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Abstract

Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by 

abnormal development of the central nervous system and whose symptomatology includes 

cognitive, emotional, sensory, and motor impairments. The identification of causative genetic 

defects has allowed for creation of transgenic NDD mouse models that have revealed 

pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific 

manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, 

Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and 

function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, 

attention, and executive function. Recent advances in technologies for functional circuit mapping, 

including tissue clearing, viral vector-based tracing methods, and optical readouts of neural 

activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools 

have not been widely applied to NDD research. Here, we will review recent findings exploring 

dopaminergic function in NDD models and discuss the promise of new tools to probe NDD 

pathophysiology in these circuits.
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Introduction

In the last decade, the widespread adoption of technologies for functional circuit mapping in 

animal models has greatly enhanced our ability to understand the input-output relationships 

between populations of neurons and determine their function in vivo. These include 

techniques for the visualization, reconstruction, and analysis of intact circuits across micro- 

and macroscales. Examples include serial section electron microscopy [1,2], the Brainbow 

toolkit [3,4] and intersectional labelling strategies [5,6], improved neuroinformatic tools for 

neurite tracing [7], tissue clearing [8,9], light sheet microscopy [10,11], and serial two-

photon tomography [12,13]. Additionally, optogenetic [14] and chemogenetic [15] actuators, 

genetically encoded indicators of neuronal activity [16,17], and advanced in vivo imaging 

modalities [18–23] have allowed for the functional deconstruction of genetically defined 

circuits in order to probe their contributions to complex behaviors. The development of viral 

vectors that can deliver transgenes in a pathway- and cell type-specific manner [24–28] or 

broadly transduce neurons across the CNS [29] have greatly facilitated efforts to 

anatomically and functionally characterize complex neurobiological systems in both basal 

and disease states.

New tools for ‘connectomic’ or circuit-centered research that can survey large scale 

functional connectivity patterns are particularly well suited to the study of 

neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD), where 

diverse genetic and environmental insults during neurodevelopment can vastly perturb 

circuit architecture and physiology across brain areas [30,31]. While the neural substrates of 

ASD symptomatology are multifaceted, mesencephalic dopamine systems, consisting of A8 

retrorubral, A9 nigrostriatal, and A10 mesocorticolimbic projections [32], represent circuits 

of interest given their potential contribution to several common ASD symptoms, including 

perseverant interests, stereotyped movements, impaired attention and executive function, and 

difficulty with social interactions [33]. Several recent studies implicate these circuits in 

behavioral phenotypes observed in rodent NDD disease models, including Angelman 

syndrome (AS), Rett syndrome (RS), fragile X syndrome (FXS), neurofibromatosis type 1 

(NF1), etc. (Table 1), yet widespread adoption of new tools for functional circuit mapping 

has yet to occur in these models. In this review, we will highlight common patterns of 
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cellular and circuit level phenotypic variation across NDD mouse models and discuss the 

promise of recent neurotechnological advances such as whole brain tissue clearing and gene 

delivery by systemic viral vectors to further elucidate NDD pathophysiology in 

dopaminergic circuits.

Elucidating abnormal patterns of dopaminergic connectivity in NDD models

Dopaminergic projection neurons are a heterogenous population whose function, activity, 

neurotransmitter content, and pattern of connectivity varies with brain region and connection 

target [34–36]. For example, efferents arising from the midbrain ventral tegmental area 

(VTA) project throughout the extended amygdala [including the nucleus accumbens (NAc)], 

hippocampus, and prefrontal cortex (the mesocorticolimbic pathway) and have been widely 

studied for their role in cognition, reinforcement, and motivation [37,38], while 

dopaminergic populations in the substantia nigra pars compacta (SNc) project primarily to 

the dorsal striatum (nigrostriatal pathway) and are critical for the selection and execution of 

motor programs and habitual behavior [39,40]. Other populations outside the mesencephalon 

include those in the dorsal raphe nucleus (DRN)/ventral periaqueductal gray area (vPAG) 

that affect social behavior, nociception, and arousal [41–43] and tuberoinfundibular 

projections from the hypothalamic arcuate nucleus to the median eminence that regulate 

prolactin release [44].

Mesencephalic dopaminergic neurons in mice arise from a pool of progenitors in the 

midbrain floor plate under the control of numerous signaling molecules, including sonic 

hedgehog, WNT1, engrailed 1 and 2, fibroblast growth factor-8, etc., undergo radial 

migration to their final positions in either the VTA or SNc by embryonic day 13.5, and 

exhibit extensive axonal outgrowth along the anteroposterior and dorsoventral axes with 

synaptogenesis in downstream targets continuing into postnatal development [45]. 

Consequently loss of NDD-associated genes, such as EN2, MECP2, CNTNAP2, and NF1, 

produce hypo- or hyperdopaminergic behavioral phenotypes, such as abnormal motor, 

cognitive, or social behavior, in mouse models by perturbing neuronal maturation, 

migration, or neurite outgrowth [46–53]. Efforts to understand these phenotypes would 

benefit from a comprehensive ultrastructural understanding of how specific NDD-associated 

genetic changes alter dopaminergic circuit architecture and function and inform new 

therapeutic strategies, such as whole brain gene therapy or genome editing, to help 

ameliorate NDD symptomatology.

Several recent viral vector-based labeling methods are likely to greatly enhance our 

understanding of the input-output relationship between dopaminergic efferent and afferent 

connections in NDD models (Table 2A). This toolkit includes a new adenoassociated viral 

(AAV) vector for retrograde labeling (AAV2-retro) [26] (in addition to existing retrograde 

labeling vectors [24,25,27]), intersectional strategies to target individual neuronal 

projections and their inputs (INTERSECT [5], TRIO [6]), mGRASP for fluorescent labeling 

of connections between synaptic partners [54,55], and a single cell projection mapping via 

RNA barcoding (MAP-seq [56]). The recently developed brain-penetrant AAV PHP.eB can 

efficiently deliver viral transgenes to the CNS after peripheral administration (Figure 1A–B) 

[29,57], including Brainbow reagents [58] for multicolor labeling via stochastic expression 
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of fluorescent proteins (XFPs) [57] and genetically encoded calcium indicators (GECIs; 

[59,60]). This tool should also prove useful for non-invasive delivery of optogenetic [14] or 

chemogenetic [15] tools, AAV-optimized CRISPR-Cas9 effectors for genome editing (e.g. 

[61–63]), and therapeutic transgenes across large brain volumes. Additionally, PHP.eB can 

deliver the cargo of interest co-administered with a titratable inducer vector for controlled 

sparseness while maintaining high viral transgene copy number [57], which is beneficial for 

effective neurite tracing with methods such as mGRASP [55] or Brainbow [58] (Figure 1C–

D). This method is also likely to benefit sensors that need sparse expression to reduce 

background fluorescence [64–66].

The utility of viral vector-based mapping tools has been improved by microscopic 

techniques for rapid imaging of large samples, such as light sheet microscopy [11,67,68] or 

high-speed volumetric serial two-photon (STP) tomography [12] (Table 2B), and tissue 

clearing protocols that render biological samples optically transparent for analysis of intact 

circuits in whole brains or thick slices (Figure 2) [8,9]. Several tissue clearing strategies have 

been recently described or refined (Table 2C); these include immersion clearing with high 

refractive index (RI) solutions (SeeDB [69], FRUIT [70], RIMS [71]), clearing via 

hyperhydration (Sca/eS [72], CUBIC [73,74]), hydrogel embedding followed by detergent 

delipidation (CLARITY [75,76], PARS [77,78], PACT [77,78]), and solvent-based clearing 

methods (uDISCO [79]). Clearing methods that build upon water-absorbent CLARITY 

hydrogels to create hyperabsorbant hydrogels have also been implemented to facilitate high 

resolution imaging of small structures, such as individual dendrites or neurites (ExM [80–

82], ePACT [78], and MAP [83]). Hydrogel-based methods preserve endogenous 

fluorescence while maintaining compatibility with tools for proteomic analysis [76,78,82–

84], RNA profiling (smFISH or smHCR probes [71,81,85,86]), and time-stamped 

fluorescent readouts of neuronal activity (e.g. ArcTRAP [87,88]).

Several recent studies have successfully integrated these technologies to probe the structure 

of dopaminergic and related circuits in healthy mice. For example, retrograde labeling, tissue 

clearing, and LSM have been used to parse SNc subcircuit connectivity and function [89], 

identify an anatomically distinct projection to the posterior striatum [90] that preferentially 

encodes novel cue information rather than reward prediction errors [91], and refine our 

knowledge of cholinergic inputs to the SNc and VTA [92]. An input-output analysis of VTA 

connections using TRIO uncovered a novel projection from the anterior cingulate cortex to 

the lateral NAc that produces behavioral reinforcement using an optogenetic intracranial 

self-stimulation paradigm [93].

Bridging the gap between synaptic function and neural circuit dynamics in 

NDD models

One common feature amongst NDDs is that the causative genes (e.g. FMR1 in FXS, 

UBE3A in AS, MECP2 in RS, NF1 in NF1, EN1 and EN2, SHANK genes, etc.) affect 

synapse formation, maintenance, and plasticity in rodent models [94,95]. As such, there 

have been considerable efforts to characterize synapse function in dopaminergic circuits in 

these mice. For example, reduction in SHANK-3, an excitatory synapse scaffolding protein 
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whose loss of function is associated with Phelan McDermid Syndrome (also called 22q13 

deletion syndrome; see [96] for a review) and some non-syndromic ASD cases [97], via 

delivery of a short hairpin RNA (shRNA) into the VTA impairs maturation of excitatory 

synapses and reduces dopaminergic neuron excitability and social preference via increased 

inhibitory tone [98]. Mice modeling 15q11–13 Duplication Syndrome (where Ube3A 

protein levels are increased three-fold) exhibit a loss of sociability due to downregulation of 

the glutamatergic synapse organizer CBLN1 in the VTA [99]. Altered neurotransmitter 

content or release from VTA or SNc neurons in downstream targets has been reported in 

mouse models of AS [100,101], NF1 [46,47], and RS [52,102] and in Cntnap2 knockout 

mice [53]. While there is a large body of research delineating the role of synaptic or 

microcircuit deficits in NDD models [103–106], less is known about how those changes 

alter population dynamics or neuron ensemble activity to produce behavioral phenotypes; 

improvements in optical tools to monitor neural activity across multiple spatial scales 

[59,107–109] should help bridge this divide.

Understanding how networks of interconnected neurons encode and translate relevant 

environmental stimuli into a motivated behavior requires a high throughput readout of 

neuron firing with single-cell resolution. Metal electrodes or electrode arrays are a robust 

tool to measure spiking with high temporal precision and can be coupled with optogenetic 

tools to manipulate activity or infer cell identity (i.e. opto-tagging, [110]). Opto-tagging has 

been used to monitor diverse populations across the CNS (e.g. cortical interneurons 

[111,112], AgRP neurons in the arcuate nucleus [113], dopaminergic neurons in the VTA 

[114], etc.), yet this technique is limited in the number of neurons it can sample and may not 

be suitable for all populations due to the challenges in efficiently and accurately opto-

tagging (e.g. cortical pyramidal neurons), as well as genetically similar populations that are 

too sparse or dense to be reliably identified. In contrast, optogenetic stimulation of 

dopaminergic circuitry during blood oxygen level dependent contrast (BOLD) fMRI 

imaging can approximate mesocorticolimbic or nigrostriatal network activity in rodents 

[115–117], yet this technique lacks both cellular resolution and temporally precise 

neurophysiological readouts.

Alternatively, genetically encoded calcium indicators (GECIs; e.g. the GCaMP6 family of 

proteins [16]) provide cell type-specific fluorescent readouts of neuron activity during 

behavior that is stable over months of testing and is scalable [21]. Using two-photon 

mesoscopes with wide field of view objectives [108] or random access scanning strategies 

[107] to image through large cranial windows in head-fixed mice, researchers can record the 

calcium dynamics of hundreds to thousands of neurons at once. Bulk calcium signals can 

also be measured across superficial cortical areas using a wide field fluorescence 

macroscope featuring a 12 mm field of view, which has been used to assess global 

representations of motivated behavior in multiple cell types [59]. While these tools have 

been optimized for relatively superficial (< 1mm deep) structures, several tools should help 

extend the depth of non-invasive optical access, such as three-photon microscopy [118], the 

implementation of axially elongated Bessel foci [119], photoacoustic tomography [120], and 

guidestar-assisted wavefront engineering techniques to limit optical scattering [121], such as 

time reversal of ultrasound encoded light (TRUE) [122,123].
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Several recent technologies have provided optical access to deep brain areas in behaving 

mice for activity measurements in bulk or with single-cell resolution. For bulk 

measurements, fiber photometry [124] and TEMPO [125] allow for quantification of 

calcium or voltage sensor dynamics, respectively, using implanted optical fibers in order to 

correlate activity of genetically defined populations with behavioral events. Calcium 

imaging via implanted gradient index microendoscopes (GRIN lenses) provides single cell 

resolution at depths >4mm below the skull surface [126]. While two-photon GRIN lens 

imaging is most commonly performed in head-fixed mice [127], several strategies such as 2-

photon fiberscopes [128,129] and miniaturized head-mounted 2-photon microscopes 

[130,131] have been developed for freely moving behavior. Head-mounted miniaturized 

epifluorescence microscopes [132] are also available and have been more widely adopted for 

use in behaving animals. Single cell calcium dynamics have been imaged via GRIN lens in 

the VTA [133], SNc [134], and interconnected regions, including the dorsal striatum [134], 

lateral hypothalamus [134,135], medial preoptic area [136], medial prefrontal cortex 

[137,138], bed nucleus of the stria terminalis [133], hippocampus [139,140], etc. 

Additionally, chronic imaging windows have permitted monitoring of sparsely labelled SNc 

axons in the dorsal striatum, which revealed distinct temporal and spatial encoding of reward 

and motor signals [39]. While several groups employ cortical two-photon calcium imaging 

in NDD models, including RS [141] and FXS [142] mice, analysis of deeper structures has 

not been reported to date.

Considerations and future outlook

The identification of causative genetic defects in neurodevelopmental syndromes and 

subsequent creation of transgenic mouse models has greatly enhanced our understanding of 

the developmental perturbations that produce synaptic, cellular, and behavioral phenotypes 

in these mice. While several recent studies examining dopaminergic circuitry have 

uncovered pathophysiological mechanisms underlying aberrant social interactions, positive 

reinforcement, stereotyped behavior, etc., few studies have employed new technologies for 

functional circuit mapping in NDD models. This may be due to several factors; first, given 

that phenotype expression is dependent on genetic background in many mouse models, such 

as NF1 [143], it will be important to continue identifying and developing minimal gene 

regulatory elements (promoters, enhancers, miRNA binding sites) that can be 

accommodated within well-tolerated viral capsids for cell type-specific targeting without the 

need to cross mice to Cre or Flp driver lines. Several cell type-specific promoters have been 

developed to target different cell populations in the CNS, including catecholaminergic 

(tyrosine hydroxylase promoter), serotonergic (FEV), Purkinje (PCP2) [144], and forebrain 

GABAergic (mDlx5/6) neurons [145], although they vary in leakiness and promoter size, 

which can limit packageable transgene size due to AAV carrying capacity of 4.7 kb [146]. 

Second, many of these techniques require specialized equipment, reagents, or expertise that 

makes implementation challenging. Several helpful imaging, tissue clearing, and data 

analysis protocols have recently been published [54,76,78,133,147–149] that can help guide 

potential users.

To effectively integrate measures of neural activity with comprehensive dopaminergic 

connectomes in mouse models obtained with such tools for precise structural and functional 
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analysis of intact circuits, several advances will be required. First, we will need better 

computational methods for automated detection, segmentation, and tracing of individual 

fluorescently labelled neurons in whole cleared brains. This task is currently labor intensive 

and works poorly for neurons with complex morphology, such as catecholaminergic neurons 

with large axonal arbors that traverse several mm of brain tissue. Recent successes in 

overcoming these challenges include the reconstruction of single projection neurons in the 

claustrum, which branch extensively throughout the entire cerebrum [150]. Second, we will 

need improved tools for converting neural activity states into fluorescent labels that can be 

superimposed upon neuronal reconstructions. Several technologies show promise, such as 

CaMPARI [151] and iTANGO [152], which provide light timestamped indicators of 

intracellular calcium or dopaminergic neurotransmission, respectively. Hybridization chain 

reaction (HCR) probes for single-cell, multiplexed RNA detection have been validated for 

hydrogel-based clearing methods [86,153] and could allow for medium throughput 

identification of projection- or activity-dependent changes in gene activity in mutant and 

wildtype mice. At this time, only PACT/PARS [71], EDC-CLARITY [86], and Ex-FISH 

[81] have been demonstrated to be compatible with RNA profiling, yet clearing methods are 

advancing rapidly and will likely be useful for a broader range of applications in the future.

When examining the role of functional circuit mapping technologies in elucidating 

dopaminergic connectivity in NDD models, one cannot neglect the ontogeny of these 

circuits. Several methods have been used to clear mouse embryos at various stages of 

development (reviewed by [154]), yet it is difficult to employ viral vector-based tracing and 

labeling techniques in the developing mouse. It is thus of great interest to identify AAVs that 

cross the blood-placenta barrier and selectively target the developing embryonic nervous 

system. AAV selection platforms, such as CREATE (Cre recombination–based AAV 

targeted evolution), which has been used to develop vectors that efficiently target the central 

(PHP.B/PHP.eB) or peripheral (PHP.S) nervous systems [29,57] when given systemically, 

could yield new vectors for in utero transgene delivery. Additionally, tools for large volume 

functional imaging of developing organisms, such as a two-beam light sheet microscope 

with adaptive optics and automated cell tracking [11], have been applied to early embryonic 

mice [155,156], yet new methods to maintain optical access within the amnion will be 

necessary to image and track post-implantation fetal cells.

Going forward, we anticipate that continued technological advances can yield progressively 

more precise and comprehensive functional and connectomic maps of dopaminergic 

circuitry across development. As these tools become more widely adopted by NDD 

researchers, we will likely gain newfound understanding of how functional and structural 

abnormalities synergize to produce behavioral and cognitive phenotypes in mouse models 

and reveal putative mechanisms of disease symptomatology in human populations. 

Ultimately these discoveries can inform the creation of behavioral and pharmacological 

therapies that target circuit- or cell-type specific mechanisms of disease in order to benefit 

the health of affected children and adults.

Robinson and Gradinaru Page 7

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We would like to acknowledge support from the Children’s Tumor Foundation (Young Investigator Award 
2016-01-006 to JER), as well as the Heritage Medical Research Institute (VG) and the Tianqiao and Chrissy Chen 
Institute for Neuroscience at Caltech. We would like to thank Jennifer Treweek, Benjamin Deverman, Ken Chan, 
Min Jang, Alon Greenbaum, and Ryan Cho for histological images used in the manuscript figures.

References

1. Joesch M, Mankus D, Yamagata M, Shahbazi A, Schalek R, Suissa-Peleg A, Meister M, Lichtman 
JW, Scheirer WJ, Sanes JR. Reconstruction of genetically identified neurons imaged by serial-
section electron microscopy. Elife. 2016:5.

2. Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, 
Vazquez-Reina A, Kaynig V, Jones TR, Roberts M, et al. Saturated reconstruction of a volume of 
neocortex. Cell. 2015; 162(3):648–661. [PubMed: 26232230] 

3. Weissman TA, Pan YA. Brainbow: New resources and emerging biological applications for 
multicolor genetic labeling and analysis. Genetics. 2015; 199(2):293–306. [PubMed: 25657347] 

4. Tsuriel S, Gudes S, Draft RW, Binshtok AM, Lichtman JW. Multispectral labeling technique to map 
many neighboring axonal projections in the same tissue. Nat Methods. 2015; 12(6):547–552. 
[PubMed: 25915122] 

5⋆. Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, Tucciarone J, Selimbeyoglu A, 
Berndt A, Grosenick L, Zalocusky KA, et al. Targeting cells with single vectors using multiple-
feature boolean logic. Nat Methods. 2014; 11(7):763–772. This study introduced Flp- and Dre-
dependent DIO constructs to enable intersectional viral targeting strategies. The resulting 
technology, INTERSECT, allows for pathway specific targeting via Cre-dependent retrograde 
delivery (with HSV vectors) of Flp-dependent constructs. Exclusion targeting is also possible 
depending on the starting orientation of the exons. [PubMed: 24908100] 

6⋆⋆. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, 
Malenka RC, Kremer EJ, Luo L. Viral-genetic tracing of the input-output organization of a 
central noradrenaline circuit. Nature. 2015; 524(7563):88–92. Schwarz and colleagues introduced 
TRIO (‘tracing the relationship between input and output’) and cTRIO (‘cell-type-specific 
TRIO’) methods for input-output mapping of inputs to a population of neurons that project to a 
starter area. Using this method, starter cells are selected based on a known projection target (in 
this case, the olfactory bulb, auditory cortex, hippocampus, cerebellum, and medulla) of a region 
of interest (the locus coeruleus, LC). A Cre-dependent retrograde canine adenovirus vector 
expressing Cre-dependent Flp recombinase was injected into each starter location in DBH-Cre 
mice, which express Cre recombinase in noradrenergic neurons Flp-dependent RVDg vectors 
were then used to map inputs to the LC based on starter location. [PubMed: 26131933] 

7. Acciai L, Soda P, Iannello G. Automated neuron tracing methods: An updated account. 
Neuroinformatics. 2016; 14(4):353–367. [PubMed: 27447185] 

8. Treweek JB, Gradinaru V. Extracting structural and functional features of widely distributed 
biological circuits with single cell resolution via tissue clearing and delivery vectors. Curr Opin 
Biotechnol. 2016; 40:193–207. [PubMed: 27393829] 

9. Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015; 162(2):246–257. [PubMed: 
26186186] 

10. Chhetri RK, Amat F, Wan Y, Hockendorf B, Lemon WC, Keller PJ. Whole-animal functional and 
developmental imaging with isotropic spatial resolution. Nat Methods. 2015; 12(12):1171–1178. 
[PubMed: 26501515] 

11⋆. Royer LA, Lemon WC, Chhetri RK, Wan Y, Coleman M, Myers EW, Keller PJ. Adaptive light-
sheet microscopy for long-term, high-resolution imaging in living organisms. Nat Biotechnol. 
2016; 34(12):1267–1278. The authors developed an adaptive light sheet microscope to address 
challenges caused by the spatial and temporal heterogeneity of live specimens. Improvements 
include the development of a multi-view imaging method that employs four orthogonally placed 
optical arms (two for light sheet illumination and two for detection) with 10 digitally adjustable 
degrees of freedom and new software (AutoPilot) for real-time image quality monitoring and 

Robinson and Gradinaru Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



autonomous microscope adjustment to improve spatial resolution and image quality. [PubMed: 
27798562] 

12. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers EW, Chandrashekar J. A 
platform for brain-wide imaging and reconstruction of individual neurons. Elife. 2016; 5:e10566. 
[PubMed: 26796534] 

13. Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, 
Seung HS, Osten P. Serial two-photon tomography for automated ex vivo mouse brain imaging. 
Nat Methods. 2012; 9(3):255–258. [PubMed: 22245809] 

14. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015; 
18(9):1213–1225. [PubMed: 26308982] 

15. Roth BL. Dreadds for neuroscientists. Neuron. 2016; 89(4):683–694. [PubMed: 26889809] 

16. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger 
MB, Jayaraman V, Looger LL, et al. Ultrasensitive fluorescent proteins for imaging neuronal 
activity. Nature. 2013; 499(7458):295–300. [PubMed: 23868258] 

17. Lin MZ, Schnitzer MJ. Genetically encoded indicators of neuronal activity. Nat Neurosci. 2016; 
19(9):1142–1153. [PubMed: 27571193] 

18. Girven KS, Sparta DR. Probing deep brain circuitry: New advances in in vivo calcium 
measurement strategies. ACS Chem Neurosci. 2017; 8(2):243–251. [PubMed: 27984692] 

19. Peron S, Chen TW, Svoboda K. Comprehensive imaging of cortical networks. Curr Opin 
Neurobiol. 2015; 32:115–123. [PubMed: 25880117] 

20. Yang W, Yuste R. In vivo imaging of neural activity. Nat Methods. 2017; 14(4):349–359. [PubMed: 
28362436] 

21. Ji N, Freeman J, Smith SL. Technologies for imaging neural activity in large volumes. Nat 
Neurosci. 2016; 19(9):1154–1164. [PubMed: 27571194] 

22. Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, Zhang J. In vivo high-resolution 
diffusion tensor imaging of the mouse brain. Neuroimage. 2013; 83:18–26. [PubMed: 23769916] 

23. Gozzi A, Schwarz AJ. Large-scale functional connectivity networks in the rodent brain. 
Neuroimage. 2016; 127:496–509. [PubMed: 26706448] 

24. Callaway EM, Luo L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J 
Neurosci. 2015; 35(24):8979–8985. [PubMed: 26085623] 

25. Junyent F, Kremer EJ. Cav-2–why a canine virus is a neurobiologist’s best friend. Curr Opin 
Pharmacol. 2015; 24:86–93. [PubMed: 26298516] 

26⋆. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, 
Kuleshova E, Ojala D, Huang CC, et al. A designer aav variant permits efficient retrograde access 
to projection neurons. Neuron. 2016; 92(2):372–382. The authors performed several rounds of 
selection to identify AAV-2 capsids that provided retrograde transduction in projections from the 
striatum to the substantia nigra pars reticulata and projections from deep cerebellar nuclei to the 
cerebellar cortex. The resulting AAV2-retro virus was shown to provide efficient, Cre-dependent 
retrograde transduction several loci, including cortical and subcortical structures. [PubMed: 
27720486] 

27. Fraefel C, Marconi P, Epstein AL. Herpes simplex virus type 1 (hsv-1)-derived amplicon vectors 
for gene transfer and gene therapy. Methods Mol Biol. 2015; 1254:295–316. [PubMed: 25431073] 

28. Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. 
Microbiol Spectr. 2015; 3(4)

29⋆⋆. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu WL, Yang B, 
Huber N, Pasca SP, Gradinaru V. Cre-dependent selection yields aav variants for widespread gene 
transfer to the adult brain. Nat Biotechnol. 2016; 34(2):204–209. Deverman and colleagues 
developed a platform for AAV capsid selection (Cre recombination-based AAV targeted 
evolution or CREATE) that they used to discover AAV9 variants that broadly transduced the CNS 
after peripheral (intravenous or retro-orbital) injection. The resulting PHP.B vector transduced 
cells in multiple brain regions, including the motor and visual cortices, striatum, thalamus, 
hippocampus, and cerebellum, better than AAV9 with reduced gene transfer to the liver. 
Additionally, PHP.B was also able to transduce human differentiated cortical neurons and 
astrocytes derived from induced pluripotent stem cells. [PubMed: 26829320] 

Robinson and Gradinaru Page 9

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Lin YC, Frei JA, Kilander MB, Shen W, Blatt GJ. A subset of autism-associated genes regulate the 
structural stability of neurons. Front Cell Neurosci. 2016; 10:263. [PubMed: 27909399] 

31. Nomi JS, Uddin LQ. Developmental changes in large-scale network connectivity in autism. 
Neuroimage Clin. 2015; 7:732–741. [PubMed: 25844325] 

32. Kizer JS, Palkovits M, Brownstein MJ. The projections of the a8, a9 and a10 dopaminergic cell 
bodies: Evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res. 
1976; 108(2):363–370. [PubMed: 1276901] 

33. Fuccillo MV. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 2016; 
10:27. [PubMed: 26903795] 

34. Cardozo Pinto DF, Lammel S. Viral vector strategies for investigating midbrain dopamine circuits 
underlying motivated behaviors. Pharmacol Biochem Behav. 2017

35. Poulin JF, Zou J, Drouin-Ouellet J, Kim KY, Cicchetti F, Awatramani RB. Defining midbrain 
dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 2014; 9(3):930–
943. [PubMed: 25437550] 

36. Vogt Weisenhorn DM, Giesert F, Wurst W. Diversity matters - heterogeneity of dopaminergic 
neurons in the ventral mesencephalon and its relation to parkinson’s disease. J Neurochem. 2016; 
139(Suppl 1):8–26. [PubMed: 27206718] 

37. Nasser HM, Calu DJ, Schoenbaum G, Sharpe MJ. The dopamine prediction error: Contributions to 
associative models of reward learning. Front Psychol. 2017; 8:244. [PubMed: 28275359] 

38. Wise RA. Forebrain substrates of reward and motivation. J Comp Neurol. 2005; 493(1):115–121. 
[PubMed: 16254990] 

39. Howe MW, Dombeck DA. Rapid signalling in distinct dopaminergic axons during locomotion and 
reward. Nature. 2016; 535(7613):505–510. [PubMed: 27398617] 

40. Gremel CM, Lovinger DM. Associative and sensorimotor corticobasal ganglia circuit roles in 
effects of abused drugs. Genes Brain Behav. 2017; 16(1):71–85. [PubMed: 27457495] 

41. Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, Glober GF, 
Izadmehr EM, Thomas RE, Lacy GD, Wildes CP, et al. Dorsal raphe dopamine neurons represent 
the experience of social isolation. Cell. 2016; 164(4):617–631. [PubMed: 26871628] 

42. Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McKlveen JM, Pleil 
KE, Kash TL. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/
dorsal raphe: A role in regulation of pain. Neuropsychopharmacology. 2016; 41(8):2122–2132. 
[PubMed: 26792442] 

43. Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal 
raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron. 
2017 in press. 

44. Grattan DR. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J Endocrinol. 2015; 
226(2):T101–122. [PubMed: 26101377] 

45. Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett. 2015; 589(24 
Pt A):3773–3785. [PubMed: 26431946] 

46. Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. Elucidating the impact of 
neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. 
Hum Mol Genet. 2015; 24(12):3518–3528. [PubMed: 25788518] 

47. Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O’Malley KL, Wozniak DF, Gutmann 
DH. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 
mutant mice. Hum Mol Genet. 2010; 19(22):4515–4528. [PubMed: 20826448] 

48. Genestine M, Lin L, Durens M, Yan Y, Jiang Y, Prem S, Bailoor K, Kelly B, Sonsalla PK, 
Matteson PG, Silverman J, et al. Engrailed-2 (en2) deletion produces multiple neurodevelopmental 
defects in monoamine systems, forebrain structures and neurogenesis and behavior. Hum Mol 
Genet. 2015; 24(20):5805–5827. [PubMed: 26220976] 

49. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, 
DiCicco-Bloom E, Crawley JN. Autism-relevant social abnormalities and cognitive deficits in 
engrailed-2 knockout mice. PLoS One. 2012; 7(7):e40914. [PubMed: 22829897] 

Robinson and Gradinaru Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Kouwenhoven WM, Veenvliet JV, van Hooft JA, van der Heide LP, Smidt MP. Engrailed 1 shapes 
the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and 
function. Biol Open. 2016; 5(3):279–288. [PubMed: 26879466] 

51. Brown JA, Diggs-Andrews KA, Gianino SM, Gutmann DH. Neurofibromatosis-1 heterozygosity 
impairs cns neuronal morphology in a camp/pka/rock-dependent manner. Mol Cell Neurosci. 
2012; 49(1):13–22. [PubMed: 21903164] 

52. Gantz SC, Ford CP, Neve KA, Williams JT. Loss of mecp2 in substantia nigra dopamine neurons 
compromises the nigrostriatal pathway. J Neurosci. 2011; 31(35):12629–12637. [PubMed: 
21880923] 

53. Karayannis T, Au E, Patel JC, Kruglikov I, Markx S, Delorme R, Heron D, Salomon D, Glessner J, 
Restituito S, Gordon A, et al. Cntnap4 differentially contributes to gabaergic and dopaminergic 
synaptic transmission. Nature. 2014; 511(7508):236–240. [PubMed: 24870235] 

54. Feng L, Kwon O, Lee B, Oh WC, Kim J. Using mammalian gfp reconstitution across synaptic 
partners (mgrasp) to map synaptic connectivity in the mouse brain. Nat Protoc. 2014; 9(10):2425–
2437. [PubMed: 25232938] 

55. Kim J, Zhao T, Petralia RS, Yu Y, Peng H, Myers E, Magee JC. Mgrasp enables mapping 
mammalian synaptic connectivity with light microscopy. Nat Methods. 2011; 9(1):96–102. 
[PubMed: 22138823] 

56. Kebschull JM, Garcia da Silva P, Reid AP, Peikon ID, Albeanu DF, Zador AM. High-throughput 
mapping of single-neuron projections by sequencing of barcoded rna. Neuron. 2016; 91(5):975–
987. [PubMed: 27545715] 

57. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W, Sánchez-Guardado L, Lois C, 
Mazmanian SK, Deverman BE, Gradinaru V. Engineered aavs for efficient noninvasive gene 
delivery to the central and peripheral nervous systems. Nat Neurosci. 2017 in press). ⋆⋆ The 
authors used the CREATE platform to further select two new PHP.B variants for gene delivery 
after systemic exposure: PHP.eB, an enhanced capsid with 1.8–2.5 fold improved CNS targeting 
when compared to PHP.B, and PHP.S, which has high peripheral nervous system tropism without 
crossing the blood brain barrier. They also created a two-component tTA-TRE system that allows 
for dose-dependent reduction in transduced cell density when a co-administered tTA vector is 
titrated downward. This approach does not diminish copy number, allowing for high transgene 
expression in a sparse population of cells. Existing and new cell type-specific promoters for 
transgene targeting were also tested with PHP.eB, allowing for effective transduction of diverse 
cell types. 

58. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR. Improved tools for the brainbow toolbox. Nat 
Methods. 2013; 10(6):540–547.

59⋆. Allen WE, Kauvar IV, Chen MZ, Richman EB, Yang SJ, Chan K, Gradinaru V, Deverman BE, 
Luo L, Deisseroth K. Global representations of goal-directed behavior in distinct cell types of 
mouse neocortex. Neuron. 2017; 94(4):891–907. e896. The authors developed a wide field 
fluorescence microscope (field of view: 12mm) for large scale cortical imaging of different cell 
types during motivated behavior. This is the first published study in which a broadly transducing, 
brain penetrant AAV vector (PHP.eB) was used to express GCaMP across a large cortical volume 
after peripheral administration. [PubMed: 28521139] 

60. Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, Katona G, Juettner J, 
Hierlemann A, Rozsa B, Roska B. Causal evidence for retina-dependent and -independent visual 
motion computations in mouse cortex. Nat Neurosci. 2017

61. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM. A 
multifunctional aav-crispr-cas9 and its host response. Nat Methods. 2016; 13(10):868–874. 
[PubMed: 27595405] 

62. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F. In vivo 
interrogation of gene function in the mammalian brain using crispr-cas9. Nat Biotechnol. 2015; 
33(1):102–106. [PubMed: 25326897] 

63. Fine EJ, Appleton CM, White DE, Brown MT, Deshmukh H, Kemp ML, Bao G. Trans-spliced 
cas9 allows cleavage of hbb and ccr5 genes in human cells using compact expression cassettes. Sci 
Rep. 2015; 5:10777. [PubMed: 26126518] 

Robinson and Gradinaru Page 11

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



64. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, 
Maclaurin D, Smedemark-Margulies N, Saulnier JL, et al. All-optical electrophysiology in 
mammalian neurons using engineered microbial rhodopsins. Nat Methods. 2014; 11(8):825–833. 
[PubMed: 24952910] 

65. Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, Schnitzer MJ. High-speed recording of 
neural spikes in awake mice and flies with a fluorescent voltage sensor. Science. 2015; 350(6266):
1361–1366. [PubMed: 26586188] 

66. Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MK, Xiao C, Chan KY, Sternberg PW, Arnold FH, 
Gradinaru V. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in 
mammalian and caenorhabditis elegans neurons. Nat Commun. 2014; 5:4894. [PubMed: 
25222271] 

67. Osten P, Margrie TW. Mapping brain circuitry with a light microscope. Nat Methods. 2013; 10(6):
515–523. [PubMed: 23722211] 

68. Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, Sankaran S, Grosenick L, Broxton 
M, Yang S, Deisseroth K. Sped light sheet microscopy: Fast mapping of biological system 
structure and function. Cell. 2015; 163(7):1796–1806. [PubMed: 26687363] 

69. Ke MT, Fujimoto S, Imai T. Seedb: A simple and morphology-preserving optical clearing agent for 
neuronal circuit reconstruction. Nat Neurosci. 2013; 16(8):1154–1161. [PubMed: 23792946] 

70. Hou B, Zhang D, Zhao S, Wei M, Yang Z, Wang S, Wang J, Zhang X, Liu B, Fan L, Li Y, et al. 
Scalable and dii-compatible optical clearance of the mammalian brain. Front Neuroanat. 2015; 
9:19. [PubMed: 25759641] 

71. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, Shah S, Cai L, Gradinaru 
V. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 
2014; 158(4):945–958. [PubMed: 25088144] 

72. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, Ishidate F, Kaneko T, Akagi T, Saito T, 
Saido T, Miyawaki A. Scales: An optical clearing palette for biological imaging. Nat Neurosci. 
2015; 18(10):1518–1529. [PubMed: 26368944] 

73. Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, Ukai H, Ueda HR. 
Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014; 159(4):911–
924. [PubMed: 25417165] 

74. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, 
Eguchi M, Yamaguchi S, Abe T, et al. Whole-brain imaging with single-cell resolution using 
chemical cocktails and computational analysis. Cell. 2014; 157(3):726–739. [PubMed: 24746791] 

75. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, 
Zalocusky KA, Mattis J, Denisin AK, Pak S, et al. Structural and molecular interrogation of intact 
biological systems. Nature. 2013; 497(7449):332–337. [PubMed: 23575631] 

76. Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced clarity for rapid and high-resolution imaging of 
intact tissues. Nat Protoc. 2014; 9(7):1682–1697. [PubMed: 24945384] 

77. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. Subcellular imaging of voltage and 
calcium signals reveals neural processing in vivo. Cell. 2016; 166(1):245–257. [PubMed: 
27264607] 

78. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, 
Cai L, Ladinsky MS, Bjorkman PJ, et al. Whole-body tissue stabilization and selective extractions 
via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat 
Protoc. 2015; 10(11):1860–1896. [PubMed: 26492141] 

79. Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, Plesnila N, 
Dichgans M, Hellal F, Erturk A. Shrinkage-mediated imaging of entire organs and organisms using 
udisco. Nat Methods. 2016; 13(10):859–867. [PubMed: 27548807] 

80. Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science. 2015; 
347(6221):543–548. [PubMed: 25592419] 

81. Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, Daugharthy ER, Chang JB, Marblestone 
A, Church GM, Raj A, et al. Nanoscale imaging of rna with expansion microscopy. Nat Methods. 
2016; 13(8):679–684. [PubMed: 27376770] 

Robinson and Gradinaru Page 12

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP, Gao L, Martorell A, Suk HJ, 
Yoshida F, DeGennaro EM, et al. Protein-retention expansion microscopy of cells and tissues 
labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016; 34(9):987–992. 
[PubMed: 27376584] 

83. Ku T, Swaney J, Park JY, Albanese A, Murray E, Cho JH, Park YG, Mangena V, Chen J, Chung K. 
Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in 
size-adjustable tissues. Nat Biotechnol. 2016; 34(9):973–981. [PubMed: 27454740] 

84. Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, Choi H, Park YG, Park JY, Hubbert A, 
McCue M, et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact 
systems. Cell. 2015; 163(6):1500–1514. [PubMed: 26638076] 

85. Shah S, Lubeck E, Schwarzkopf M, He TF, Greenbaum A, Sohn CH, Lignell A, Choi HM, 
Gradinaru V, Pierce NA, Cai L. Single-molecule rna detection at depth by hybridization chain 
reaction and tissue hydrogel embedding and clearing. Development. 2016; 143(15):2862–2867. 
[PubMed: 27342713] 

86. Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K. Multiplexed intact-tissue 
transcriptional analysis at cellular resolution. Cell. 2016; 164(4):792–804. [PubMed: 26871636] 

87⋆. Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, Wang AC, Jennings JH, 
Adhikari A, Halpern CH, Witten IB, et al. Wiring and molecular features of prefrontal ensembles 
representing distinct experiences. Cell. 2016; 165(7):1776–1788. These studies integrated 
ArcTRAP and CLARITY technologies, which allowed for identification of behavioral ensembles 
associated with rewarding (cocaine) or aversive (footshock) stimuli using a fast-acting 
formulation of tamoxifen (4-hydroxytamoxifen) to induce labeling of recently activated neurons. 
The paper also introduced a data processing workflow of cleared samples for image registration 
to an anatomical atlas, cell identification, annotation, and quantification. [PubMed: 27238022] 

88. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently 
active neurons via trap: Targeted recombination in active populations. Neuron. 2013; 78(5):773–
784. [PubMed: 23764283] 

89⋆. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka 
RC, Luo L, Tomer R, Deisseroth K. Intact-brain analyses reveal distinct information carried by 
snc dopamine subcircuits. Cell. 2015; 162(3):635–647. Lerner and colleagues used TRIO in 
combination with CLARITY and CLARITY-optimized light sheet microscopy (COLM) to 
characterize inputs to dorsomedial and dorsolateral striatum-projecting dopaminergic neurons in 
the SNc and found evidence for parallel nigrostriatal circuits along the mediolateral axis. These 
findings were supported by qualitative differences in electrophysiological properties of each 
projection type and bulk calcium responses via fiber photometry during appetitive and aversive 
stimuli. [PubMed: 26232229] 

90⋆. Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, 
Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum form an anatomically 
distinct subclass. Elife. 2015; 4:e10032. The authors used RVDg tracing, clearing with 
CLARITY, and whole brain light-sheet microscopy to map inputs to VTA and SNc neurons 
projecting to different projection sites. Projection-dependent rabies tracing was achieved via 
retrograde expression of the rabies cognate receptor (TVA) through the retrograde activity of 
AAV5. The authors found that most starter sites produced similar patterns of inputs from the 
ventral striatum, except for the posterior striatum; this region produced relatively more inputs 
from the globus pallidus, subthalamic nucleus, and zona incerta. Additionally, the authors created 
an automated workflow for image acquisition, atlas registration, neuron segmentation, and 
quantification of labelled cells in cleared brains. [PubMed: 26322384] 

91⋆. Menegas W, Babayan BM, Uchida N, Watabe-Uchida M. Opposite initialization to novel cues in 
dopamine signaling in ventral and posterior striatum in mice. Elife. 2017:6. Menengas et al. 
compared bulk calcium activity across striatal subclasses using fiber photometry during a 
classical conditioning task. While ventral striatal neurons showed activation only in response to 
rewards and reward-predictive cues, the posterior tail of the striatum, a region their group had 
previously demonstrated to be an anatomically distinct subclass via rabies mapping in 
CLARITY-cleared brains, showed strong activation to novel cues regardless or reward state, as 
well as responses to aversive and neutral stimuli. 

Robinson and Gradinaru Page 13

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



92. Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, Yang B, Gradinaru V. Cholinergic 
mesopontine signals govern locomotion and reward through dissociable midbrain pathways. 
Neuron. 2016; 90(2):333–347. [PubMed: 27100197] 

93⋆⋆. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, 
Malenka RC, Luo L. Circuit architecture of vta dopamine neurons revealed by systematic input-
output mapping. Cell. 2015; 162(3):622–634. This study features cTRIO mapping of inputs to 
VTA dopaminergic (with DAT-Cre mice) and GABAergic (with GAD2-Cre mice). While inputs 
to the medial NAc-projecting dopaminergic neurons were biased towards the medial NAc shell, 
lateral NAc-projecting neurons received more inputs from the dorsal striatum, NAc core, and 
anterior cingulate cortex. The authors also performed cTRIO using membrane tethered GFP in 
the VTA and noticed similar medial-to-lateral differences in dopaminergic neuron axonal 
arborization. [PubMed: 26232228] 

94. Kwan V, Unda BK, Singh KK. Wnt signaling networks in autism spectrum disorder and 
intellectual disability. J Neurodev Disord. 2016; 8:45. [PubMed: 27980692] 

95. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with 
autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012; 4:3.

96. Harony-Nicolas H, De Rubeis S, Kolevzon A, Buxbaum JD. Phelan mcdermid syndrome: From 
genetic discoveries to animal models and treatment. J Child Neurol. 2015; 30(14):1861–1870. 
[PubMed: 26350728] 

97. Boccuto L, Lauri M, Sarasua SM, Skinner CD, Buccella D, Dwivedi A, Orteschi D, Collins JS, 
Zollino M, Visconti P, Dupont B, et al. Prevalence of shank3 variants in patients with different 
subtypes of autism spectrum disorders. Eur J Hum Genet. 2013; 21(3):310–316. [PubMed: 
22892527] 

98. Bariselli S, Tzanoulinou S, Glangetas C, Prevost-Solie C, Pucci L, Viguie J, Bezzi P, O’Connor 
EC, Georges F, Luscher C, Bellone C. Shank3 controls maturation of social reward circuits in the 
vta. Nat Neurosci. 2016; 19(7):926–934. [PubMed: 27273769] 

99. Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJ, Ozkaynak E, Teng BL, Nagakura I, 
Mohammad F, Silva MA, Peterson S, et al. Autism gene ube3a and seizures impair sociability by 
repressing vta cbln1. Nature. 2017

100. Riday TT, Dankoski EC, Krouse MC, Fish EW, Walsh PL, Han JE, Hodge CW, Wightman RM, 
Philpot BD, Malanga CJ. Pathway-specific dopaminergic deficits in a mouse model of angelman 
syndrome. J Clin Invest. 2012; 122(12):4544–4554. [PubMed: 23143301] 

101. Berrios J, Stamatakis AM, Kantak PA, McElligott ZA, Judson MC, Aita M, Rougie M, Stuber 
GD, Philpot BD. Loss of ube3a from th-expressing neurons suppresses gaba co-release and 
enhances vta-nac optical self-stimulation. Nat Commun. 2016; 7:10702. [PubMed: 26869263] 

102. Kao FC, Su SH, Carlson GC, Liao W. Mecp2-mediated alterations of striatal features accompany 
psychomotor deficits in a mouse model of rett syndrome. Brain Struct Funct. 2015; 220(1):419–
434. [PubMed: 24218106] 

103. Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008; 
455(7215):903–911. [PubMed: 18923512] 

104. Monteiro P, Feng G. Shank proteins: Roles at the synapse and in autism spectrum disorder. Nat 
Rev Neurosci. 2017; 18(3):147–157. [PubMed: 28179641] 

105. Piochon C, Kano M, Hansel C. Ltd-like molecular pathways in developmental synaptic pruning. 
Nat Neurosci. 2016; 19(10):1299–1310. [PubMed: 27669991] 

106. Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: A consideration of 
autoregulatory feedback loops. Neuron. 2016; 89(6):1131–1156. [PubMed: 26985722] 

107. Sofroniew NJ, Flickinger D, King J, Svoboda K. A large field of view two-photon mesoscope 
with subcellular resolution for in vivo imaging. Elife. 2016:5.

108. Stirman JN, Smith IT, Kudenov MW, Smith SL. Wide field-of-view, multi-region, two-photon 
imaging of neuronal activity in the mammalian brain. Nat Biotechnol. 2016; 34(8):857–862. 
[PubMed: 27347754] 

109. Chen JL, Voigt FF, Javadzadeh M, Krueppel R, Helmchen F. Long-range population dynamics of 
anatomically defined neocortical networks. Elife. 2016:5.

Robinson and Gradinaru Page 14

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



110. Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I, Grosenick L, Gunaydin LA, Frank 
LM, Deisseroth K. Optetrode: A multichannel readout for optogenetic control in freely moving 
mice. Nat Neurosci. 2011; 15(1):163–170. [PubMed: 22138641] 

111. Kim H, Ahrlund-Richter S, Wang X, Deisseroth K, Carlen M. Prefrontal parvalbumin neurons in 
control of attention. Cell. 2016; 164(1–2):208–218. [PubMed: 26771492] 

112. Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A. Distinct behavioural and 
network correlates of two interneuron types in prefrontal cortex. Nature. 2013; 498(7454):363–
366. [PubMed: 23708967] 

113. Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z, Lowell BB, Andermann ML. 
Arcuate hypothalamic agrp and putative pomc neurons show opposite changes in spiking across 
multiple timescales. Elife. 2015:4.

114. Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, 
Deisseroth K, de Lecea L. Optogenetic interrogation of dopaminergic modulation of the multiple 
phases of reward-seeking behavior. J Neurosci. 2011; 31(30):10829–10835. [PubMed: 21795535] 

115. Van Den Berge N, Albaugh DL, Salzwedel A, Vanhove C, Van Holen R, Gao W, Stuber GD, Ian 
Shih YY. Functional circuit mapping of striatal output nuclei using simultaneous deep brain 
stimulation and fmri. Neuroimage. 2017; 146:1050–1061. [PubMed: 27825979] 

116. Decot HK, Namboodiri VM, Gao W, McHenry JA, Jennings JH, Lee SH, Kantak PA, Jill Kao 
YC, Das M, Witten IB, Deisseroth K, et al. Coordination of brain-wide activity dynamics by 
dopaminergic neurons. Neuropsychopharmacology. 2017; 42(3):615–627. [PubMed: 27515791] 

117. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta 
H, Patenaude B, Ramakrishnan C, Kalanithi P, et al. Prefrontal cortical regulation of brainwide 
circuit dynamics and reward-related behavior. Science. 2016; 351(6268):aac9698. [PubMed: 
26722001] 

118. Ouzounov DG, Wang T, Wang M, Feng DD, Horton NG, Cruz-Hernandez JC, Cheng YT, Reimer 
J, Tolias AS, Nishimura N, Xu C. In vivo three-photon imaging of activity of gcamp6-labeled 
neurons deep in intact mouse brain. Nat Methods. 2017; 14(4):388–390. [PubMed: 28218900] 

119. Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig JD, Wilson DE, Scholl B, Mohar B, Tanimoto 
M, Koyama M, et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. 
Nat Neurosci. 2017; 20(4):620–628. [PubMed: 28250408] 

120. Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 
2016; 13(8):627–638. [PubMed: 27467726] 

121. Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light 
into biological tissue. Nat Photonics. 2015; 9:563–571. [PubMed: 27293480] 

122. Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound 
microbubble encoded light. Nat Commun. 2015; 6:8968. [PubMed: 26597439] 

123. Liu Y, Lai P, Ma C, Xu X, Grabar AA, Wang LV. Optical focusing deep inside dynamic scattering 
media with near-infrared time-reversed ultrasonically encoded (true) light. Nat Commun. 2015; 
6:5904. [PubMed: 25556918] 

124. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, 
Mirzabekov JJ, Airan RD, Zalocusky KA, Tye KM, et al. Natural neural projection dynamics 
underlying social behavior. Cell. 2014; 157(7):1535–1551. [PubMed: 24949967] 

125. Marshall JD, Li JZ, Zhang Y, Gong Y, St-Pierre F, Lin MZ, Schnitzer MJ. Cell-type-specific 
optical recording of membrane voltage dynamics in freely moving mice. Cell. 2016; 167(6):
1650–1662 e1615. [PubMed: 27912066] 

126. Barretto RP, Schnitzer MJ. In vivo optical microendoscopy for imaging cells lying deep within 
live tissue. Cold Spring Harb Protoc. 2012; 2012(10):1029–1034. [PubMed: 23028071] 

127. Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ. In vivo mammalian brain imaging 
using one- and two-photon fluorescence microendoscopy. J Neurophysiol. 2004; 92(5):3121–
3133. [PubMed: 15128753] 

128. Myaing MT, MacDonald DJ, Li X. Fiber-optic scanning two-photon fluorescence endoscope. Opt 
Lett. 2006; 31(8):1076–1078. [PubMed: 16625908] 

Robinson and Gradinaru Page 15

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



129. Gobel W, Kerr JN, Nimmerjahn A, Helmchen F. Miniaturized two-photon microscope based on a 
flexible coherent fiber bundle and a gradient-index lens objective. Opt Lett. 2004; 29(21):2521–
2523. [PubMed: 15584281] 

130. Helmchen F, Fee MS, Tank DW, Denk W. A miniature head-mounted two-photon microscope. 
High-resolution brain imaging in freely moving animals. Neuron. 2001; 31(6):903–912. 
[PubMed: 11580892] 

131⋆⋆. Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, et al. Fast high-
resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat 
Methods. 2017 Zong et al. report a new miniaturized head-mounted 2-photon microscope for use 
in behaving mice. The microscope employs a miniature collimator, scan lens, and custom MEMS 
(microelectromechanical system) scanning mirror within the head-mounted microscope body to 
achieve resonant scanning frequencies up to 40 Hz with a maximal field of view of 130 × 130 
μm2. Fluorescent signals are relayed from the microscope to the photomultiplier tube detectors 
via a custom supple fiber bundle. The microscope was able to efficiently detect GCaMP signals 
in multiple cortical regions. 

132. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, Schnitzer MJ. Miniaturized 
integration of a fluorescence microscope. Nat Methods. 2011; 8(10):871–878. [PubMed: 
21909102] 

133. Resendez SL, Jennings JH, Ung RL, Namboodiri VM, Zhou ZC, Otis JM, Nomura H, McHenry 
JA, Kosyk O, Stuber GD. Visualization of cortical, subcortical and deep brain neural circuit 
dynamics during naturalistic mammalian behavior with head-mounted microscopes and 
chronically implanted lenses. Nat Protoc. 2016; 11(3):566–597. [PubMed: 26914316] 

134. Bocarsly ME, Jiang WC, Wang C, Dudman JT, Ji N, Aponte Y. Minimally invasive 
microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. 
Biomed Opt Express. 2015; 6(11):4546–4556. [PubMed: 26601017] 

135. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, 
Aita M, Shilling-Scrivo K, Ramakrishnan C, et al. Visualizing hypothalamic network dynamics 
for appetitive and consummatory behaviors. Cell. 2015; 160(3):516–527. [PubMed: 25635459] 

136. McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA, Budygin 
EA, Rubinow DR, Stuber GD. Hormonal gain control of a medial preoptic area social reward 
circuit. Nat Neurosci. 2017; 20(3):449–458. [PubMed: 28135243] 

137. Otis JM, Namboodiri VM, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson 
JE, Resendez SL, Rossi MA, Stuber GD. Prefrontal cortex output circuits guide reward seeking 
through divergent cue encoding. Nature. 2017; 543(7643):103–107. [PubMed: 28225752] 

138. Pinto L, Dan Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. 
Neuron. 2015; 87(2):437–450. [PubMed: 26143660] 

139. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ. Long-
term dynamics of ca1 hippocampal place codes. Nat Neurosci. 2013; 16(3):264–266. [PubMed: 
23396101] 

140. Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, 
Flores SE, et al. A shared neural ensemble links distinct contextual memories encoded close in 
time. Nature. 2016; 534(7605):115–118. [PubMed: 27251287] 

141. Banerjee A, Rikhye RV, Breton-Provencher V, Tang X, Li C, Li K, Runyan CA, Fu Z, Jaenisch R, 
Sur M. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical 
processing in rett syndrome. Proc Natl Acad Sci U S A. 2016; 113(46):E7287–E7296. [PubMed: 
27803317] 

142. Goncalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing 
neocortex of fragile x mice. Nat Neurosci. 2013; 16(7):903–909. [PubMed: 23727819] 

143. Diggs-Andrews KA, Gutmann DH. Modeling cognitive dysfunction in neurofibromatosis-1. 
Trends Neurosci. 2013; 36(4):237–247. [PubMed: 23312374] 

144. de Leeuw CN, Korecki AJ, Berry GE, Hickmott JW, Lam SL, Lengyell TC, Bonaguro RJ, 
Borretta LJ, Chopra V, Chou AY, D’Souza CA, et al. Raav-compatible minipromoters for 
restricted expression in the brain and eye. Mol Brain. 2016; 9(1):52. [PubMed: 27164903] 

Robinson and Gradinaru Page 16

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



145. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, Xu Q, Liu R, Lu C, Chu J, 
Grimley JS, et al. A viral strategy for targeting and manipulating interneurons across vertebrate 
species. Nat Neurosci. 2016; 19(12):1743–1749. [PubMed: 27798629] 

146. Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus serotypes: Impact of 
larger genomes on infectivity and postentry steps. J Virol. 2005; 79(15):9933–9944. [PubMed: 
16014954] 

147. Amat F, Hockendorf B, Wan Y, Lemon WC, McDole K, Keller PJ. Efficient processing and 
analysis of large-scale light-sheet microscopy data. Nat Protoc. 2015; 10(11):1679–1696. 
[PubMed: 26426501] 

148. Pan C, Cai R, Quacquarelli FP, Gasemigharagoz A, Erturk A. Whole organ and organism tissue 
clearing by udisco. 2016

149. Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced cubic protocols for 
whole-brain and whole-body clearing and imaging. Nat Protocols. 2015; 10(11):1709–1727. 
[PubMed: 26448360] 

150. Reardon S. A giant neuron found wrapped around entire mouse brain. Nature. 2017; 543(7643):
14–15. [PubMed: 28252090] 

151. Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, Patel R, Zlatic M, Kim DS, 
Ahrens MB, Jayaraman V, et al. Neural circuits. Labeling of active neural circuits in vivo with 
designed calcium integrators. Science. 2015; 347(6223):755–760. [PubMed: 25678659] 

152⋆⋆. Lee D, Creed M, Jung K, Stefanelli T, Wendler DJ, Oh WC, Mignocchi NL, Luscher C, Kwon 
HB. Temporally precise labeling and control of neuromodulatory circuits in the mammalian 
brain. Nat Methods. 2017 Lee and colleagues engineered a light- and ligand-gated split tobacco 
etch virus (TEV) protease (iTANGO) that allows for fluorescent labelling of neurons 
endogenously exposed to dopamine in the presence of blue light. This elegant system combines 
the TANGO platform, which drives gene expression through the release of a cleaved transcription 
factor by TEV protease following G protein-coupled receptor activation; CRY2PHR, which 
interacts with its partner protein CIBN only in the presence of light; and AsLOV2, which 
undergoes a conformational change when exposed to the appropriate wavelength. The authors 
demonstrate that optogenetically evoked dopamine and motivated behavior can induce XFP 
expression during light exposure. 

153. Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial 
organization of cells in the mouse hippocampus. Neuron. 2016; 92(2):342–357. [PubMed: 
27764670] 

154. Kolesova H, Capek M, Radochova B, Janacek J, Sedmera D. Comparison of different tissue 
clearing methods and 3d imaging techniques for visualization of gfp-expressing mouse embryos 
and embryonic hearts. Histochem Cell Biol. 2016; 146(2):141–152. [PubMed: 27145961] 

155. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH, Mochizuki A, Nonaka S. 
Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet 
microscopy and 3d tracking tools. Nat Protoc. 2014; 9(3):575–585. [PubMed: 24525751] 

156. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, Mikut R, Keller PJ. Real-time 
three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev 
Cell. 2016; 36(2):225–240. [PubMed: 26812020] 

157. Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G, Bader PL, Grueter BA, 
Goold C, Fisher E, Clifford K, et al. Behavioral abnormalities and circuit defects in the basal 
ganglia of a mouse model of 16p11.2 d eletion syndrome. Cell Rep. 2014; 7(4):1077–1092. 
[PubMed: 24794428] 

158. Fish EW, Krouse MC, Stringfield SJ, Diberto JF, Robinson JE, Malanga CJ. Changes in 
sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs 
in a mouse model of fragile x syndrome. PLoS One. 2013; 8(10):e77896. [PubMed: 24205018] 

159. Smith LN, Jedynak JP, Fontenot MR, Hale CF, Dietz KC, Taniguchi M, Thomas FS, Zirlin BC, 
Birnbaum SG, Huber KM, Thomas MJ, et al. Fragile x mental retardation protein regulates 
synaptic and behavioral plasticity to repeated cocaine administration. Neuron. 2014; 82(3):645–
658. [PubMed: 24811383] 

Robinson and Gradinaru Page 17

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



160. Deng JV, Wan Y, Wang X, Cohen S, Wetsel WC, Greenberg ME, Kenny PJ, Calakos N, West AE. 
Mecp2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J 
Neurosci. 2014; 34(13):4519–4527. [PubMed: 24671997] 

161. Su SH, Kao FC, Huang YB, Liao W. Mecp2 in the rostral striatum maintains local dopamine 
content critical for psychomotor control. J Neurosci. 2015; 35(15):6209–6220. [PubMed: 
25878291] 

162. Espinosa F, Xuan Z, Liu S, Powell CM. Neuroligin 1 modulates striatal glutamatergic 
neurotransmission in a pathway and nmdar subunit-specific manner. Front Synaptic Neurosci. 
2015; 7:11. [PubMed: 26283958] 

163. Uchigashima M, Ohtsuka T, Kobayashi K, Watanabe M. Dopamine synapse is a neuroligin-2-
mediated contact between dopaminergic presynaptic and gabaergic postsynaptic structures. Proc 
Natl Acad Sci U S A. 2016; 113(15):4206–4211. [PubMed: 27035941] 

164. Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, 
Sudhof TC. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost 
repetitive behaviors. Cell. 2014; 158(1):198–212. [PubMed: 24995986] 

165. Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and 
precocious maturation of corticostriatal circuits in shank3b(−/−) mice. Nat Neurosci. 2016; 19(5):
716–724. [PubMed: 26928064] 

166. Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G. Adult restoration of shank3 
expression rescues selective autistic-like phenotypes. Nature. 2016; 530(7591):481–484. 
[PubMed: 26886798] 

167. Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, Kronenberg HM, McBride 
HJ, Gradinaru V. Bone clarity: Clearing, imaging, and computational analysis of osteoprogenitors 
within intact bone marrow. Sci Transl Med. 2017; 9(387)

168. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, 
Miyawaki A. Scale: A chemical approach for fluorescence imaging and reconstruction of 
transparent mouse brain. Nat Neurosci. 2011; 14(11):1481–1488. [PubMed: 21878933] 

Robinson and Gradinaru Page 18

Curr Opin Neurobiol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Dopaminergic dysfunction is common in many neurodevelopmental 

disorders.

• New circuit mapping tools have refined our knowledge of these circuits at 

baseline.

• When used in animal models, these tools will likely elucidate NDD 

pathophysiology.
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Figure 1. Broadly transducing AAVs permit brainwide transgene expression and facilitate 
neurite tracing
A. Workflow for multicolor labelling with PHP.eB and neurite tracing. Viral particles 

carrying red, green, or blue XFP transgenes with or without a titratable inducer are 

systemically introduced via retro-orbital injection (1). Following transduction (4–8 weeks), 

brains are fixed and cleared (2). Tissue samples can then be imaged with light sheet or 

confocal microscopy (3) prior to neurite tracing (4). B. Brainwide transduction of neurons 

(green) or astrocytes (red) using cell type-specific promoters (hSyn1 and GFAP, 

respectively) and gene regulatory elements following retro-orbital injection of PHP.eB 

(1×1012 viral genomes/mouse). C–D. Sparsely labelled striatal neurons were successfully 

traced after transduction by PHP.eB multicolor XFPs.
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Figure 2. Visualization of intact circuits using hydrogel-based clearing methods
A. A mouse brain before and after clearing with PARS and long-term storage in RIMS 

(adapted from [71]). The sample demonstrates moderate tissue expansion due to acrylamide 

embedding. B. Confocal image of dopaminergic neurons in the SNc (red) and cholinergic 

afferents from the pedunculopontine tegmental nucleus (green) visualized in a 1mm-thick 

PACT-cleared section. C–D. Whole brain imaging of fluorescently-labelled cells in Thy1-

eYFP mice using light sheet microscopy.
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Table 1

Diverse behavioral, synaptic, and cellular phenotypes are observed in nigrostriatal and mesocorticolimbic 

pathways in mouse models of neurodevelopmental syndromes and ASD candidate genes.

Neurodevelopmental Syndromes

Syndrome Mouse Model Major Findings Citation

15q11–13 Duplication Syndrome Ube3a-2× Triplication of Ube3a 
synergizes with seizures to 
reduce expression of the 
glutamatergic synapse 
organizer Cbln1, impairs 
glutamatergic transmission 
in VTA neurons, and leads 
to loss of sociability.

[99]

16p11.2 Deletion Syndrome 16p11.2+/− Mice carrying a 
homologous chromosomal 
deletion to 16p11.2 (7F3) 
exhibit abnormal synaptic 
signaling and increased 
numbers of dopamine D2 
receptor (D2R)-expressing 
medium spiny neurons 
(MSNs) in the striatum, 
fewer D1 receptor (D1R)-
expressing neurons in the 
cortex, locomotor 
hyperactivity, and deficits in 
motor control.

[157]

Angelman Syndrome Ube3am−/p+ Ube3am−/p+ mice display 
enhanced electrically 
evoked dopamine release in 
the NAc and reward seeking 
but decreased sensitivity to 
drugs that increase 
dopamine overflow.

[100]

TH-Cre∷Ube3am−/p+, TH-Cre∷Ube3aFLOX/p+ Loss of maternal Ube3a in 
tyrosine hydroxylase (TH)-
expressing neurons 
enhanced optical self-
stimulation via increased 
GABA release from 
dopaminergic terminals in 
the NAc.

[101]

Fragile X Syndrome Fmr1−/y Fmr1−/y mice are more 
sensitive to the rewarding 
effects but less sensitive to 
the motor effects of cocaine 
compared to wildtype; the 
number of TH-expressing 
neurons in reduced in the 
SNc but not VTA of these 
mice.

[158]

Fmr1−/y Locomotor sensitization, 
conditioned place 
preference, and synaptic 
changes in the NAc 
following repeated cocaine 
is reduced in Fmr1−/y mice.

[159]

Neurofibromatosis Type 1 Nf1+/−:Nf1FLOX∷GFAP-Cre:Nf1FLOX/FLOX Mice with one non-
functional Nf1 allele in all 
somatic cells and complete 
Nf1 knockout in glial 
fibrillary acid protein 
(GFAP)-expressing cells 
display reduced striatal 

[47]
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Neurodevelopmental Syndromes

Syndrome Mouse Model Major Findings Citation

dopamine and TH 
expression in vivo and 
reduced dopaminergic 
neurite outgrowth in vitro.

Nf1+/−, TH-Cre∷Nf1FLOX/FLOX, GFAP-Cre∷GFAPFLOX/FLOX Knockout of Nf1 in TH or 
GFAP-expressing cells is 
associated with reduced 
dopamine content in the 
hippocampus and deficits in 
spatial working memory.

[46]

Rett Syndrome Mecp2+/−, Mecp2−/y SNc neurons exhibit 
decreased somal size, 
dendrite count, and striatal 
dopamine release in 
Mecp2+/− mice and 
symptomatic Mecp2−/y 

males.

[52]

Mecp2+/− Mecp2+/− display aberrant 
motor coordination and 
motor skill learning 
secondary to reduced 
striatal dopamine content, 
down-regulation of tyrosine 
hydroxylase expression, and 
dopamine D2 receptor 
(D2R) up-regulation.

[102]

Mecp2S421A Loss of MeCP2 
phosphorylation at position 
421 results in accelerated 
amphetamine sensitization 
and changes in MSN 
excitability in the NAc.

[160]

Dlx5/6-Cre∷DMecp2FLOX/y Conditional knockout of 
Mecp2 in the striatum 
phenocopies Mecp2+/− mice 
in dopamine deregulation 
and motor dysfunction.

[161]

Non-Syndromic ASD Genes

Gene (Product) Mouse Model Major Findings Citation

Cntnap4 (CNTNAP4) Cntnap4−/− Loss of Cntnap2 results in 
enhanced dopamine release 
in the NAc and dorsal 
striatum through a 
presynaptic mechanism and 
results in excessive 
grooming.

[53]

Nlgn1 (Neuroligin-1) Nlgn1−/− Nlgn1−/− display reduced 
GluN2A-containing NMDA 
receptor currents and 
glutmatergic inputs in 
dopamine D1 receptor 
(D1R) and D2R-expressing 
striatal medium spiny 
neurons (MSNs), 
respectively.

[162]

Nlgn2 (Neuroligin-2) Nlgn2 miR knockdown Striatal knockdown of 
Nlgn2 results in 
downregulation of 
dopaminergic synapses and 
upregulation of GABAergic 
synapses.

[163]
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Neurodevelopmental Syndromes

Syndrome Mouse Model Major Findings Citation

Nlgn3 (Neuroligin-3) Nlgn3−/−, Nlgn3R451C Both Nlgn3 knockout mice 
and mice modeling the 
R451C polymorphism 
demonstrate enhanced 
repetitive motor routines by 
impairing inhibitory 
transmission onto D1R-
expressing MSNs in the 
NAc.

[164]

Shank3 (SHANK3) (Note: loss of 
SHANK3 is also seen in Phelan 
McDermid Syndrome)

Shank3 shRNA knockdown Shank3 knockdown via 
short hairpin RNA (shRNA) 
in the VTA impairs 
excitatory synapse 
maturation, reduces 
dopaminergic neuron 
excitability via increased 
inhibitory tone, reduces 
social preference, and can 
be rescued an mGluR1 
agonist or optogenetic 
stimulation of dopaminergic 
neurons

[98]

Shank3b−/− Loss of Shank3b alters the 
development of excitatory 
inputs to medium spiny 
neurons of the dorsomedial 
striatum, which can be 
rescued by chemogenetic 
inhibition of corticostriatal 
inputs.

[165]

Shank3bfx/fx Loss of Shank3b in a 
conditional knock-in model 
results in abnormal motor, 
social and exploratory 
behaviors; repetitive 
grooming; and synaptic 
changes in the striatum. 
These deficits are rescued 
with germline re-activation 
of Shank3 expression.

[166]
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Table 2

Selected recent advances in neurotechnologies for structural analysis of circuit architecture in rodent models.

A. Viral Vectors and Vector-Based Labeling Methods

Tool Summary Citation

rAAV2-retro A recombinant AAV2 variant for retrograde targeting of projection neurons that can be used for 
both functional and tracing studies. Efficient retrograde transduction was observed in many 
cortical and subcortical regions.

[26]

PHP.eB and PHP.S AAV9-based vectors for efficient CNS (PHP.eB) or PNS (PHP.S) transduction after peripheral 
(intravenous or retro-orbital) virus administration. Can be used with a titratable inducer vector 
for controlled sparseness of multicolor labels that preserves color diversity; inducers involve use 
of tetracycline-controlled transactivator (tTA) or Cre-dependent Flp-based constructs.

[29,57]

TRIO Tracing the Relationship Between Input and Output; A combinatorial two-vector system that 
maps the input-output relationship of a population of neurons. In this method, canine 
adenovirus-2 (CAV-2) [25] is used to deliver a Flp recombinase transgene to axons in a specific 
projection terminal field for retrograde transduction of the cell bodies; Flp-dependent RVdG 
[24] component vectors are later delivered to the cell bodies for monosynaptic retrograde tracing 
of inputs. Cre-dependent Flp can be used for cell type-specific targeting using a Cre driver line 
(cTRIO). Cannot be used for functional studies due to lethality of RVdG.

[6]

INTERSECT INTronic Recombinase Sites Enabling Combinatory Targeting; A two-component system that 
allows for functional projection targeting using Flp- and Cre-dependent viral vectors via axonal 
targeting in a downstream region using replication incompetent herpes simplex virus (HSV) [27] 
carrying a Cre-dependent Flp recombinase transgene. Either Cre- and Flp-ON and -OFF 
strategies can be used.

[5]

MAP-Seq Multiplexed Analysis of Projections by Sequencing; allows for parallel mapping of single 
neuron axonal arbors via recovery of RNA barcodes in from terminal fields after delivery of 
AAV viral barcode libraries to the cell body. Does not distinguish fibers of passage, so 
downstream regions must be chosen carefully for RNA recovery and sequencing.

[56]

mGRASP Mammalian GFP Reconstitution Across Synaptic Partners; A method for fluorescently labeling 
synaptic connections that employs AAV-mediated delivery of synapse-targeted split GFP 
fragments in genetically defined pre- and post-synaptic neuronal partners. Cre-ON and Cre-OFF 
strategies can be used for studying microcircuits.

[54,55]

B. Large Volume Imaging Modalities

Light Sheet Microscopy 
(LSM)

Originally developed over 100 years ago, LSM illuminates the sample with a thin sheet of light 
and detects the emitted fluorescent signal with an orthogonally arranged detection objective. 
Variants include CLARITY optimized LSM (COLM) for use in cleared tissue [76], SPED 
(Spherical Aberration-assisted Extended Depth of Field) LSM that improves scan speed via 
extended depth of field [68], and an adaptive LSM that integrates multiple fields of view with 10 
degrees of freedom that are autonomously adjusted in real time for improved spatial resolution 
and image quality [11].

[10,11,68]

High-Speed Volumetric 
STP Tomography

High-speed Volumetric Serial Two-Photon Tomography; A high speed imaging platform based 
on Serial Two-Photon Tomography (STP) [13] that creates 3D reconstructions of neuronal 
axonal arbors via the integration of fast volumetric 2-photon microscopy and a vibrating 
microtome to image bright, sparsely labelled neurons in cleared samples embedded in gelatin. 
Includes computational tools for the registration and visualization of large (up to 100 TB) data 
sets, although labeling must be sufficiently sparse to prevent neurite reconstruction errors when 
axons from different neurons are closely positioned.

[12]

C. Tissue Clearing Methods

CLARITY Hydrogel-based clearing method that utilizes 4% SDS for lipid removal after sample has been 
embedded in an acrylamide-bisacrylamide gel and cross-linked with formaldehyde. Clearing can 
be accelerated with electrophoresis at the expense of tissue integrity. Compatible with 
immunolabeling and endogenous fluorescence. The EDC-CLARITY variant is compatible with 
HCR (hybridization chain reaction) probes for bulk RNA labeling.

[75,76,86]

PACT PACT-deCAL Passive CLARITY Technique; A passive CLARITY-based clearing method for rapid clearing of 
thick sections that employs 8% SDS as the detergent. Compatible with immunolabeling, 
endogenous fluorescence, smFISH (single molecule), and smHCR probes for single and bulk 
RNA labeling. Produces reversible expansion of tissue and can be used with RIMS (Reflective 
Index Matching Solution), a non-viscous mounting medium that decreases the refractive index 
of the sample for better optical access. PACT-deCAL uses EDTA/EGTA to decalcify samples for 
bone clearing.

[71,78,85,167]
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A. Viral Vectors and Vector-Based Labeling Methods

Tool Summary Citation

PARS Perfusion Assisted Agent Release In Situ; An active CLARITY-based clearing method that 
involves intracranial and/or transcardial perfusion of reagents for whole body clearing.

[71,78]

SWITCH System-Wide Control of Interaction Time and Kinetics of Chemicals; A fixation and clearing 
method that exploits the pH dependence of glutaraldehyde-tissue gel formation for uniform 
fixation prior to delipidation with SDS. This method provides added tissue integrity for 
multiplexed immunolabeling. Not compatible with smFISH or smHCR probes.

[84]

uDISCO A whole-body clearing method based on 3DISCO; it utilizes dehydration with tert-butanol 
followed by delipidation with diphenyl ether for fast sample clearing. Maintenance of 
endogenous fluorescence is improved relative to 3DISCO and other solvent based methods, 
whereby fluorescence deteriorates within several days after clearing. Shrinks tissues by 
approximately 40% for faster LSM imaging.

[79]

Sca/eS An improved version of Sca/eA2 [168] that achieves tissue transparency via partial delipidation 
and hyperhydration via urea, sorbitol, glycerol, and Triton X-100. Preserves endogenous 
fluorescence and limits expansion better than most other methods, although large0 sample 
clearing can take several weeks. A simplified protocol Sca/eSQ can be used in thick (<500 
micron) sections.

[72]

CUBIC Clear, Unobstructed, Brain/Body Imaging Cocktails and Computational Analysis; A clearing 
method based on Sca/eA2 that uses urea, aminoalcohols, TRITON X-100, and high sucrose 
concentrations. Maintains endogenous fluorescence, can be perfused for whole body clearing, 
produces reversible tissue expansion, and exhibits superior decolorization (i.e. loss of the heme 
chromophore) relative to other techniques.

[73,74]

Tissue Expansion Methods for High Resolution Microscopy

ExM Expansion Microscopy; A tissue expansion technology whereby the fixed and permeabilized 
sample is embedded in a superabsorbent hydrogel containing sodium acrylate and acrylamide, 
cross-linked with N-N′-methylenebisacrylamide, and digested with a protease to produce a 4.5-
fold sample expansion. Newer variants display improved protein retention (proExM) and are 
compatible with immunolabeling, smFISH, and smHCR (ExFISH).

[80–82]

ePACT Expansion PACT; Variant of the PACT tissue clearing method that utilizes a superabsorbent 
hydrogel and enzymatic digestion to increase sample size up to 5-fold for high resolution 
imaging with preserved endogenous fluorescence.

[78]

MAP Magnified Analysis of Proteome; a hydrogel-based clearing method that expands tissue without 
the use of enzymatic digestion via treatment with high acrylamide concentrations (up to 20%) 
prior to SDS treatment. Compatible with immunolabeling but not RNA detection.

[83]
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