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ABSTRACT The presence of the mcr-1 gene in Escherichia coli isolated from retail
freshwater fish was investigated. Seven (3.65%) clonally unrelated original E. coli iso-
lates from grass carp were positive for mcr-1. The mcr-1 genes were encoded by either
chromosomes (n � 2) or conjugative plasmids (2 IncI2, 2 IncP, and 1 IncX4). The IncP
plasmids were similar to other mcr-1-harboring IncP plasmids from China, though the in-
sertion sites varied. Our report warrants further surveillance of resistance genes in aqua-
culture.
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Since the first identification of the plasmid-mediated colistin resistance gene mcr-1,
it has been detected worldwide, mainly in Escherichia coli from livestock, food,

humans, and the environment (1–3). Recently, the presence of mcr-1 has been reported
in scampi, rivers, well water, and sewage from farms and hospitals (4–8), suggesting its
possible spread to aquaculture. It has been proposed that aquaculture may promote
the origination, mobilization, and selection of mcr genes (9). However, a systematic
study on the prevalence of mcr-1 genes in aquaculture is lacking. Therefore, we carried
out an investigation of the mcr-1 gene in E. coli from retail grass carp, one of the leading
freshwater fishes produced in China.

Between March 2016 and December 2016, a total of 192 nonduplicated E. coli strains
were recovered from 700 grass carp collected from 11 fish markets (A to K) located
throughout Guangzhou, the largest trading center of aquatic products in southern
China. The susceptibilities of these isolates to 19 antimicrobial agents were determined
by the agar dilution method or the broth microdilution method (colistin) (10). Eight
isolates showed reduced susceptibility to colistin, with MICs of 4 to 8 mg/liter, and
exhibited a multidrug resistance phenotype (Table 1).

The presence of mcr-1 was confirmed by PCR screening with specific primers
described by Liu et al. (1) and by sequencing. Colistin-resistant isolates were also
screened for mcr-2, mcr-3, mcr-4, and mcr-5 genes as detailed previously (11–14). Seven
E. coli isolates (3.65%) were positive for mcr-1. One E. coli isolate exhibited reduced
susceptibility to colistin, but was negative for all mcr genes. Although the origin of
mcr-1 in retail freshwater fish is unclear, improper disposal of human or animal sewage
to the aquatic environment might be one source, as Cabello and Godfrey reported that
aquacultural water is likely to be contaminated by human and animal pathogens (9).
Additionally, mcr-1 may occur in integrated agriculture where aquacultured fish was fed
animal manure containing colistin. Furthermore, the possibility of mcr-1 originating
from aquatic bacteria could not be ruled out (15). It has been reported that enzymes
encoded by mcr-1, such as ethanolamine phosphotransferase (EptA and PmrC), were
detected in Shewanella algae, a member of a genus that contains opportunistic fish and
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human pathogens (16). Furthermore, the amino acid sequence of the mcr-1-encoding
protein is significantly similar to that of the phosphoethanolamine transferase of
Enhydrobacter aerosaccus, an aquatic bacterium (1). The emergence of mcr-1 in aquatic
products should raise concerns, as mcr-1 may spread globally via international trade,
as evidenced by reports in Norway (4). In addition, considering high consumption of
aquatic products and the habit of eating sashimi (raw fish meat), it is highly possible
that mcr-1 could be transferred directly to humans through the food chain.

Molecular typing results demonstrated that mcr-1-positive isolates belonged to
different sequence types (STs), including ST48 (ST10 Cplx), ST4014, ST101 (ST101 Cplx),
ST2040, ST7013, ST156, and a novel ST, ST7508 (Table 1). Interestingly, ST48 and ST156
E. coli isolates were also found as carriers of mcr-1 in scampi and Muscovy duck,
respectively (4, 17).

S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting indi-
cated that the mcr-1 genes were located on chromosomes in two isolates (GDT6F13
and GDT6F38) and on plasmids in the remaining five isolates (GDP6F1, GDT6F36,
GDT6F49, GDT6F93, and GDT6F97). Streptomycin-resistant E. coli strain C600 was
used as a recipient in the conjugation experiment to study the transferability of the
mcr-1 genes. All five mcr-1-bearing plasmids were successfully transferred to the
recipient strain at frequencies varied from 1.4 � 10�4 to 5.5 � 10�4 cells per donor
cell (Table 1).

To investigate the genetic backgrounds of the mcr-1-positive isolates, whole-
genome sequencing was conducted on an Illumina HiSeq 2500-PE125 platform (Beijing
Novogene Bioinformatics Cp., Ltd.). The sequences were assembled using SOAPdenovo
(http://soap.genomics.org.cn/soapdenovo.html) and analyzed using the online tools
MLST (MultiLocus Sequence Typing), PlasmidFinder, and ResFinder (http://cge.cbs.dtu
.dk/services). Based on reference plasmids, mcr-1-bearing contigs were comparatively
analyzed, and gaps between contigs were filled by PCR and Sanger sequencing. Four
complete sequences of mcr-1-bearing plasmids were obtained, namely, IncP plasmids
pHNGDF1-1 and pHNGDF36-1, IncX4 plasmid pHNGDF49, and IncI2 plasmid pHNGDF93.
Previous studies revealed that the IncX4 and IncI2 plasmids were dominant carriers of
mcr-1 (18, 19). In this study, pHNGDF49 and pHNGDF93 were highly similar to those
reported mcr-1-bearing IncX4 and IncI2 plasmids from various origins, including from
animals, humans, and the environment (see supplemental material), suggesting the
dissemination of these epidemic mcr-1-carrying plasmids to aquaculture.

Additionally, broad-host-range IncP plasmids were also the vectors for mcr-1 in this
study. mcr-1-positive IncP plasmids have been described in various species of bacteria
in China, including Klebsiella pneumoniae (pMCR_1511, GenBank accession number
KX377410), E. coli (pMCR_WCHEC1622, KY463452; pMCR3_WCHEC-LL123, MF489760;
and pHKSHmcr_P2_p1, MF136778), Citrobacter braakii (pSCC4, NZ_CP021078), and
Salmonella enterica serovar Typhimurium (pMCR16_P053, KY352406), originating from
diverse sources such as hospital sewage, pig feces, chickens, and humans (Fig. 1) (20,
21), highlighting the significance of IncP in the transmission of mcr-1. The backbones of
pHNGDF1-1 and pHNGDF36-1 were almost identical to that of pHNFP671 (KP324830),
which belonged to a new IncP-1 plasmid clade and did not harbor mcr-1. pHNFP671
was found in an E. coli isolate obtained from swine feces in China. Comparative analysis
of pHNGDF1-1, pHNGDF36-1, other IncP plasmids encoding mcr-1, and pHNFP671
revealed a high level of conservation across the plasmid backbones, except for pSCC4,
which has an �8,400 bp deletion of the transfer region (Fig. 1).

Although mcr-1-carrying IncP plasmids shared conserved backbones with pHNFP671,
the variable regions were different (Fig. 1). In pHNFP671, ISApl1 was present �630 bp
upstream of trbP. Interestingly, mcr-1-hp and ISApl1-mcr-1-hp-ISApl1 were also inserted
within the same locus in pHNGDF1-1 and pSCC4, respectively (Fig. 1). This suggests that
this locus is a hot spot for the insertion of ISApl1. As for pHNGDF36-1, it represented a
common mechanism mediating the spread of mcr-1. A composite transposon, ISApl1-
mcr-1-hp-ISApl1, flanked by 2-bp (GT) direct repeats (DRs), was inserted downstream of
higA, which was in agreement with the report that ISApl1 could generate 2-bp DRs (22).
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A BLAST search against the GenBank WGS database showed that the pMCR_1511-
like IncP plasmid carrying mcr-1 was also present in the E. coli strain CT37C A1 isolated
from Gallus gallus feces in Netherlands (GenBank accession number FLZF01000032;
99% coverage and 99% nucleotide identity), a Salmonella enterica subsp. enterica
serovar Typhimurium ST34 strain GMR-S-1257 isolated from human feces in Colombia
(MVPR01000083; 99% coverage and 99% nucleotide identity) (23), and three E. coli
strains isolated from human vaginal secretions in Colombia (MVPN01000072; 99%
coverage and 99% nucleotide identity). It is likely that the pMCR_1511-like IncP plasmid
is widely distributed.

pHNGDF1-1 and pHNGDF36-1 were stably maintained after passage (data not
shown). Additionally, pairwise competition assays were carried out using transformants,
which were obtained by chemical transformation with E. coli DH5� as the recipient and
competed with E. coli DH5�. It was found that that carriage of pHNGDF1-1 and
pHNGDF36-1 enhanced biological fitness in the host (Fig. 2). Recently, IncP plasmids

FIG 1 Levels of identity between the pHNGDF1-1, pHNGDF36-1, pMCR_1511, pMCR_WCHEC1622, pMCR3_WCHEC-LL123, pHKSHmcr_P2_p1, pMCR16_P053,
and pSCC4 backbones and the pHNFP671 backbone. The scale of identity is displayed on the right. With tra genes shown by appropriate capital letters, the
extents and directions of specific genes are shown by labeled arrows in different color. Labeled vertical arrows are used to annotate the insertion loci of mobile
elements that were removed before alignment of the backbones. Sequences of other plasmids (accession numbers shown in the figure) were obtained from
GenBank.

FIG 2 Fitness cost of pHNGDF1-1 and pHNGDF36-1 in E. coli DH5� in vitro. Growth competition between
recipient E. coli DH5� and transformants containing pHNGDF1-1 and pHNGDF36-1. Each transformant
was cultured in the presence of DH5� but without any antibiotics. The results were calculated and
expressed as relative fitness against DH5�. The initial ratio was 1:1.
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were described as mediating the dissemination of the mcr-3 gene between Enterobac-
teriaceae and Aeromonas spp., which are pathogens of aquacultured fish (24). Moreover,
Zhao et al. proposed that the IncP plasmid could mediate the transmission of mcr-1
from Enterobacteriaceae to other Gram-negative bacteria, such as Pseudomonas aerugi-
nosa (20). Thus, considering its high conjugation frequency and broad host range, the
IncP plasmid may facilitate the dissemination of mcr-1 across various hosts, and it might
potentially become as dominant a carrier of mcr-1 as the IncI2 and IncX4 plasmids.

In summary, to the best of our knowledge, ours is the first report of the mcr-1 gene
in fish products. The presence of mcr-1 in retail freshwater fish is of great concern, given
that this gene has the possibility to spread globally via international trade of aquatic
products and to threaten human health through the food chain. This study warrants
further investigation in aquaculture to prevent the spread of antimicrobial resistance.

Accession number(s). Plasmids pHNGDF1-1, pHNGDF36-1, pHNGDF49, and
pHNGDF93 have been deposited in GenBank under the accession numbers MF990207,
MF978389, MF978387, and MF978388, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.02378-17.
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