
AGE induces adverse effects in the body by two separate
mechanisms: (a) nonreceptor and (b) receptor-mediated
mechanisms.

a. Nonreceptor-mediated mechanism
Functional properties of extracellularmatrix are affected by
AGEs. Accumulation of AGEs on protein of extracellular
matrix leads to the formation of cross-links, which traps
other local macromolecules.34 The properties of collagen
are altered through AGE–RAGE intermolecular covalent
bond or cross-linking.35 Cross-linking of AGEs on collagen
and elastin increases the extracellular matrix area which
increases the stiffness of the artery.36 Glycation increases
the synthesis of collagen.37 Cross-linking makes the col-
lagen insoluble to the hydrolytic enzymes.38 AGE-linked
collagen is less susceptible to hydrolytic turnover and
becomes stiff. Cross-linking of AGE with elastin reduces
the elasticity of arterioles. Cross-linking increases the
synthesis of collagen and reduces the quantity of elastin.
AGE cross-linking with protein depends upon both sugar
concentration and turnover rate of body proteins. LDL is
sensitive to AGE cross-linking resulting in decreased uptake
by LDL receptors.39 AGE cross-linking of proteins of lens
induces functional changes in lens17 and AGE cross-linking
of theproteinsof renal tissue induces thickness of basement
membrane of glomerulus,40 andmany other organs (retina,
kidney nerves, hypertension, and atherosclerosis.4,41

Glycation affects apoprotein B and phospholipid component
of LDL resulting in functional alteration in LDL clearance and
increased susceptibility to oxidative modification.42,43 Gly-
cation of LDL decreases its recognition by LDL receptors.44

Glycated LDL has the capacity to stimulate the mitogen-
activated protein kinase (MAPK) signaling pathways in vas-
cular smoothmuscle cells that increase the cell proliferation
or differentiation.40,45 AGEs interfere with the reverse cho-
lesterol transport through suppressionof scavenger receptor
B1 (sR-B1)-mediated uptake of cholesterol ester from high-
density lipoprotein (HDL) by liver and sR-B1-mediated cho-
lesterol efflux fromperipheral cells.46 AGE induces accumu-
lation of cholesterol and its ester in macrophages in vitro.47

Glycated albumin alters the binding of drugs in plasma in
diabetes.48 It plays role in the platelet activation and
aggregation.49 Glycated fibrinogen impairs fibrinolysis50

and increases fibrin gel permeability resulting in the
formation of less thrombogenic fibrin network.51 Glyca-
tion of immunoglobulin (IgG) is associated with inflam-

mation and is target for auto-antibodies in rheumatoid
arthritis.52 Among all the AGEs, MGO is the major im-
mune-suppressant in patients with diabetes.52

b. Receptor-mediated mechanism
The effects of interaction of AGEs with RAGE are summar-
ized in►Fig. 2. InteractionofAGEswithRAGE results in the
generation of ROS and activation of NF-κB. AGE–RAGE
interactiondirectly increases thegenerationofROSthrough
activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase,53which in turn activates NF-κB. Binding
of AGEs with RAGE stimulates various signaling pathways
including MAPKs, extracellular regulated kinases (Erk) 1
and 2, phosphatidyl-inositol 3 kinase/c-Jun-N-terminal
kinase, p21 Ras, and the Janus kinases.54,55 The net result
of these signaling mechanisms is the activation of NF-κB
and subsequent transcription of numerous proinflam-
matory genes shown in ►Table 1.31,35,56 Interaction of
AGEs with RAGE in monocytes induces chemotaxis
which accelerates the migration of monocytes into sub-
endothelial space.57,58 Binding of AGEs with RAGE in
monocyte-macrophage increases the expression and
generation of interleukin 1β (IL-1β), tumor necrosis
factor-α (TNF-α), platelet-derived growth factor (PGDF),
and insulin-like growth factor 1 (IGF-1)59–61 and in-
creases uptake of glycated LDL.62 Interaction of AGEs
with RAGE decreases endothelial barrier function and
hence increases permeability of endothelial cell
layer63,64 and vascular smooth muscle cells proliferation
and production of fibronectin.65,66

Antistressors (AGE–RAGE Defense Mechanism)
The body is equipped with defense mechanisms to counter-
act the deleterious effects of AGE–RAGE stressors. These
antistressors can be classified into two types: endogenous
and exogenous.

1. Endogenous antistressors
Endogenous antistressors include enzymatic degradation
of AGEs, AGE receptor-mediated degradation of AGE, and
sRAGE.
a. Enzymatic degradation of AGEs

Glyoxalase-1 (GLO1) and glyoxalase-2 (GLO2) degrade
reactive dicarbonyls prior to the formation of AGEs.
Reactive dicarbonyls, MGO, react with reduced glu-
tathione to form hemithioacetal.67 The hemithioacetal
is converted to s-2-hydroacetalglutathione by GLO1.
GLO2 converts s-2-hydroacetalglutathione to α-hydroxyl
and releases reduced glutathione.68 Overexpression of
GLO1 in endothelial cells in vitro under hyperglycemic
conditions reduced the levels of dicarbonyls69 and this
effect was associated with correction of the defects in
angiogenesis70 and vascular relaxation.71 Similarly, over-
expression of GLO1 in lens and retinal capillary pericytes
respectively protected against hyperglycemia-induced
protein modifications72 and apoptosis.73 GLO1 is the
key enzyme in antiglycation defense system because
this is a rate-limiting step in the glyoxalase pathway
and it prevents the storage of reactive dicarbonyls.74
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b. AGE-receptor-mediated degradation of AGE
BesidesRAGE,AGEcanbindtoothercell surface receptors
such as advanced glycation end-products receptors
(AGER1,AGER2,AGER3). Thefirst cell receptordiscovered
in connection with AGE endocytosis was AGER1.75 This
protein has significant AGE-specific binding capacity and
hence was named AGER1.Although AGER2 does not
directly binds with AGE, it is effectively phosphorylated

by AGE and has been suggested to play a role in early
stages of AGE signaling.75 AGER3 has a high affinity to
bindwith AGE.76 Its exact role is not known. However, it
hasbeensuggestedthatAGER3mayregulate theturnover
of AGE and maintain the integrity of tissue.77 It is
upregulated in hyperglycemia and after exposure to
AGEs.78AGER1 has been studied in detail. AGER1 protein
is present in most of the cells and tissues including
macrophages,79 mesangial cells,80 and mononuclear
cells81 mediate the uptake and degradation of AGE by
kidney.82 AGER1 accelerates the uptake and removal of
AGE and blocks cellular AGE–RAGE-mediated generation
of ROS and proinflammatory cytokines.80,83 AGER1 also
counteracts AGE-induced oxidative stress through inhi-
bition of RAGE signaling.80,83 Degradation of AGE by
AGER1 produces AGE peptides which normally filter
through glomerular membrane. The filtrate undergoes
variable degree of tubular reabsorption or further cata-
bolism in the proximal tubules and is excreted in the
urine.84 There is an inverse correlation between serum
levels of AGE and renal function.85 Renal disease is
associated with reduced excretion of AGEs.86 Since
AGER1 and RAGE compete for AGE, low levels of AGER1
would increase the binding of AGEwith RAGE and hence
increase in the oxidative stress and inflammation.
There is a downregulation of AGER1 by AGE-rich diet83

and diabetes.87 There is a reduction in both RAGE and
AGER1 with consumption of low AGE-rich diet. Also,
there is an inverse correlation between AGER1 and
intracellular levels of AGEs and positive correlation
between AGER1 and urinary AGE levels in nondiabetic
individuals.88However, the levels of RAGE arehighwhile

Fig. 2 The effects of interaction AGE with RAGE or sRAGE. Interaction of AGE with RAGE increases ROS, NF-κB, VCAM-1, growth factor,
and cytokines. Interaction of AGE with sRAGE counteracts the effect of AGE–RAGE interaction. ", increase; (-), decrease; AGE, advance glycation
end-product; RAGE, cell bound receptor for AGE; sRAGE, soluble receptor for AGE; ROS, reactive oxygen species; NF-κB, nuclear factor kappa B;
VCAM-1, vascular cell adhesion molecule 1; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; PDGF, platelet-derived growth factor;
IGF-1, insulin-like growth factor-1.

Table 1 Increased gene expressions of some molecules by
activated NF-κB16

Cell adhesion molecules ELAM-1

ICAM-1

VCAM-1

Cytokines and chemokines IL-1, IL-1β, IL-2, IL-6, IL-8,
TNF-α, G-CSF, M-CSF, MCP-1

Acute phase proteins Serum amyloid A precursor

Angiotensinogen

Complement factor C4

Compliment factor B

Others Nitric oxide synthase

Hemeoxygenase-1

Growth factors

Abbreviations: ELAM-1, endothelial leukocyte adhesion molecule 1;
G-CSF, granulocyte colony stimulating factor; ICAM-1, intercellular
adhesion molecule 1; IL, interleukin; MCP-1, monocyte chemotactic
protein; M-CSF, monocyte colony stimulating factor; NF-κB, nuclear
factor kappa B; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell
adhesion molecule-1.
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that of AGER1 reduced in diabetic patients in spite of full
antidiabetic therapy.89 With the consumption of low
AGE-rich diet for 4 months, the levels of AGER1 were
restored, while those of RAGEwere suppressed.89 These
data suggest that the reduction in AGER1 gene contri-
butes to the complications in diabetes due to elevation of
AGE and consequences of AGE–RAGE interaction. It has
been reported that interruption of AGER1-dependent
uptake of AGEs and subsequent degradation accelerates
glomerular renal pathologies in spontaneous nonobese
diabetic mice.87 It has also been shown that the patients
with severe diabetic complications have reduced expres-
sion of AGER1 in circulating mononuclear cells and
elevated serum levels of AGEs.81 AGER1/RAGE ratio
may serve as a biomarker for pathogenesis of AGE–
RAGE-mediated disease conditions. High ratio of
AGER1/RAGEwould protect from the deleterious effects
of interaction of AGE with RAGE.
Metabolic states including diabetes, hyperlipidemia,
uremia, and aging are associated with upregulation of
RAGE, AGER2, and AGER3, most probably because of
elevation of AGE levels in these conditions. However,
AGER1 expression is dependent on AGE levels.81 Re-
duction in the expression of AGER1 in human mono-
cytes is associated with elevated levels of sRAGE in
patients with severe diabetic complications.81 There
was a positive correlation between expression of
AGER1 and serum levels of sRAGE in complication-
free diabetic patients suggesting that sRAGEmodulates
macrophage/monocyte AGER1.81

c. Soluble receptor for AGE
There are three well-described receptors for AGE: full-
length RAGE, cRAGE, and esRAGE. Full-length RAGE has
been described in the detail in the receptor for AGE
(RAGE) section of this review. sRAGE, cRAGE, and
esRAGE are diagrammatically presented in ►Fig. 1.
cRAGE is proteolytically cleaved from full-length
RAGE.90 esRAGE is formed from alternative splicing
of full-length RAGE mRNA.91 Measurement of total
soluble RAGE (sRAGE) includes cRAGE and esRAGE
(sRAGE ELISA kit), while measurement of esRAGE
measures only esRAGE (esRAGE ELISA kit). Since total
sRAGE includes both cRAGE and esRAGE, cRAGE is
determined by subtracting esRAGE from sRAGE. Serum
sRAGE is approximately five times higher than esRAGE
in healthy subjects.9,92,93

cRAGE and esRAGE lack cytosolic tail and transmem-
brane domain and circulate in the blood. They bind with
AGEbut does not activate intracellular singling.93 Soluble
receptors are competitive inhibitor of AGE–RAGE inter-
action and may also serve as scavenger receptor for
circulating AGEs.94 sRAGE competes with full-length
RAGE for binding with AGEs and functions as decoy,
and hence has a cytoprotective effects against adverse
effects of AGE–RAGE interaction. AGEs interact with
sRAGE before they interact with full-length RAGE.95

Low levels of serum sRAGE will allow high levels of

AGEs to interact with RAGE and hence deleterious effect
on the cells. Low serum levels of sRAGE have been
implicated in the pathophysiology of numerous
diseases.1–11However, diabetes andchronic renaldisease
and their complications are associatedwith high levels of
serum sRAGE.9,13 One would have expected that high
levels of sRAGEwouldhaveprotected the developmentof
diabetes, chronic kidney disease. The reason for this
discrepancy may be due to the elevation of levels of
AGEs greater than the elevation of serum levels of sRAGE.
Prasad et al9,13 have reported that in the end-stage renal
disease there is an increase in levels of both AGEs and
sRAGE more so in AGEs than sRAGE.9

It has been reported by Zhou et al96 that the levels of
AGEs and RAGE in carotid arterial wall are elevated in
Zucker diabetic rats. They also showed that the balloon
injury in carotid artery of these rats further increased
the levels of AGE and RAGE and produced neointimal
hyperplasia. Therapy with sRAGE reduced neointimal
growth significantly. Treatment of diabetic apoE-defi-
cient mice with sRAGE completely suppressed athero-
sclerosis.97McNair et al98have reported that lowserum
levels of sRAGE are a predictor of restenosis following
percutaneous coronary intervention (PCI). These data
suggest that sRAGE exerts an antagonist effects by
binding RAGE ligands and preventing their signaling
through membrane bound RAGE.

2. Exogenous antistressors
Exogenous antistressors can be categorized as follows: (I)
reduction in AGE consumption, (II) cessation of smoking,
(III) prevention of AGE formation, (IV) AGE breakers, (V)
downregulation of RAGE expression, (VI) elevation of
sRAGE, (VII) administration of recombinant sRAGE.

I. Reduction in AGE consumption
Consumption of AGE-rich diet such as read meat,
cheese, cream, butter, animal fat, and sugars should
be reduced. They increase the levels of AGEs in the
body.23

II. Cessation of smoking
Cigarette smoking should be stopped because it in-
creases the serum levels of AGEs.24

III. Prevention of AGE formation
The measures for the prevention of formation of AGE
formation are summarized in ►Table 2.

a. Cooking
Avoid cooking at high temperature with dry heat (fry-
ing, broiling, grilling, roasting, and baking). Cook at low
temperature in moist heat.23

b. Agents that reduce formation of AGEs

i. Acidic ingredients (lemon juice, vinegar).99

ii. Phytochemicals from pomegranates,100 berries and
grapes,101 inhibit the formation of AGEs.

iii. Drugs:
Aminoguanidine, a hydralazine compound, inhibits
formation of AGEs.102 It has been reported that
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aminoguanidine prevents the diabetic vascular compli-
cations in diabetic animals.103 In a placebo controlled
clinical trial, aminoguanidine reduced glomerular fil-
tration rate and proteinuria and prevented deteriora-
tionof retinopathy in diabetic patients.104Action II trial
reported that aminoguanidine produces side effects
such as flu-like symptoms, hepatic abnormalities, gas-
trointestinal disorders, and anemia.105 Further clinical
trials were terminated because of concern over the side
effects.105

Angiotensin-convertingenzyme(ACE) inhibitor ramipril
reduces fluorescent AGE in diabetic patients.106 Angio-
tensin II receptor blockers (telmisartan and losartan)
reduced the formation of AGEs in cell culture.107 Valsar-
tan108 and candesartan109 lowered the serum levels of
AGE in hypertensive patients with diabetes. Atorvasta-
tin110 and cerivastatin111 reduced the serum levels of
AGE indiabetic orprediabeticordiabetickidneydisease.
Biguanide derivative (metformin), an antidiabetic drug,
reduces the serum levels of AGE in women with poly-
cystic ovary syndrome.112 Thiazolidine derivative (pio-
glitazone), an antidiabetic drug, inhibits AGE formation
by trapping dicarbonyl compounds.113 There are other
drugs including α-lipoic acid,114 aspirin,115 taurine,116

pentoxifylline,113 resveratrol,117 and curcumin118 that
are potential inhibitors of AGE formation.

iv. Vitamins
Certain vitamins reduce the formation of AGEs. Benfo-
tiamine (vitamin B1)119 and pyridoxamine, a natural
form of vitamin B6,120 vitamin C,121 vitamin D,122 and
vitamin E,123 reduce the formation of AGEs.

v. AGE cross-link breaker
AGE cross-link breaker fragments α-carbonyl com-
pounds by cleaving the carbon–carbon bond between
carbonyls. Alagebrium (ALT-711) nonenzymatically
breaks the established cross-linking AGEwith adjacent
long-lived collagenandelastin124andreduces the levels
of AGE. It has also been shown to reduce arterial
stiffness.125

IV. Downregulation of RAGE expression
Downregulation of RAGE expression would reduce the
availability of RAGE to interact with AGE resulting in
reduction of adverse effects of AGE–RAGE
interaction. ►Table 3 shows the agents that reduce the
expressionofRAGE. Instatingroups, simvastatin inhibits
the expression of RAGE via decreases in the myeloper-
oxidase-dependent formation of AGEs.126 RAGE expres-
sion is downregulated in vitro by atorvastatin.127

Angiotensin II receptor blockers, telmisartan128 and
candesartan,129 downregulate the expression of RAGE.
Metformin, a biguanide derivative used in the treatment
ofdiabetes, downregulates theexpressionofRAGE in the
vascular endothelium.130 Thiazolidinediones (pioglita-
zone, rosiglitazone) downregulate the expression of
RAGE in human endothelial cells.131 Nifedipine, a cal-
cium channel blocker, reduces the RAGE expression in
vascular endothelium exposed to AGE.132 Curcumin, a
condiment used in cooking, downregulates the RAGE
expression in cultured hepatic cells.133 Resveratrol
downregulates the expression of RAGE in the vascular
smooth muscle cells.134,135

V. Elevation of soluble receptors (sRAGE, esRAGE)
The drugs that affect the expression and levels of
soluble receptors (sRAGE, esRAGE) are shown
in ►Table 4. ACE inhibitors, ramipril, upregulated the

Table 2 Agents that reduce the formation of AGEs

Cooking Cooking food in moist heat23

Acidic ingredients Lemon juice and vinegar99

Phytochemicals Berries, grapes,101 pomegranate100

Drugs Aminoguanidine Pimagedine102

ACE-inhibitor Ramipril106

Ang II-receptor blockers Telmisartan,107 losartan,107 valsartan,108 candesartan109

Statins Atorvastatin,110 cerivastatin111

Antidiabetic drugs Metformin,112 pioglitazone113

Other drugs Aspirin,115 pentoxifylline113

Vitamins Benfotiamine (B1),119 pyridoxamine (B6),120 vitamin C,121 D,122 E123

Other α-lipoic acid,114 resveratrol,117 curcumin118

Abbreviations: AGE, advance glycation end-product; ACE, angiotensin-converting enzyme; Ang II, angiotensin II.

Table 3 Agents that downregulate the expression of receptor
for advanced glycation end-products

Statins Atorvastatin,127 Simvastatin126

Angiotensin II-receptor
blockers

Telmisartan,128 Candesartan129

Biguanidine derivatives Metformin130

Thiazolidinediones Rosiglitazone, pioglitazone,131

Calcium channel blocker Nifedipine132

Others Curcumin133
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expression of sRAGE in the aorta of streptozotocin-
induced diabetic rats and increased the serum levels of
sRAGE.136 Perindopril increased the serum levels of
sRAGE in patients with type 1 diabetes.110

Among the statins, pitavastatin and pravastatin ele-
vated the serum levels of sRAGE in angina patientswith
coronary atherosclerosis.110 Atorvastatin increased the
serum levels of sRAGE and esRAGE in hypercholester-
olemic patients with type 2 diabetes and upregulated
the expression of sRAGE and esRAGE in THP1 cells in
vitro.137 Lovastatin increases the sRAGE levels by in-
ducing RAGE shedding.138 Fluvastatin stimulates the
production of sRAGE and esRAGE in vitro.138 Antidia-
betic drug, metformin, increased the serum levels of
sRAGE in patients with metabolic syndrome.139 Insulin
increased the serum levels of sRAGE and esRAGE in
Chinese patients with type 1 diabetes.140 Insulin also
stimulated the shedding of sRAGE from membrane-
bound receptor for AGE in cell culture.140 Rosiglitazone,
a thiazolidine derivative, increased the serum levels of
sRAGE and esRAGE.141

VI. Exogenous administration of sRAGE
Exogenous administration of sRAGE suppressed devel-
opment of atherosclerosis and restenosis, prevented
destabilization of vulnerable plaques, and reduced
ischemia reperfusion-induced myocardial injuries.16

Administration of recombinant sRAGE protected is-
chemic stroke in animal model,142 reduced carotid
artery stenosis in mice,66 and completely suppressed
atherosclerosis in apoE-deficient mice.97 Possibility
exists that administration of exogenous sRAGE would
raise the serum levels of sRAGE which will combine
with AGE, resulting in the reduced interaction of AGE
with RAGE and hence reduction in pathophysiology of
the disease.

Assessment of AGE–RAGE Stress
As mentioned earlier, AGE–RAGE stress is defined as a shift in
balancebetweenstressors andantistressors in favorof stressors
(►Fig. 3). Measurements of stressors (AGE, RAGE) or antistres-
sors (degradation of AGE by GLO1, GLO2, AGER1, and AGER 2),
and sRAGE would not measure AGE–RAGE stress. A formula
using all stressors and antistressors would provide a true AGE–
RAGE stress. A ratio of AGE þ RAGE/GLO1 þ GLO2 þ AGER1
þ AGER2 þ sRAGE would provide a true index of AGE–RAGE
stress. This ratio of AGE–RAGE stress can be determined in

animal studies. It would be cumbersome to use this ratio in
human beings. AGE and sRAGE can be measured in the blood
samples from human; however, human tissues are required to
measure the receptors such as AGER1, AGER2, and RAGE and
that is not easy. We have, therefore, suggested that the ratio
of AGE/sRAGE would be a simple and feasible measure of
AGE–RAGE stress. An increase in the ratio of AGE/sRAGEwould
indicate a relative shift in stressors from antistressors, suggest-
ing thepresenceofAGE–RAGEstressatcellularandorgan levels.
AGE/RAGE ratio has been suggested as a risk marker of disease
process.13 Increased ratio of AGE/sRAGE has been implicated in
pathogenesis of restenosis following PCI98 hyperthyroidism,7

and end-stage renal disease.9 The sensitivity, specificity, posi-
tive and negative predictive value, and accuracy of AGE/sRAGE
should be determined with large number of control and a
particular group of patients. Using receiver operating charac-
teristics (ROC) curve analysis, we have reported that the
sensitivity and specificity of AGE/sRAGE ratio were 73% and
70%, respectively, in identifying patients with hyperthyroid-
ism.7 The sensitivity, specificity, positive predictive value, and
negative predictive value of AGE/sRAGE ratio with optimal cut
value of 2.75 were 84.88%, 80.95%, 94.81%, and 56.67%, respec-
tively, in identifying patientswith end-stage renal disease.9 The
sensitivity, specificity, positive predictive value, negative pre-
dictive value, and accuracy of AGE/sRAGE ratiowere 100%,83%,
85%, 100%, and 91%, respectively, in predicting restenosis
following PCI.98 These values were obtained using methods
described by Glas et.al.143 The data suggest that the sensitivity,
specificity, positive predictive value, negative predictive value,
and accuracy of the ratio of AGE/sRAGE in identifying the risk
factororpredicting thediseaseconditionappear tobeexcellent.
The AGE/sRAGE ratio is, therefore, an appropriate measure of
AGE–sRAGE stress.

Table 4 Agents that elevate sRAGE expression

Angiotensin-converting
enzyme inhibitors

Ramipril,136 Perindopril136

Statins Atorvastatin,137 pitavastatin,110

pravastatin,110 fluvastatin,138

lovastatin138

Antidiabetic drugs Rosiglitazone,141 metformin,139

insulin140

Abbreviation: sRAGE, soluble receptor for advance glycation
end-product.

Fig. 3 Schematic representation of AGE–RAGE stress, stressors, and
antistressors. AGE, advance glycation end-product; RAGE, cell bound
receptor for AGE; sRAGE, soluble receptor for AGE; AGER1, advance
glycation end-product receptor 1; AGER2, advance glycation
end-product receptor 2; GLO1, glyoxalase 1; GLO2, glyoxalase 2.
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Conclusions

Stress is defined as a process of altered biochemical home-
ostasis produced by physiological, psychological or environ-
mental stressors. In the present context, AGE and RAGE are
stressors, and GLO1, GLO2, AGER1, and AGER 2 which degrade
AGE and sRAGE are antistressors. Low levels of AGEs are due to
reduction in the formation and consumption of AGE and
degradation of AGE enzymatically (GLO1, GLO2) and through
receptors (AGER1, AGER2). AGE–RAGE stress occurs when
excess AGE and RAG are produced that could overwhelm the
normal antistressors. In other word, AGE–RAGE stress is de-
fined as a shift in the balance between stressors and antistres-
sors in favor of stressors. Measurements of only stressors or
antistressors would not provide an index of AGE–RAGE stress.
The ratio of AGE þ RAGE/sRAGE þ GLO1 þ GLO2 þ AGER1 þ
AGER2 would be a true measure of AGE–RAGE stress. The
measurement of this ratio is very feasible in animal studies.
However, the measurement of this ratio of AGE–RAGE stress is
not feasible in humans because one has to take tissue from
human to measure RAGE and AGER1 and AGER2. We have,
therefore, suggested thatAGE/sRAGE ratiowouldbe simple and
feasible index of AGE–RAGE stress in clinical practice and for
experimental studies. It is concluded that AGE/sRAGE ratio is
one of the important determinants of AGE–RAGE stress. A high
ratio would indicate a relative shift in stressors from antistres-
sors suggesting the presence of AGE–RAGE stress that may
partly be involved in the pathogenesis of numerous diseases
and their complications.
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