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ABSTRACT Environmental antibiotic risk management requires an understanding of
how subinhibitory antibiotic concentrations contribute to the spread of resistance.
We develop a simple model of competition between sensitive and resistant bacterial
strains to predict the minimum selection concentration (MSC), the lowest level of
antibiotic at which resistant bacteria are selected. We present an analytical solution
for the MSC based on the routinely measured MIC, the selection coefficient (sc) that
expresses fitness differences between strains, the intrinsic net growth rate, and the
shape of the bacterial growth dose-response curve with antibiotic or metal exposure
(the Hill coefficient [�]). We calibrated the model by optimizing the Hill coefficient to
fit previously reported experimental growth rate difference data. The model fit var-
ied among nine compound-taxon combinations examined but predicted the experi-
mentally observed MSC/MIC ratio well (R2 � 0.95). The shape of the antibiotic re-
sponse curve varied among compounds (0.7 � � � 10.5), with the steepest curve
being found for the aminoglycosides streptomycin and kanamycin. The model was
sensitive to this antibiotic response curve shape and to the sc, indicating the impor-
tance of fitness differences between strains for determining the MSC. The MSC can
be �1 order of magnitude lower than the MIC, typically by the factor sc�. This study
provides an initial quantitative depiction and a framework for a research agenda to
examine the growing evidence of selection for resistant bacterial communities at
low environmental antibiotic concentrations.
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microbiology, growth modeling, mathematical modeling, metal resistance, minimum
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Effective management of antibiotic risks in the environment requires an understand-
ing of the factors responsible for the emergence, transmission, and maintenance of

antibiotic resistance (1). It is particularly important to address the question of when
resistant bacteria predominate as a result of environmental antibiotic pollution (1–5).
For example, insights are needed into the extent to which antibiotics in aquatic
environments contribute to the spread of resistance and to the long-term prevalence
of resistant infections in humans (2, 5).

The mutant selection window (MSW) paradigm states that resistant mutants may
develop between the lowest boundary concentration of selection for resistance and the
upper boundary concentration of growth inhibition of the most resistant potential
mutant (the mutant prevention concentration [MPC]) (6, 7). The paradigm further
indicates that the lower boundary concentration of the MSW is the MIC (nanograms per
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milliliter), and the MIC has been useful to evaluate the hazard of selection for resistance
in natural aquatic environments (4, 8). Considerable research in vitro and in vivo has
demonstrated that resistant mutants develop between the MIC and the MPC (7, 9, 10),
but many laboratory and theoretical studies indicate that resistant mutants can also be
preferentially selected above the minimum selective concentration (MSC) (nanograms
per milliliter), defined as the lowest concentration at which a resistant strain outcom-
petes and displaces sensitive isolates (1, 11–18). Because the MSC can be lower than the
MIC, and to minimize the hazard of resistance occurring in the natural environment
(e.g., aquatic systems), further characterization and understanding of the MIC-versus-
MSC relationship would be beneficial (8).

Laboratory experiments (11–13, 16, 18) have elegantly demonstrated MSCs ranging
from 1/4 to below 1/200 of the MIC for antibiotics of several classes (e.g., macrolides,
aminoglycosides, fluoroquinolones, and antifolates) and for two metals in Escherichia
coli or Salmonella enterica serovar Typhimurium LT2. This finding may help explain the
high levels of resistance found in the environment, particularly at subinhibitory anti-
biotic concentrations (2, 5, 11). These studies further indicate that the fitness cost of the
resistance-conferring mutations is more important than differences in MICs between
strains for discerning how much below the MIC the resistant bacteria will predominate
(12). However, a mathematical description of the competition between strains would
aid in understanding strain- and antibiotic-specific results and generalizing these
results to a wider range of situations.

Mechanistic mathematical models, including experimentally validated pharmacody-
namic/pharmacokinetic models, describe antibiotic effects better than simple MIC
measurements (19–23). For example, the shape of the antibiotic dose-response curve is
very important for the microbiological efficacy of antibiotic treatment regimens at high
(treatment) levels (19). The implications of this understanding of the dose-response
curve shape for low (subinhibitory) antibiotic levels and for calculation of the MSC,
while relevant for the selection of resistance, have not been considered in as much
depth. To complement recent empirical research (1, 11–13, 16, 18), there remains a
need for a quantitative model describing the MSC, i.e., the minimum environmental
antibiotic concentration that allows resistant bacterial strains to dominate. Such a
model can generate testable predictions, identify the factors that determine water or
soil antibiotic concentrations that select for resistance, and be incorporated into hazard
assessments for antibiotic resistance development (1). For example, comparisons of the
range of observed or modeled antibiotic concentrations to MSC thresholds would aid
in comparing the relative likelihoods of selection for resistance under different ob-
served or modeled environmental and management conditions.

An analytical solution for the MSC has two potential uses. First, model sensitivity
analysis and examination of the parameter structure may provide insight into the
relationship between commonly considered bacterial growth and antibiotic dose-
response parameters and the MSC itself. Second, current methodology to accurately
measure the MSC requires the direct measurement of competition between bacterial
strains and specialized methods such as fluorescent-cell tagging and flow cytometry
(12, 16). An analytical solution provides a potential alternative to these methods,
instead estimating the MSC based on the bacterial growth rate and antibiotic dose-
response parameters that are routinely obtained within microbiology laboratories. To
that end, this paper addresses three questions. (i) How do we quantitatively define the
MSC via a parsimonious mathematical model in combination with readily available
measurements? (ii) How well does such a mathematical model of the MSC fit to
reported empirical data? (iii) Which model parameters, representing biological charac-
teristics, are most important to describe the MSC?

The model that we propose in this paper describes the MSC based on the compe-
tition between a wild-type strain and a resistant strain of bacteria and the key factors
that favor the growth of resistant strains at subinhibitory antibiotic concentrations. The
model focuses on conspecific bacteria and is calibrated to the experimental results
reported previously by Gullberg et al. (12, 16) for E. coli and S. Typhimurium. The model
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illustrates the shape of the antibiotic dose-response curve as a measurable and influential
driver of the ratio of the MSC and MIC and presents a hypothesized dose-response
relationship for use in the risk assessment of resistance development in environmental
settings. Finally, we discuss the implications of the MSC results for the increased risk of
antibiotic resistance selection at antibiotic concentrations observed in antibiotic-
contaminated waste streams and natural waters.

RESULTS

Figure 1 depicts the change in the growth rate (N) versus the antibiotic concentra-
tion (see equation 7 in Materials and Methods), the crossover point between the
growth rates of sensitive (Ns) and resistant (Nr) strains (i.e., the MSC) (see equation 8),
and an analytical solution for the MSC/MIC ratio (see equations 10 and 11). The MSC can
be observed as the antibiotic concentration at which Ns (see equation 1) and Nr (see
equation 2) cross, indicating identical growth of sensitive and resistant strains (Fig. 1B
and C, and see equation 8). The MSC/MIC ratio (12) is of interest because this ratio
enables the ready calculation of the MSC given the MIC. The MSC is of particular interest
as the environmental antibiotic concentration at which resistance selection could occur
among competing bacteria populations (1, 15). The MSC can be calculated by employ-
ing this ratio in combination with routinely available MIC data (4, 8, 24) (see the EUCAST
database at https://mic.eucast.org/Eucast2/). The obtained MSC can then be directly
compared to measured antibiotic concentrations.

We first evaluate the model by examining the effect of varying �, the Hill coefficient
of the equation representing the loss in net growth due to antibiotic concentration, as
well as of Nmin, the minimum possible growth rate. We then compare the predicted
growth rates and MSC/MIC ratios to previously reported data. We then examine model
behavior and implications for MSC/MIC ratio predictions. Finally, we perform a sensi-
tivity analysis to identify the most important parameters for predicting this ratio,
looking at �, Nmin, the selection coefficient (sc), and the intrinsic growth rate (Nint).

Model evaluation. (i) Effect of varying � and Nmin for sensitive versus resistant
strains. The analytical solution for equation 10 requires identical � and Nmin values for
sensitive and resistant strains. We evaluated the impact of this assumption on model
predictions by determining which strain-specific parameter values (i.e., �s, �r, Nmin,s, or
Nmin,r) were most important for predicting the MSC. To achieve this, we performed a
Monte Carlo simulation sensitivity analysis, as detailed in the supplemental material
text and in supplemental Table S1. In two simulations, the predicted value of MSC was
obtained by using equation 10, assuming separate �s, �r, Nmin,s, and Nmin,r values in
equations 5 and 6. To be robust to MIC ratio variations, the first simulation had an MICr

that was 1.5� MICs, whereas the second simulation had an MICr value equal to 10�

MICs. In both simulations, the MSC was highly sensitive to �s (Spearman rank correlation
coefficient [�] value of �0.8) but was insensitive to Nmin,s or Nmin,r (�Spearman ��

absolute value of �0.11). This much stronger influence of � than of Nmin is expected
based on the fact that � is an exponential term (see equations 10 and 11). The MSC was
also more sensitive to �s than to �r, and the �Spearman �� absolute value between �s

and the MSC (� � 0.83) was more than twice the ��� absolute value between �r and the
MSC (� � �0.39). When the MICr was 10� MICs, almost all variation in the MSC was
explained by �s (� � 0.97), with � being equal to �0.09 for �r. These results indicate
that the MSC will strongly depend on �s, the shape of the antibiotic dose response for
the sensitive strain. As a result, for the indirect estimation of the MSC using equation
10, �s should be well characterized experimentally.

(ii) Model performance for predicting differences in net growth rates. Figures 2
and 3 display the differences in net growth rates for sensitive versus resistant strains
(ΔN) for previously reported experimental data in comparison to the model (see
equation 7). Figure 2 illustrates how ΔN increases with increasing antibiotic concen-
trations for the ciprofloxacin (CIP) experiments reported previously by Gullberg et al.
(12), with variability being due to the examination of four bacterial strains. Figure 3
directly compares the experimentally observed and model-predicted ΔN values for all
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antibiotics and metals examined. The model-predicted results overlapped the range of
experimental observations under most conditions. Much of the variability was attrib-
utable to experimental variation rather than model error, as evident in the horizontal
spread of points for each compound. However, the model underpredicted experimen-
tal results for the aminoglycosides kanamycin (KAN) and streptomycin (STR) (Fig. 3,
open circles) when ΔN was �0.05. Consequently, linear regression indicated that
ΔNmodeled � 0.93(ΔNobserved) � 0.002, a slight underprediction. By examining results for
individual compounds, the model performances (R2, Q2, and PRESS/SSY [predictive
residual sum of squares/total sum of squares]) were generally similar when either one
parameter (�) or two parameters (� and Nmin) were fitted and for either the raw or
averaged experimental data (see Table S2 in the supplemental material). For CIP,
erythromycin (ERY), KAN, and STR, the model fit was insensitive to Nmin, exhibiting a
wide range of possible values and a limited impact on model fit. Therefore, Nmin was
fixed at a representative literature value of �2 (19, 25, 26), and � was fitted to
experimental observations. The fitted model was generally consistent with raw obser-

0 20 40 60 80 100

−4
−3

−2
−1

0
1

2

G
ro

w
th

 ra
te

 (N
) [

 h
−1

]

κ = 0.5

κ = 1

κ = 2

κ = 3

0 20 40 60 80 100

−5
   

−4
−3

  −
2

−1
0

1
2

G
ro

w
th

 ra
te

 (N
) [

 h
−1

]

κ = 2

MICr = 30

MICs = 10

Ns

Nr

0 1 2 3 4 5

1.
4

1.
6

1.
8

2.
0

Antibiotic concentration [ng ml−1]

G
ro

w
th

 ra
te

 (N
) [

 h
−1

]

MSC = 1.4

κ = 2

MICr = 30

MICs = 10

Ns

Nr

A

B

C

FIG 1 Theoretical comparison of growth rate versus antibiotic concentration (employing equations 1, 2,
5, and 6). (A) Single strain (MICr � 40 ng ml�1) with different � values. (B and C) Sensitive and resistant
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vations (R2 � 0.8), and the model exhibited high predictive value in cross-validation
(CV) (Q2 � 0.8) for tetracycline (TET), trimethoprim (TMP), ERY, and arsenite in E. coli and
for TET in Salmonella Typhimurium (Table 1; see also Fig. S2 to S5 and S9 in the
supplemental material). The model fit was moderate for CIP (R2 � 0.78) (Fig. 2), Cu (R2

� 0.73) (Fig. S7), and STR (R2 � 0.67) (Fig. S8). For KAN, the model fit was poor, worse
than a simple average of the data, i.e., a slope equal to zero (R2 � 0), indicating that it
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was not possible to fit the model to the KAN data (Fig. S6). The model fit to KAN was
also poor for several alternative statistical models, including Weibull, logit, logistic, and
probit formulations.

As shown in Table 1, the fitted � values ranged widely across the nine compounds
examined (from 0.7 to 10.5). CV results generally produced a very narrow range, with
� values varying by �0.1 within individual compounds, except for KAN and copper
sulfate (Cu) (Table S2). Similarly, CV PRESS/SSY results were �0.4 for all compounds
except KAN and Cu. Values of �0.4 are considered to indicate reasonably low model
prediction error (27).

Because it was the only experiment that included four resistance genotypes, cipro-
floxacin was examined more closely. Overall, the fit and predictive ability were generally
reasonable (R2 � 0.81, Q2 � 0.78, and PRESS/SSY � 0.29) (Table S2), except for the
downward bias for the two highest ΔN results (Fig. 2). These were both for the
gyrA1(S83L) strain versus the sensitive wild-type strain above 2 ng/ml ciprofloxacin (19).
The gyrA1(S83L) comparison had a substantially different curve shape, and the removal
of this strain from the data greatly improved the model fit (R2 � 0.97, Q2 � 0.97, and
PRESS/SSY � 0.04). However, the change in predicted � values was trivial (from 2.0 to
2.1, with Nmin fixed at �2).

(iii) Minimum selection concentration. The MSC/MICs ratio was estimated (see
equation 10) based on model-fitted � and empirical values for the selection coefficient
(sc), MICr, and MICs. For these estimates, Nint,s was set at 1.8 h�1, and Nmin was either
fitted or set at �2 h�1. The chosen Nint,s value is based on the experiments that the
model was fitted to, indicates a generation time (doubling time) of about 25 min, and
approximately corresponds to the growth rate for a wild-type Salmonella Typhimurium
or E. coli strain in Mueller-Hinton medium at 37°C (16; Dan Andersson, Uppsala
University, personal communication). Model predictions corresponded well to the
observed MSC/MICs ratio (12, 16) for all experiments, with either fixed or fitted Nmin (Fig.
4), suggesting that the model is appropriate to estimate the MSC/MICs ratio. The
MSC/MICs ratio ranged across 2 orders of magnitude, from 0.006 to 0.66 (Table 1; see
also Table S3 in the supplemental material).

Sensitivity analysis. For sensitivity analysis, the behavior of equation 10 was
examined across reasonable parameter ranges to examine the sensitivity of the MSC/
MICs ratio to fitness differences (sc), antibiotic resistance differences (MICr/MICs ratio),

TABLE 1 Results of modela optimization to previously reportedb empirical growth rate
differences (ΔN) between sensitive and resistant strains, based on the strain-specific
selection coefficient, MICs, and MICr

c

Compoundd Organism
No. of
strains N � R2 Q2e PRESS/SSY

MSC/MICs

ratio

TET E. coli 3 60 1.6 0.89 0.89 0.09 0.014
0.063

TMP E. coli 2 118 2.5 0.88 0.87 0.07 0.18
ERY E. coli 3 64 3.5 0.94 0.93 0.07 0.074

0.27
KAN E. coli 2 72 10.5 �0.47 �0.48 0.43 0.66
As E. coli 2 20 0.7 0.84 0.81 0.30 0.0064
Cu E. coli 2 8 1.9 0.73 0.43 0.80 0.035
CIP E. coli 5 144 2.0 0.78 0.77 0.31 0.024

0.088
STR Salmonellaf 2 87 5.0 0.67 0.66 0.25 0.38
TET Salmonellaf 2 154 1.2 0.93 0.93 0.04 0.0077
aSee equation 7.
bSee references 12 and 16.
c� was fitted, and raw experimental ΔN data were employed. Other model parameters were an Nint,s value of
1.8 and an Nmin value of �2 (19, 25, 26). The MSC/MICs ratio was calculated by using equation 10 with
selection coefficients reported previously for resistant strains (12, 16).

dAs, arsenite.
eQ2 � cross-validated R2 � 1 � (PRESS/TSS).
fSalmonella enterica serovar Typhimurium LT2.
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maximum growth rate inhibition (Nmin), and the intrinsic growth rate (Nint,s). Equations
10 and 11 indicate that the MSC/MICs ratio is primarily a function of sc and � but is also
modified by corrective terms that include Nmin, Nint,s, Nint,r, MICs, and MICr. Figure 5
demonstrates the influences of sc and � on the MSC/MICs ratio. Specifically, increasing
the sc value decreases the growth rate of the resistant strain (Fig. 5A and B), whereas
increasing � values increase the curvature of the growth rate of the sensitive strain (Fig.
5B to D), both of which result in increased MSC/MICs ratios. As a result, modeled � is
strongly associated with model-predicted MSC/MICs ratios. Thus, the Pearson cor-
relation coefficient was very high (r � 0.94) for the �-versus-MSC/MICs results from
Table 1.

Figure 6 provides plots of the MSC/MICs ratio as a solution for equation 10 across
different parameter values. Figure 6A confirms the dominant and interdependent
influences of sc and � on the MSC/MICs ratio, with the largest influences being found
at or below � values of 1. At a � value of 1, the MSC/MICs ratio is approximately equal
to sc (Fig. 6A, blue dashed line). The influences of sc and � can be combined according
to equations 10 and 11, which indicate that the MSC/MICs ratio is proportional to sc1/�.
Figures 6B to D illustrate that the MSC/MICs ratio is proportional to sc1/� and that the
slope of this relationship is modified by MICr, Nint,s, and Nmin. An increase in the MICr

will decrease the MSC/MICs ratio, but this relationship is sensitive only when the MICr

approaches the MICs (MICr/MICs ratio close to 1) (Fig. 6B). The generally low sensitivity
of the MSC/MICs ratio to the MIC values themselves corroborates the empirical findings
of Gullberg et al. (12). Increasing the Nint,s value also decreases the MSC/MICs ratio, but
this exhibits only a minor influence (Fig. 6C). Finally, increasing the Nmin value also
decreases the MSC/MICs ratio, but this is sensitive only when Nmin approaches zero
(Fig. 6D). Nmin indirectly affects the MSC/MICs ratio by influencing the MIC-versus-EC50
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(50% effective concentration) relationship (see equations S7 and S8 in Text S1.2 in the
supplemental material).

Figure 6A also illustrates the expected range of MSC/MICs ratios across combinations
of sc and � (the most influential parameters). Over commonly observed sc ranges from
0.001 to 0.1 and � ranges from 0.5 to 5 (12, 28–30), the MSC/MICs ratio ranged widely
from 10�6 to 0.5. With sc equaling 0.01, as � decreased from 2 to 0.5, the MSC/MICs ratio
decreased from typically a factor of 0.1 down to less than a factor of 10�4. This indicates
that as the � value decreases, MSC values become increasingly sensitive to incremental
changes in �. Especially for low sc values, slight decreases in � may correspond to steep
declines in the MSC value (Fig. 6A).

DISCUSSION

This study model is a simple mathematical approach to describe the factors that will
drive the MSC, which is a relevant environmental threshold concentration for the
selection of resistant bacteria. This model helps us understand the significant issue of
the spread of environmental resistance (1, 5, 31) by mathematically formulating the
dependence of the MSC (11, 15) on the intrinsic growth rate and the antibiotic-versus-
growth dose response. The model would enable an indirect estimation of the MSC
using measurements of bacterial growth parameters that are readily obtained in the
laboratory and the literature (�, Nmin, and Nint), as an alternative and possible comple-
ment to direct measurements (12, 13, 16). More importantly, the model identifies the
shape of the antibiotic dose-response curve of the sensitive strain (i.e., �) and the
selection coefficient (sc) as the main parameters determining the MSC/MIC ratio. These
traits, combined with MIC ranges reported in the literature (4, 8, 24), can be used to
estimate environmental antibiotic concentrations at which resistance could spread.

The model consistently estimated the MSC/MIC ratio across the nine compound-
taxon combinations examined, with an overall R2 value above 0.95 (Fig. 4). This finding
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suggests that one could estimate the MSC given (i) the MIC, (ii) the intrinsic bacterial
growth rate (i.e., Nint), (iii) fitness loss (either � or sc measurements), and (iv) the shape
of a dose-response curve for the antibiotic concentration versus bacterial growth for
the sensitive strain (i.e., �). The first three values are readily available for a range of
strains, resistance mechanisms, and conditions (4, 12, 19, 24, 25, 28, 29, 32, 33). Nint will
vary widely for a given species depending on the conditions and media, but the model
MSC/MIC ratio is highly insensitive to Nint (Fig. 6C). � is obtained by means of an
antibiotic-concentration-versus-growth-rate dose-response curve. The antibiotic-
versus-growth-rate relationship will vary across treatment conditions but is straightfor-
ward to obtain, allowing the experimental calculation of � (references 19, 21, 25, and
34 provide examples). The dose response, based on growth rate data, was traditionally
achieved by flask-based culture methods. Currently, automated microtiter plate readers
allow growth curves to be obtained within a day (35), and emerging techniques,
including PCR-based methods or microfluidics, could streamline growth curve deter-
mination even further (36).

To illustrate the use of the model, Fig. 7 displays the MSC/MIC ratio from equation
10 across a range of selection coefficients, based on laboratory growth parameters
reported by Regoes et al. (19) and Ankomah et al. (25). Results vary dramatically across
experiments, even for the same species-antibiotic combination (Fig. 7), largely due to
variations in �. This suggests a strong impact of specific strains and growth conditions
for selection, resulting in differences among systems of multiple orders of magnitude
and a need to understand how the antibiotic resistance dose response varies across
antibiotic-contaminated environments (1), including water treatment systems, agricul-
tural waste pens, and natural waters and sediments (4, 37–40).
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Although the model predicted the MSC/MIC ratio well across the compounds
examined, the model inconsistently predicted ΔN values among compounds. ΔN was
predicted least well for KAN and STR, both of which are aminoglycosides. In these cases,
the inability to fit ΔN well was due to the similarity of the study-observed MSC versus
the MIC of the sensitive strain (i.e., high MSC/MICs ratio). This amounted to a sudden
and dramatic shift from the low experimentally determined ΔN values (�ΔN� � 0.04)
around the MSC versus a ΔN value of �1 at the MIC. This steep dose response from high
to zero growth of the sensitive strain is evident in high � values for both STR (� � 5)
and KAN (� � 10.5). The Hill equation and other common statistical curves could not
account for the similar MSC and MIC values. The high � fitted is also inconsistent with
the concentration-dependent (i.e., low �) bactericidal activity of aminoglycoside anti-
biotics described previously (34, 41). Instead, the similar net growth rates of susceptible
and resistant strains close to the MICs may result from adaptive resistance of the
susceptible strain. Adaptive resistance to aminoglycosides has been widely observed in
Pseudomonas aeruginosa (42, 43), including at sub-MIC exposures (44), as well as in E.
coli (22, 26, 45). This occurs due to the elevated production of efflux pumps counter-
acting growth inhibition and killing at sublethal concentrations (44). In cases of
adaptive resistance, the MSC may not be much lower than the MIC. In such cases, the
MIC may be a reasonable proxy for the MSC, as is often observed clinically (7).

Experimental data are currently limited to a few species, strains, and antibiotics, possibly
limiting the generalizability of the model performance evaluation. Thus, future experimen-
tal work is warranted to evaluate the ability to estimate the MSC via equations 10 and 11
across a range of subclinical conditions, species, strains, and antibiotics. This would
include a comparison of MSC values directly measured in competition experiments
versus MSC values derived from equation 10 based on measurement of the antibiotic
dose response of individual strains in isolation (see equations 4 and 5).

Shape of the antibiotic dose response at subinhibitory concentrations. By empha-
sizing subinhibitory antibiotic concentrations, this study extends previous findings
regarding how the behavior of the Hill equation, and � in particular, influences the
dynamics of bacterial net growth (19, 34). The model predicts that an antibiotic with a
lower � for a given set of conditions (e.g., bacterial strain and medium) exerts a greater
selective pressure in the subinhibitory region of concentrations found in the environ-
ment, resulting in lower MSC/MIC ratios. With � approximately equal to 1, there is an
approximately linear decrease in growth from the intrinsic rate with no antibiotic to
zero growth when the antibiotic concentration is equal to the MIC. As a result, the
intersection between the curves for the wild-type and resistant strains can occur at a
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low antibiotic concentration, and the MSC is approximately equal to the MIC of the wild
type multiplied by the selection coefficient. This leads to a low MSC for low selection
coefficients.

Under higher-� conditions, the MSC is closer to the MIC. Thus, a high � value, in
addition to increasing efficacy above the MIC (19), also reduces the hazard of selection
for resistance at concentrations below the MIC. Simulated and empirical dose-response
measurements in the subinhibitory region are especially needed to evaluate the extent
to which the “preselection” of resistant strains may occur at MSCs below the MIC of the
sensitive strain, in both clinical and environmental settings.

Implications for resistance development hazard. Environmental-hazard and -risk
assessments would benefit from determining how ambient environmental concentra-
tions in different media compare to the MSC (1). Based on a species sensitivity
distribution compared to EUCAST-reported MIC results, Tello et al. found that selective
pressure for resistant bacterial communities would be high in swine feces lagoon
sediment but low in surface water, ground water, raw sewage, and sewage treatment
plant effluent (4). As an example of the implications of the MSC threshold (versus the
MIC), we reinterpret the model of Tello et al. (4) to estimate the hazard of selection for
resistant bacteria. We employ a model correction factor, assuming a 100-fold-lower
species sensitivity distribution, to convert the previously reported MIC50 (see Fig. 4 in
reference 4) to an MSC50 by adjusting the reported log-logistic model location (�)
parameter by �2. The 100-fold reduction follows our model results and the empirical
data reported by Gullberg et al. (12, 16), both of which indicate that MSC/MIC ratios
may exhibit values below 0.01. Comparing the adjusted model to the field data
reported for ciprofloxacin (see Table 2 in reference 4), the MSC50 model predicted a
�25% potentially affected fraction of bacterial taxa in at least one sample for all media
reported (surface water, river sediment, raw sewage, and treatment plant effluent). For
erythromycin and tetracycline, the MSC50 model predicted 65% and 88% potentially
affected fractions in river sediment (versus 2% and 1.6% for the MIC50), respectively (4).
Tello et al. used data from systems impacted by human and agricultural development
(37, 38), and our 100-fold MSC-MIC correction is more conservative than the 10-fold
reduction employed in PNECs (Predicted No Effects Concentrations) developed by
Bengtsson-Palme and Larsson (8), thus indicating worst-case conditions. Nevertheless,
Bengtsson-Palme and Larsson also reported treatment plant effluent concentrations
above PNECs (8) in 28% of cases. These results in combination indicate the likely
selection of resistant strains given antibiotic exposure in a wide variety of human-
impacted aquatic settings.

Model scope, limitations, and future directions. The parsimonious analytical
solution that we developed addresses vertical gene transfer of antibiotic resistance in
a well-mixed environment as a function of fitness loss, competition, and antibiotic
concentration. There are many aspects of resistance dissemination that fall outside the
scope of this simple exercise, including horizontal gene transfer, interactions among
multiple strains, the spatial arrangement of individual colonies, and heterogeneity in
antibiotic exposure due to biofilms and other mechanisms (2, 8, 11, 20, 46). Addition-
ally, the model operates on and describes the long-term competition dynamics be-
tween bacterial strains rather than stochastic and dynamic changes in net growth and
competition over time. Thus, the derivation assumes that the parameters governing
growth (e.g., Rint, Dint, and Dab) will reach relatively stable values when one strain
outcompetes another strain. This simplified model does not include parameters for the
inoculum effect, biphasic killing, delay functions, drug concentration changes, drug-
insusceptible persister cells, or adaptive resistance, all of which may occur in experi-
mental settings. More sophisticated pharmacokinetic/pharmacodynamic models that
incorporate these processes are needed to characterize the bacterial time-kill curve and
optimal dosing regimens (21–23). However, such models do not lend themselves to an
analytical solution similar to what we have provided. Investigation of various initial
ratios of resistant to susceptible bacteria indicate no effect on the selection coefficient,
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suggesting a limited importance of initial conditions, such as inoculum effect (12, 16).
Nevertheless, theoretical and experimental investigation of how short-term growth and
killing and other dynamic processes would impact the MSC/MIC ratio is warranted in
future studies, as is comparison of alternative models.

The primary benefit of the present model is in illustrating the MSC paradigm and the
key drivers of selection in simplified systems. As such, this paper adds to the growing
scientific understanding of how to interpret laboratory data on the MIC and other
parameters for predicting the emergence of resistance at subinhibitory environmental
concentrations. It highlights the value of characterizing the antibiotic dose response
(i.e., the Hill coefficient [�]), particularly at antibiotic concentrations below the MIC.
Ultimately, this quantification of resistance selection must be integrated into a risk
assessment framework that also considers environmental antibiotic contamination,
human exposure to and colonization by resistant bacteria, and the association between
colonization and infection (1). Such a framework can help quantify the global hazard
posed by antimicrobial agents.

MATERIALS AND METHODS
We develop a simple analytical expression of the ratio between the MSC and the MIC for a sensitive

strain (i.e., MSC/MIC ratio), which mathematically describes the factors that determine risks of subclinical
antibiotic concentrations (11, 12). The model is based on competition between two bacterial strains: a
wild-type sensitive strain and a mutant strain that is more resistant.

Model derivation for net growth rate. We model bacterial growth as a first-order growth rate
constant, N (per hour). At a given antibiotic concentration, a (nanograms per milliliter), the net growth
rate [N(a) (per hour)] for each strain is given by

Ns(a) � Nint,s 	 Dab,s(a) � Rint 	 Dint 	 Dab,s(a) (1)

Nr(a) � Nint,r 	 Dab,r(a) � Rint 
 � 	 Dint 	 Dab,r(a) (2)

where a subscript s indicates sensitive bacteria; a subscript r indicates resistant bacteria; Nint,s � (Rint �
Dint) is the intrinsic net growth rate in the absence of the antibiotic (per hour), calculated as the difference
between the intrinsic growth rate (Rint [per hour]) and the intrinsic loss due to mortality (or, in continuous
cultures, dilution) (Dint [per hour]); Dab(a) is the loss in net growth (per hour) due to a given antibiotic
concentration, a; and � is the absolute selection coefficient (per hour).

The absolute selection coefficient (� [per hour]) represents the loss in fitness of resistance-
conferring genes as the absolute difference in the net growth rate between bacterial strains (e.g.,
sensitive versus resistant) in the absence of antibiotics (i.e., Nint,r � Nint,s � �). The absolute selection
coefficient (�) is directly related to the fitness cost (see Text S1.1 in the supplemental material for
the exact definition of fitness cost and its relation to the absolute selection coefficient). Accurate
measurement of the absolute selection coefficient (�) can be difficult, employing competition
experiments with labeled strains and flow cytometry (12, 16, 47). Resistance-conferring mutations
exhibit highly variable selection coefficients in comparison to sensitive strains (28, 29, 47, 48), with
compensatory mutations often reducing or reversing the fitness cost of resistance mechanisms (29,
30, 49). In principle, � could be any value greater than �Nint,s. However, in cases where � is �0, there
is no fitness loss from resistance, such that MSC equals 0 and the resistant strain would predominate
at any antibiotic concentration. For the purposes of this model, we run simulations based on the
assumption that resistance-conferring mutations engender a loss in fitness, resulting in lower
growth rates than those of less resistant strains, i.e., �Nint,s � � � 0. This assumption is supported
in that the majority of single mutational events entail a loss in fitness (47).

The loss in net growth due to antibiotics can be described by a generalized Hill equation (19, 21, 34,
50, 51):

Dab(a) � kmax

a�

a� 
 (EC50)� (3)

in which kmax (per hour) is the maximum death rate due to the antibiotic; EC50 (nanograms per milliliter)
is the antibiotic concentration that achieves half of this maximum rate, and will thus increase with
increased resistance; and � is the Hill coefficient (51). For a � value of 1 in the range of antibiotic
concentrations below the MIC, the death rate increases roughly linearly. For a given strain, antibiotics
with a high � value (�1) will have lower efficacy at subtherapeutic levels but higher efficacy at
therapeutic levels above the MIC. The opposite relation is true for antibiotics with low � values (19), as
illustrated in Fig. 1A.

To determine kmax from growth and death rates, we note that kmax should correspond to the
difference between the maximum possible net growth rate (not limited by resource availability or
antibiotics; i.e., Nint) and the minimum possible growth rate, after accounting for the growth-limiting
activity of the antibiotic (Nmin):

kmax � Nint 	 Nmin � Rint 	 Dint 	 Nmin (4)

For bactericidal drugs, Nmin is �0, indicating population decline at the maximum antibiotic exposure
level. The EC50 can be directly related to the MIC value (nanograms per milliliter); as a result, the following
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formulation of Dab applies for our formalism (the full derivation can be found in Text S1.2 in the
supplemental material):

Dab,s(a) � (Nint,s 	 Nmin)
a�

a� 

(	Nmin)

Nint,s
(MICs)

�

(5)

Dab,r�a� � �Nint,r 	 Nmin�
a�

a� 

(	Nmin)

Nint,r
�MICr��

(6)

Equations 5 and 6 are similar to equation 3 from Regoes et al. (19). These equations assume identical
� and Nmin values for sensitive and resistant strains, which may not be accurate. In Results, we evaluate
the impact of this assumption for the estimation of the MSC.

Difference in net growth rates and derivation of the MSC as a function of the MIC. Competition
between different bacterial strains is expressed by the difference in net growth rates. According to the
conceptual model described by Andersson and Hughes (11) and Gullberg et al. (12), Ns is higher than Nr

at low antibiotic concentrations due to the fitness cost of resistance, but the greater sensitivity causes
more antibiotic-dependent growth inhibition for the sensitive strain. As a result, at high antibiotic
concentrations, Nr is higher than Ns, and the MSC is the point of intersection of the two growth curves
(Ns � Nr) for which the difference in the net growth rate is zero (Fig. 1B and C).

Analytically, this difference in net growth rates between the resistant and sensitive strains [ΔN(a) (per
hour)] is determined by subtracting the value derived by equation 1 from that derived by equation 2,
giving

�N(a) � Nr(a) 	 Ns(a) � Nint,r 	 Nint,s 
 �Dab,s(a) 	 Dab,r(a)� � � 
 Dab,s(a) 	 Dab,r(a) (7)

Thus, the MSC is the antibiotic concentration (i.e., a � MSC) at which the two net growth rates are
equal and the difference (equation 7) is zero:

�N(MSC) � Nint,r 	 Dab,r(MSC) 	 Nint,s 
 Dab,s(MSC) � � 
 Dab,s(MSC) 	 Dab,r(MSC) � 0 (8)

This is the concentration at which the additional loss in net growth due to the antibiotic in the
sensitive strain compared to the resistant strain [Dab,s(MSC) � Dab,r(MSC)] compensates for the effect of
fitness loss (�).

To derive the ratio of MSC/MIC, we employ a dimensionless relative selection coefficient (sc)
(unitless), obtained by reversing the sign of the reported absolute selection coefficient (�) (12, 16) and
then dividing this value by the net growth rate of the sensitive strain (the full derivation can be found
in Text S1.1 in the supplemental material):

sc � 	
�

Nint,s
�

Nint,s 	 Nint,r

Nint,s
� 1 	

Nint,r

Nint,s
(9)

Based on the above-described equations, and further assuming that � and Nmin are the same for
sensitive and resistant strains, the following analytical solution for the MSC/MICs ratio is obtained (the full
derivation can be found in Text S1.4 in the supplemental material):

MSC ⁄ MICs �
sc

1 

Nint,r

	Nmin
	

(1 	 sc)�1 

Nint,s

	Nmin
�

�MICr

MICs
��

1
�

(10)

In the case of a large difference in resistant versus sensitive MICs, the right-hand term in the
denominator approaches zero, and the equation simplifies to

MSC ⁄ MICs � �
sc

1 	
Nint,r

Nmin
	

1
�

(11)

This simplification does not apply to small increases in the MIC, such as with ΔmarR and ΔacrR
mutants, which double the MIC for ciprofloxacin (12). Equation 11 becomes appropriate once the MICr

is �5� MICs, at which point the results from equations 10 and 11 become approximately equal (see Fig.
S1 in the supplemental material).

Equation 10 is, in essence, a mathematical hypothesis regarding the relationship between the
antibiotic dose response and the resulting MSC. The form of equation 10 aids in determining which
aspects of the growth rate are likely to be most important for competition at low antibiotic doses.
Equations 10 and 11 also represent a potential alternative to direct measurement of the MSC, because
all parameters in equation 10 (sc, MICs, MICr, �, Nint,s, Nint,r, and Nmin) can be directly measured in the
laboratory. Additionally, sc, MICs, and MICr values are readily available in the literature. To obtain �, Nint,s,
and Nmin in the laboratory, for example (19, 25), equation 4 would be fit to experimental measures of the
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sensitive strain’s antibiotic-versus-growth dose response, with Nmin then being calculated as the strain’s
intrinsic growth rate (Nint) minus kmax (see equation 5).

As mentioned above, equation 10 rests on the assumption of identical � and Nmin values for sensitive
and resistant strains. An analytical solution analogous to equation 10 could not be obtained by assuming
separate � and Nmin values (i.e., �s, �r, Nmin,s, and Nmin,r). In Results and in the supplemental material, we
employ a Monte Carlo simulation sensitivity analysis to critically evaluate this assumption of identical �

and Nmin values.
Model evaluation against experimental results. The analytical solution was evaluated by com-

parison to the experimental results of Gullberg et al. (12, 16). This evaluation was performed to determine
whether the model fit to actual competition data was reasonable and to identify representative
parameter sets for Nmin and � parameters, given a set of reported values of MICs, MICr, �, and Nint,s (12,
16). The latter four parameters have been characterized for a wide range of strains, conditions, and
resistance mechanisms (4, 24, 28–30, 32, 33).

Model fitting was achieved by fitting ΔN values calculated from equation 7 (based on equations 1,
2, and 4 to 6) to the ΔN values observed by Gullberg et al. (12, 16). The NonLinearModel.fit function in
MATLAB (Statistics Toolbox, R2013a; MathWorks, Natick, MA, USA) was used to estimate Nmin and �.
Fitting was performed separately for seven individual antibiotic-bacterium combinations across the
reported range of experimental concentrations as well as for arsenite- and copper-exposed E. coli (12, 16).
These metals were included based on coresistance and cross-resistance with antibiotics as well as similar
mechanisms of genetic transmission among bacteria (2, 5, 52, 53). For each compound, resistance was
compared between a sensitive (wild-type) strain and one to four resistant strains of S. Typhimurium or
E. coli. From the reported experiments (12, 16), only the chromosomal mechanism of trimethoprim
resistance was excluded because it exhibited an average selection coefficient, �, of �0, indicating no
selective disadvantage of resistance (12).

To evaluate equation 7 and the underlying model assumptions, model-predicted and observed ΔN
values were compared. To evaluate robustness to individual observations, CV was also employed. For CV,
optimization was performed with each single data point removed in series, and the average and range
of Nmin and � results were examined, as were the calculated versus observed ΔN values for the
out-of-sample observations. The PRESS statistic was calculated, and PRESS/SSY and Q2 (i.e., 1 � PRESS/
total sum of squares) were examined to indicate model prediction error and prediction power, respec-
tively (27) (see Text S2.1 in the supplemental material for the definition, implementation, and assump-
tions regarding these statistics). All analyses were performed on the experimental average results for
each strain and antibiotic concentration examined, as reported by Gullberg et al. (12, 16). Analyses were
also performed on the raw data for each experimental observation (12, 16) (see the supplemental
material), in order to consider the impact of experimental variation on results. All figures were made in
MATLAB or in R version 3.4.0 (54).
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