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Abstract

Balancing exploration and exploitation is a fundamental problem in reinforcement learning. 

Previous neuroimaging studies of the exploration-exploitation dilemma could not completely 

disentangle these two processes, making it difficult to unambiguously identify their neural 

signatures. We overcome this problem using a task in which subjects can either observe (pure 

exploration) or bet (pure exploitation). Insula and dorsal anterior cingulate cortex showed 

significantly greater activity on observe trials compared to bet trials, suggesting that these regions 

play a role in driving exploration. A model-based analysis of task performance suggested that 

subjects chose to observe until a critical evidence threshold was reached. We observed a neural 

signature of this evidence accumulation process in ventromedial prefrontal cortex. These findings 

support theories positing an important role for anterior cingulate cortex in exploration, while also 

providing a new perspective on the roles of insula and ventromedial prefrontal cortex.

Introduction

Many decision problems pose a fundamental dilemma between exploration and exploitation: 

an agent can exploit the option that has yielded the greatest reward in the past, or explore 

other options that may yield greater reward, at the risk of foregoing some reward during 

exploration. The optimal solution to the exploration-exploitation dilemma is generally 

intractable, and hence resource-bounded agents must apply heuristic strategies (Cohen, 

McClure & Yu, 2007). The specific strategy used by humans is an open question.

Some evidence suggests that humans adopt exploration strategies that sample options with 

probability proportional to their estimated expected values (Daw et al., 2006) or their 

posterior probability of having the maximum value (Speekenbrink & Constantinidis, 2015). 

Other studies suggest that humans employ an uncertainty-driven exploration strategy based 

on an explicit exploration bonus (Frank et al., 2009; Badre et al., 2012). Humans also 

sometimes employ more sophisticated exploration strategies using model-based reasoning 

(Knox et al., 2012; Otto et al., 2014; Wilson et al., 2014; Gershman & Niv, 2015).
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Neural data can potentially constrain the theories of exploration by identifying dissociable 

correlates of different strategies. For example, Daw et al. (2006) identified a region of 

frontopolar cortex that was significantly more active for putative exploratory choices 

compared to putative exploitative choices during a multi-armed bandit task (see also 

Boorman et al., 2009). Suppression of activity in this region, using transcranial direct current 

stimulation, reduces exploration, whereas amplifying activity increases exploration 

(Beharelle et al., 2015). These findings suggest that there may exist a dedicated neural 

mechanism for driving exploratory choice, analogous to regions in other species that have 

been found to inject stochasticity into songbird learning (Olveczky et al., 2005; Woolley et 

al., 2014) and rodent motor control (Santos et al., 2015).

The main challenge in interpreting these studies is that exploratory and exploitative choices 

cannot be identified unambiguously in standard reinforcement learning tasks such as multi-

armed bandits. When participants fail to choose the value-maximizing option, it is 

impossible to know whether this choice is due to exploration or to random error (i.e., 

unexplained variance in choice behavior not captured by the model). The same ambiguity 

muddies the interpretation of individual differences in parameters governing exploration 

strategies (e.g., the temperature parameter in the softmax policy). Furthermore, exploitative 

choices yield information, while exploratory choices yield reward, obscuring the conceptual 

difference between these trial types. Finally, identifying deviations from value-maximization 

depend on inferences about subjective value estimates, which in turn depend on assumptions 

about the exploration strategy. Thus, there is no theory-neutral way to contrast neural 

activity underlying exploration and exploitation in most reinforcement learning tasks.

We resolve this problem by using an “observe or bet” task that unambiguously separates 

exploratory and exploitative choice (Tversky & Edwards, 1966; Navarro, Newell & Schulze, 

2016). On each trial, the subject chooses either to observe the reward outcome of each 

option (without receiving any of the gains or losses) or to bet on one option, in which case 

she receives the gain or loss associated with the option at the end of the task. By comparing 

neural activity on observe and bet trials, we obtain pure correlates of exploration and 

exploitation, respectively. This also allows us to look at neural responses to the receipt of 

information without it being confounded with the receipt of reward. To gain further insight 

into the underlying mechanisms, we use the computational model recently developed by 

Navarro et al. (2016) to generate model-based regressors. In particular, we identify regions 

tracking the subject’s change in belief about the hidden state of the world, which in turn 

governs the subject’s exploration strategy.

It is important to clarify at the outset that the correlates we identify are “pure” only in the 

sense that exploratory observe trials do not involve value-based choice or reward receipt, 

while exploitative bet trials do not involve information acquisition. This is not, of course, a 

complete catalogue of cognitive processes involved in task performance, and both trial types 

surely involve a number of common processes (e.g., visual perception, memory retrieval, 

motor control). Our goal in this study is to isolate a subset of these processes that are central 

to theories of reinforcement learning.
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Materials and Methods

Subjects

We recruited 18 members of the Harvard community through the Harvard Psychology Study 

Pool to participate in the study. 11 of the 18 subjects were female. Ages ranged from 21 to 

36, with a median age of 26. All subjects were right-handed, native English speakers, and 

had no history of neurological or psychiatric disease. Informed consent was obtained from 

all subjects.

Task procedure

Subjects performed the task in two sessions. In the first session, subjects were familiarized 

with the task and performed five blocks outside of the fMRI scanner. In the second session, 

subjects performed two blocks of the task out of the scanner, and an additional four to five 

(depending on time constraints) in the scanner. Subjects were paid $10 for the first session 

and $35 for the second. They also received a bonus in the form of an Amazon gift card, at an 

amount of $0.10 per point earned in the task.

Subjects performed a dynamic version of the “observe or bet” task (Tversky & Edwards, 

1966; Navarro, Newell, & Schulze, 2016). In this task, subjects were asked to predict which 

of two lights (red or blue) will light up on a machine. On each trial, a single light is 

activated. The machine always has a bias – on a particular block, it either will tend to light 

up the blue or red light. On each trial, subjects could take one of three actions: bet blue, bet 

red, or observe. If the subjects bet blue or red, they gained a point if they correctly predicted 

which light would light up, but lost one if they were incorrect. Importantly, they were not 

told if they gained or lost a point, and they also did not see what light actually lit up. Instead, 

subjects could only see which light was activated by taking the observe action. Observing 

did not cost any points, but subjects relinquished their opportunity to place a bet on that trial. 

Thus, subjects were compelled to choose between gaining information about the current bias 

(by observing), or using the information they had gathered up to that point to obtain points 

(by betting).

Each block consisted of 50 trials. On each block, the machine was randomly set to have a 

blue or a red bias. The biased color caused the corresponding light to be active on 80% of 

the trials. There was also a 5% chance that the bias would change during the block. This 

change was not signaled to the subject in any way, and could only be detected through taking 

‘observe’ actions.

Computational model

To understand performance in our task mechanistically, we fit a computational model to the 

choice behavior, created to qualitatively match the features of the optimal decision strategy 

and shown to best fit subject behavior out of four candidate process models (Navarro et al., 

2016). Central to the model is an evidence tally that starts with a value of zero. Positive 

evidence reflects evidence that the bias is blue, negative reflects evidence that the bias is red. 

Thus, low absolute numbers reflect a state of uncertainty about the bias. Each time an 
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observation is made, the evidence value changes by +1 if blue is observed, and −1 if red is 

observed.

The relevance of old observations diminishes over time, modeled using an evidence decay 

parameter, α. The evidence decay parameter dictates what proportion of evidentiary value is 

lost on each trial. Thus, the evidence tally value is calculated as follows:

Where e is the evidence tally, t is the current trial, xt is the observation on the current trial 

(zero if a bet action is taken), and α is the evidence decay parameter. This evidence 

accumulation process is an instance of the the linear operator learning rule that has a long 

history in theories of learning (Bush & Mosteller, 1951), and differs from typical error-

driven reinforcement learning algorithms that have been used in most studies of 

reinforcement learning (e.g., Daw et al., 2006). A number of studies have suggested 

evidence decay over time, which can capture perseverative tendencies of human subjects 

(Erev & Roth, 1998; Worthy, Pang & Byrne, 2013).

The other main component of the model is a decision threshold. The threshold is a value at 

which the learner will switch from observing to betting. In the model used here (the best-

fitting model reported in Navarro, Newell, & Schulze, 2016), the decision threshold follows 

a piecewise linear structure across trials: it remains constant until a specific trial, at which 

point it changes at a constant rate until the final trial. The initial threshold, the trial at which 

the threshold begins changing (the changepoint), and the terminal value of the threshold are 

all parameters fit to the data.

Finally, because decision-makers are noisy, we also include a response stochasticity 

parameter, σ. Assuming a normally distributed noise term for each trial, nt, with a zero mean 

and a standard deviation of σ, the probability of betting blue is then:

Where et, nt, and dt are the evidence tally, decision noise, and the decision boundary on trial 

t, respectively, and Φ is the cumulative distribution function for a standard normal 

distribution.

Following Navarro et al., (2016), we used hierarchical Bayesian methods to estimate 

individual model parameters from the blocks performed outside the scanner. For the i-th 

subject, we set the priors on our model’s parameters as follows (these are the same priors 

used by Navarro et al., 2016). For the response stochasticity parameter:
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For the evidence decay parameter:

For the initial value of the decision threshold, d0i:

For the terminal value of the decision threshold, d1i:

For the threshold changepoint, ci:

We implemented the model in Stan (Stan Development Team, 2016) and used Markov chain 

Monte Carlo sampling to approximate the posterior distribution over parameters. For the 

fMRI analysis, we used the posterior median parameter values for each subject to generate 

model-based regressors.

fMRI Acquisition

Neuroimaging data were collected using a 3 Tesla Siemens Magnetom Prisma MRI scanner 

(Siemens Healthcare, Erlangen, Germany) with the vendor’s 32-channel head coil. 

Blanchard and Gershman Page 5

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anatomical images were collected with a T1-weighted magnetization-prepared rapid 

gradient multi-echo sequence (MEMPRAGE, 176 sagittal slices, TR = 2530ms, TEs = 1.64, 

3.50, 5.36, and 7.22ms, flip angle = 7°, 1mm3 voxels, FOV = 256mm). All blood-oxygen-

level-dependent (BOLD) data were collected via a T2*-weighted echo-planar imaging (EPI) 

pulse sequence that employed multiband RF pulses and Simultaneous Multi-Slice (SMS) 

acquisition (Moeller et al., 2010; Feinberg et al., 2010; Xu et al., 2013). For the task runs, 

the EPI parameters were: 69 interleaved axial-oblique slices (25 degrees toward coronal 

from ACPC alignment), TR = 2000ms, TE = 35ms, flip angle = 80°, 2.2mm3 voxels, FOV = 

207mm, SMS = 3). The SMS-EPI acquisitions used the CMRR-MB pulse sequence from the 

University of Minnesota.

fMRI preprocessing and analysis

Data preprocessing and statistical analyses were performed using SPM12 (Wellcome 

Department of Imaging Neuroscience, London, UK). Functional (EPI) image volumes were 

realigned to correct for small movements occurring between scans. This process generated 

an aligned set of images and a mean image per subject. Each participant’s T1-weighted 

structural MRI was then coregistered to the mean of the re-aligned images and segmented to 

separate out the gray matter, which was normalized to the gray matter in a template image 

based on the Montreal Neurological Institute (MNI) reference brain. Using the parameters 

from this normalization process, the functional images were normalized to the MNI template 

(resampled voxel size 2 mm isotropic) and smoothed with an 8 mm full-width at half-

maximum Gaussian kernel. A high-pass filter of 1/128 Hz was used to remove low-

frequency noise, and an AR(1) (autoregressive 1) model was used to correct for temporal 

autocorrelations.

We designed a general linear model model to analyze BOLD responses. This model included 

an event for observe decisions and another for bet decisions, time locked to the beginning of 

the decision period. We also included an event for the onset of feedback (either the 

observation of which light turned on, or just a visual of the machine with the bet that was 

made). For the onset of feedback, we included a parametric modulator which was the change 

in the absolute value of the evidence tally resulting from the observed outcome. Thus, this 

value would be negative and due entirely to evidence decay on a bet trial, and could be 

positive or negative on an observation trial depending on whether the observation provided 

more evidence in favor of betting or observing. Events were modeled with a one second 

duration.

Regions of interest

Regions of interest (ROIs) were constructed by combining structural ROIs with previously 

defined functional ROIs. Specifically, to define anatomically constrained value-based ROIs, 

we found the overlap between the structural ROIs from Tzourio-Mazoyer (2002) and the 

value-sensitive functional ROIs from Bartra, McGuire & Kable (2013). We also took the 

specific vmPFC and striatum ROIs from Bartra, McGuire & Kable (2013). For frontopolar 

cortex, we constructed a spherical ROI with a radius of 10 voxels, centered at the peak of 

activation reported by Daw et al. (2006). Similarly, for rostrolateral prefrontal cortex, the 
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spherical ROI (10 voxel radius) was constructed using the coordinates given in Badre et al. 

(2012).

Code and data availability

Code and behavioral data are available on GitHub (https://github.com/TommyBlanchard/

ObserveBet). The brain imaging data are available upon request.

Results

Behavioral results

Eighteen subjects performed a dynamic version of the “observe or bet” task (Figure 1; see 

Materials and Methods for details). On each trial, subjects chose to either observe an 

outcome (without gaining or losing points) or bet on the outcome (without observing the 

outcome but redeeming points at the end of the experiment). The outcome probability had a 

small probability of changing during the course of each block of 50 trials.

Normative behavior on this task predicts several distinctive behavioral patterns (Navarro et 

al., 2016). On the first trial that subjects bet following a series of observe actions, they 

should bet on the color seen last. The intuition is that observing a color should either make 

your belief about the outcome probability stronger or weaker, and subjects should always bet 

on the outcome with the higher probability. If the subject observed on the previous trial, they 

were not certain enough to place a bet based on their current belief. Observing a surprising 

outcome (i.e., the outcome that is less strongly predicted by the subject’s current belief) 

should push the belief towards the opposite decision threshold and therefore make the 

subject more likely to either observe or bet on the last-observed outcome. Indeed, subjects 

did strongly tend to bet on the last observed outcome on the first trial following an observe 

action, on average doing this 95.1% of the time (Figure 2A).

Subjects should also gradually reduce the probability of observing over the course of a 

block. This is because they start with no information about the outcome probability and thus 

must start by accumulating some information, but this tendency to explore will eventually 

yield to betting (exploitation) when the evidence becomes sufficiently strong. Again, 

subjects follow this pattern, observing 85.3% of the time on the first trial in a block and 

betting 98.4% on the final trial (Figure 2B).

Next, we implemented a previously developed computational model and fit it to subjects’ 

choice data (Navarro et al., 2016). This model consists of an ‘evidence tally’ that tracks how 

much evidence the learner currently has about the outcome probability, and a decision 

threshold that captures when the subject switches between observe and bet behaviors (Figure 

2C). We fit this model to each subject’s behavior from the pre-scanning blocks, and used the 

fitted model to construct regressors for our fMRI analysis (see Methods). Behavior was 

stable across pre-scanning and scanning blocks (Figure 2D–E).

fMRI results

In a follow-up session, our 18 subjects returned and performed the “observe or bet” task in 

an fMRI scanner. Our model contained regressors for the appearance of stimuli, when a 
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subject observed, when a subject bet, and the change in the absolute value of the evidence 

tally (see Materials and Methods).

We first attempted to identify regions associated with the decision to explore vs exploit (i.e. 

observe vs bet). We chose to specifically investigate brain regions previously associated with 

value-based decision-making or exploration. Specifically, we examined the frontal pole and 

rostrolateral prefrontal cortex, which have both previously been implicated in balancing 

exploration and exploitation (Daw et al., 2006; Boorman et al., 2009; Badre et al., 2011; 

Donoso et al., 2014). We also investigated the striatum, ventromedial prefrontal cortex 

(vmPFC), insula, and dorsal anterior cingulate cortex (dACC), all of which play a role in 

value-based decision-making (Bartra, McGuire, & Kable, 2013). We analyzed the signal in 

each of these ROIs, averaged across voxels (see Materials and Methods for details of ROI 

construction).

In each of our pre-defined ROIs, we calculated an ‘observe - bet’ contrast for each subject, 

and evaluated statistical significance using a one-sample t-test. We found a significant 

positive effect (observe > bet) in insula and dACC (t=4.20, p<0.001 and t=2.80, p=0.006, 

respectively; Table 1; Figure 3a). The peaks of these effects were at 32, 22, −8 for the right 

insula, −30, 16, −8 for left insula, and 8, 16, 46 for dACC. The effects in all other ROIs did 

not pass the error-corrected threshold of p<0.008 (Bonferroni correction with 6 comparisons 

and α = 0.05). We then performed a whole-brain analysis with cluster family-wise error 

correction using the bspmview package (Spunt, 2016). We found a bilateral effect in 

thalamus that passed the error-corrected threshold of p<0.05 (Figure 3b; peak at 8, −14, 2).

One potential concern with this analysis is that if people tend to switch from observing to 

betting more frequently than vice versa, any contrast between observe and bet trials would 

be confounded with task switching effects. Indeed, subjects were significantly more likely to 

switch following an observe trial (p < 0.001, signed rank test). If this lead to differential 

switch costs, then we would expect that responses should be slower on bet trials than on 

observe trials, consistent with the empirical data [t(17) = 2.2, p < 0.05; mean difference: 

48ms]. Thus, our data do not allow us to completely rule out a task switching confound.

Next, we investigated whether the BOLD signal in any regions covaried with changes in the 

absolute value of the evidence tally (a variable we termed the ‘update’ regressor). In other 

words, we wanted to know which areas might be involved in using outcome information to 

update the decision policy. We again investigated the same six ROIs (Table 2), finding a 

significant negative relationship between the ‘update’ regressor and the BOLD signal in 

vmPFC (t = −2.82, p = 0.006; peak of cluster at −4, 36, −16). The negative effect means that 

vmPFC is more active when predictions are confirmed (i.e., updated less). No effects in any 

of our other ROIs passed Bonferroni correction. After examining these specific areas, we 

performed a whole-brain analysis (Figure 4). No additional areas reached significance when 

performing whole-brain correction.
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Discussion

Using a reinforcement learning task that cleanly decouples exploration and exploitation, our 

study provides the first pure neural correlates of these processes. Insula and dorsal anterior 

cingulate cortex showed greater activation for ‘observe’ (exploration) trials compared to 

‘bet’ (exploitation) trials. Ventromedial prefrontal cortex showed greater activation for ‘bet’ 

compared to ‘observe’ trials, although this result did not survive correction for multiple 

comparisons across the regions of interest that we examined. We also found behavioral 

evidence favoring a heuristic approximation of the Bayes-optimal exploration strategy 

(Navarro et al., 2016): the probability of exploration changed dynamically as evidence was 

accumulated. These dynamics were accompanied by a neural correlate in the vmPFC that 

negatively correlated with the size of the belief update, suggesting that this region may 

encode the degree to which outcomes match prior expectations.

The anterior cingulate cortex has figured prominently in past research on the exploration-

exploitation dilemma, though its computational role is still unclear. Consistent with our 

findings, the anterior cingulate shows increased activity during exploration in multi-armed 

bandit (Daw et al., 2006; Quilodran et al., 2008; Amiez et al., 2012; Karlsson et al., 2012), 

foraging (Hayden et al., 2011; Kolling et al., 2012) and sequential problem-solving tasks 

(Procyk et al., 2000). Some evidence suggests that the anterior cingulate reports the value of 

alternative options (Hayden et al., 2011; Kolling et al., 2012; Boorman et al., 2013; 

Blanchard & Hayden, 2014); when this value exceeds the value of the current option, the 

optimal policy is to explore. Shenhav et al. (2013) have argued that exploration is a control-

demanding behavior, requiring an override of the currently dominant behavior in order to 

pursue long-term greater long-term rewards. In this framework, anterior cingulate reports the 

expected long-term value of invoking cognitive control.

The insula has also been implicated in several studies of the exploration-exploitation 

dilemma. Li et al. (2006) found insula activation in response to changes in reward structure 

during a dynamic economic game. These changes were accompanied by rapid alterations in 

the behavioral strategy. In a study of adolescents, Kayser et al. (2016) found that resting-

state connectivity between rostrolateral prefrontal cortex and insula distinguished 

“explorers” from “non-explorers” on a temporal decision making task. Finally, using 

positron emission tomography while subjects performed a bandit task, Ohira et al. (2013) 

reported that insula activity was correlated both with peripheral catecholamine concentration 

and response stochasticity. These results are consistent with our finding that insula was 

positively associated with exploration, though they do not provide insight into the region’s 

specific contribution.

Surprisingly, we did not find a statistically significant effects of exploration in either 

frontopolar cortex or rostrolateral prefrontal cortex. Several influential studies have 

identified these regions as playing an important role in regulating exploration and 

exploitation (Daw et al., 2006; Boorman et al., 2009; Badre et al., 2012; Beharelle et al., 

2015). It is not clear why we did not find effects in these regions; it is possible that our ROI 

selection procedure failed to identify the relevant voxels, or that these regions are primarily 

involved in other kinds of tasks (e.g., standard bandit or temporal decision making tasks). 
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One approach to this issue would be to define subject-specific functional ROIs using these 

other tasks and then interrogate regional responses using the observe or bet task. Another 

possibility is that substantive differences in task design and analysis account for the lack of 

activation. For example, Daw et al. (2006) defined exploratory vs. exploitative trials based 

on whether subjects chose the option with highest expected value, whereas in our study 

subjects might choose options with either high or low expected value on exploratory trials.

Our model-based analysis posits that an important computation governing exploration is the 

updating of the belief state. We found a negative effect of updating in the vmPFC, indicating 

that this region was more active when expectations were confirmed. One way to interpret 

this finding is that the ventromedial prefrontal cortex signals a match between outcomes and 

expectations—i.e., a kind of “confirmation” or “match” signal. An analogous match signal 

has been observed in a visual same/different judgment task (Summerfield & Koechlin, 

2008). In a related vein, Stern et al. (2010) reported that signals in vmPFC correlated with 

“underconfidence” (the degree to which self-reported posterior probabilities underestimate 

objective posterior probabilities), consistent with the hypothesis that reduced updating will 

elicit greater vmPFC activity.

In the context of reinforcement learning and decision making tasks, the ventromedial 

prefrontal cortex has more commonly been associated with reward expectation (Bartra et al., 

2013), rather than outcome-expectation comparisons. Nonetheless, a number of studies have 

reported evidence accumulation correlates in this region or nearby regions (d’Acremont et 

al., 2013; Chan et al., 2016). More research is needed to pinpoint the relationship between 

these findings and exploration during reinforcement learning.

One limitation of our approach is that exploration is confounded with time: subjects are less 

likely to observe on later trials. A promising approach to dealing with this issue would be to 

use a yoked control condition in which subjects see the same sequence of trials without the 

trial types being contingent on their own actions (cf. Wang & Voss, 2014). However, this 

yoked control is imperfect insofar as it essentially eliminates the exploration-exploitation 

trade-off.

Another limitation of our approach is that we only considered a single model in detail, one 

developed specifically to approximate the Bayes-optimal strategy on the observe-or-bet task 

(Navarro et al., 2016). Navarro and colleagues compared this model to several variants, 

which differed in terms of their assumptions about evidence decay and decision thresholds. 

They concluded, on the basis of qualitative and quantitative measures of model fit, that both 

decaying evidence and declining thresholds were necessary to account for the choice data. 

Although this is still a fairly restricted space of models, it is worth pointing out that most 

conventional reinforcement learning models cannot address the task at all: because the 

observe action does not accrue any points, it will always be assigned a value of 0 by model-

free algorithms like Q-learning. Nonetheless, the model developed by Navarro and 

colleagues invokes cognitive mechanisms that are shared across many other models, such as 

incremental adjustment of expectations (as in Q-learning) and decisions based on a 

stochastic threshold-crossing (as in sequential sampling models). The interface of these 
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mechanisms has recently become an important focus of research in reinforcement learning 

(Pedersen et al., 2017; Frank et al., 2015).

Finally, we must keep in mind that while the observe-or-bet task provides “pure” correlates 

by decoupling information acquisition and action selection, there are many other cognitive 

processes involved in exploration and exploitation, which may be shared across observe and 

bet trials. Thus, we cannot decisively conclude that this contrast has perfectly isolated the 

critical computations underlying exploration and exploitation. It is unlikely that any single 

task will be able to achieve complete purity in this sense, so our findings should be 

understood as complementing, rather than superseding, previous studies of exploration and 

exploitation, all of which have their strengths and weaknesses.

In summary, the main contribution of our study is the isolation of neural correlates specific 

to exploration. The major open question is computational: what exactly do the insula and 

anterior cingulate contribute to exploration? As discussed in the preceding paragraphs, the 

literature is well-supplied with hypotheses, but our study was not designed to discriminate 

between them. Thus, an important task for future research will be to use tasks like “observe 

or bet” in combination with experimental manipulations (e.g., volatility or the distribution of 

rewards) that are diagnostic of underlying mechanisms.
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Figure 1. A) Diagram of the ‘observe or bet’ task
Subjects first made a choice between betting blue, betting red, or observing. They then 

waited through a variable-length interstimulus interval (during which nothing was on the 

screen). Then for 1.5 seconds subjects were shown the outcome of their action – if they bet, 

they were simply told which color they bet, if they observed they were told which color lit 

up. This was followed by a variable length intertrial interval. B) End of block score screen. 
At the end of each block of the task, subjects were shown what had happened on each trial. 

They saw one row of colored circles indicating what lit up on each trial, and a second row 

showing what their action had been on that trial (red or blue for betting, black for 

observing). They were also told their score for that block. For more details on the task, see 

Methods.
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Figure 2. Behavior on the ‘observe or bet’ task. A)
Histogram showing the proportion of time each subject bet on the same color they observed 

on the previous trial. Vertical dashed line indicates random choice. B) Proportion of trials 

subjects observed by trial number on each block (averaged across all subjects). Shaded 

region indicated the 95% confidence interval. C) A visual representation of the model for 

one block. Circles indicate the action that was taken on that trial (black for bet, red for 

observed red, blue for observed blue). Grey line indicates the evidence tally on each trial. 

Black lines indicate the betting threshold. See Materials and Methods for model details. D) 
Observe to bet ratio for each subject for the initial behavioral session and the scanner 

session. Line indicates the point of equality for the two sessions. E) The average evidence 

decay parameter across all subjects for each block.
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Figure 3. Observe – bet contrast
A) Clusters within the significant ROIs, with threshold set at p < 0.001, uncorrected. The 

ROI for insula is circled in green, the ROI for ACC is circled in magenta. B) Whole-brain 

analysis with cluster family-wise error shows an effect in thalamus, peak activity at 8, −14, 

2.
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Figure 4. Update contrast
Cluster within the significant ROI. Green circle shows the ROI for vmPFC. Threshold set at 

p < 0.001, uncorrected.
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Table 1
Table of values for the ROI analyses for the group-level ‘observe - bet’ contrast

Degrees of freedom = 17. Bonferroni-corrected p-value threshold with α = 0.05 is 0.008. Significant effects 

were found in insula and dorsal anterior cingulate.

Brain Region t-value p-value Peaks Cluster Size (Voxels)

Insula 4.20 <0.001 32, 22, −8 (Right)
−30, 16, −8 (Left)

388 (Right)
282 (Left)

Dorsal Anterior Cingulate 2.80 0.006 8, 16, 46 307
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Table 2
Table of values for the ROI analyses for the ‘update’ contrast

Degrees of freedom = 17. Bonferroni-corrected p-value threshold with α = 0.05 is 0.008, a threshold that only 

the effect in vmPFC (highlighted in bold) passes.

Brain Region t-value p-value Peaks Cluster Size (voxels)

vmPFC −2.82 0.006 −4, 36, −16 203
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