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ABSTRACT Ten Enterobacteriaceae isolates collected in a Czech hospital carried
blaKPC-positive plasmids of different sizes (�30, �45, and �80 kb). Sequencing re-
vealed three types of plasmids (A to C) with the Tn4401a transposon. Type A plas-
mids comprised an IncR backbone and a KPC-2-encoding multidrug resistance (MDR)
region. Type B plasmids were derivatives of type A plasmids carrying an IncN3-like
segment, while type C plasmids were IncP6 plasmids sharing the same KPC-2-
encoding MDR region with type A and B plasmids.
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KPC-type �-lactamases comprise a distinct group of plasmid-borne enzymes, with
carbapenemase activity mainly occurring in Klebsiella pneumoniae. KPC-producing

Enterobacteriaceae have emerged as challenging pathogens causing health care-
associated infections, due to their extremely drug-resistant phenotypes and ability to
cause infections associated with high mortality (1). KPC producers have disseminated
worldwide and currently constitute an important public health problem (2). In Europe,
Greece and Italy are the most affected countries, with high proportions of KPC-
producing K. pneumoniae (3). In the Czech Republic, however, the occurrence of KPC
producers has been rare. A sporadic case of KPC-2-producing K. pneumoniae recovered
from a patient, who had been previously hospitalized in Greece, was detected in the
Czech Republic in 2009 (4). Additionally, in 2011, an outbreak of KPC-3-producing K.
pneumoniae was observed in another Czech hospital (5), with the index case being a
patient repatriated from Italy.

In the present study, we describe the molecular characterization of KPC-2-producing
Enterobacteriaceae isolates, mainly of the species Citrobacter freundii, recovered in the
University Hospital of Hradec Kralove (Czech Republic).

From 2014 until 2016, a total of 10 nonrepetitive Enterobacteriaceae isolates show-
ing carbapenemase activity on matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) meropenem hydrolysis assay (6) were detected.
Among them, 7 of the isolates were identified to be C. freundii, 1 was identified to be
K. pneumoniae, 1 was identified to be Escherichia coli, and 1 was identified to be
Morganella morganii (Table 1). Phenotypic testing, PCR screening, and sequencing (7)
showed that all isolates were positive for the presence of the blaKPC-2 gene. The 10
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KPC-2-producing isolates were recovered from 7 patients, 6 of which were hospitalized
in the same unit (Table 1). In addition, 5 of the patients had overlapping stays in several
combinations, suggesting transmission of KPC-2 producers.

Susceptibility to various antimicrobial agents was determined by the broth dilution
method (8). MICs, interpreted according to European Committee on Antimicrobial
Susceptibility Testing (EUCAST) criteria (http://www.eucast.org/), showed that all KPC-2
producers exhibited resistance to aminopenicillins, aminopenicillin-inhibitor combina-
tions (data not shown), cephalosporins, and aztreonam, and were nonsusceptible to
carbapenems. Additionally, KPC-2 producers also exhibited resistance to several non-
�-lactam antibiotics, whereas all isolates remained susceptible to tigecycline (Table 1).

The population structure of KPC-2-producing isolates studied by multilocus se-
quence typing (MLST) (9–11) is shown in Table 1. The C. freundii isolates comprised
three sequence types (STs). ST18 was the most prevalent, accounting for five isolates.
ST18 was previously found among NDM-1-producing isolates from Denmark and
VIM-1-producing isolates from Spain (12, 13). The K. pneumoniae isolate was assigned
to the high-risk clone ST11, previously associated with the production of several
carbapenemases (14), while the E. coli isolate belonged to ST216.

None of the clinical isolates was capable of transferring the blaKPC-2 gene to the E.
coli A15 laboratory strain by conjugation. Plasmid DNAs from clinical isolates were
extracted using a Qiagen maxikit (Qiagen, Hilden, Germany) and used to transform E.
coli DH5� cells. Transformants were selected on Luria-Bertani agar plates with ampi-
cillin (50 �g/ml), confirmed to be KPC-2 producers by PCR (7), and MALDI-TOF MS
meropenem hydrolysis assay (6), and tested for antimicrobial susceptibility (see Table
S1 in the supplemental material). The plasmid location of the blaKPC-2 genes was
demonstrated by S1 nuclease analysis of clinical and recombinant strains (15), followed
by hybridization with a digoxigenin-labeled blaKPC probe. Plasmid analysis revealed the
transfer of plasmids, most of which (n � 6) were �45 kb in size. The remaining plasmids
were �80 kb (n � 2) or �30 kb (n � 2) in size. Replicon typing showed that eight of
the plasmids, including those �45 kb and �80 kb in size, were positive for the IncR
replicon (16) (Table 1), whereas the two remaining plasmids were nontypeable by the
PCR-based replicon typing (PBRT) method (17, 18).

Plasmid DNAs from all KPC-2-producing transformants were extracted using a
Qiagen large-construct kit (Qiagen, Hilden, Germany). Multiplexed plasmid DNA librar-
ies were prepared using the Nextera XT library preparation kit, and 300-bp paired-end
sequencing was performed on the Illumina MiSeq platform (Illumina Inc., San Diego,
CA, USA) using the MiSeq v3 600-cycle reagent kit. Initial paired-end reads were quality
trimmed using the Trimmomatic tool v0.33 (19) with a sliding window size of 4 bp,
required average base quality �17, and minimum read length of 48 bases. For
assembly of the plasmids, reads were mapped to the reference E. coli strain K-12
substrain MG 1655 genome (GenBank accession no. U00096) using the BWA-MEM
algorithm (20), in order to filter out the chromosomal DNA. Then, all of the unmapped
reads were assembled by use of the de Bruijn graph-based de novo assembler SPAdes
v3.9.1 (21), using k-mer sizes 21, 33, 55, and 77. De novo assembly resulted in sets of
contigs with length-weighted average k-mer coverage ranging from 23� to 95�. The
sequence gaps were filled by a PCR-based strategy and Sanger sequencing. For
sequence analysis and annotation, the BLAST algorithm (www.ncbi.nlm.nih.gov/BLAST),
the ISfinder database (www-is.biotoul.fr/), and the ORF (open reading frame) Finder tool
(www.bioinformatics.org/sms/) were utilized. Comparative genome alignments were
performed using the Mauve (version 2.3.1) program (22).

Plasmid analysis revealed three types of blaKPC-2-carrying plasmid sequences (types
A to C; Table 1), with type A being the most prevalent. All plasmids contained the
Tn4401a isoform of the Tn4401 transposon, which is similar to that described in plasmid
pNYC, lacking 100 bp upstream of blaKPC-2 (23).

All blaKPC-2-carrying plasmids that were �45 kb in size belonged to type A and
showed high degrees of similarity to each other. The plasmids included a contiguous
segment of 12,036 bp (nucleotide [nt] 1 to 10294 and 45085 to 46826; GenBank
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accession number MF497780) sharing extensive similarity with the backbone of the
recently described IncR plasmids (24). This segment was composed of regions respon-
sible for the replication (repB gene and iteron region), maintenance (resD gene), and
stability (parAB, vagCD, and umuDC operons) of the plasmids (Fig. 1).

In the remaining 34,790-bp sequence (nt 10295 to 45084; GenBank accession
number MF497780) adjoining the boundaries of the IncR backbone, a multidrug
resistance (MDR) region containing the KPC-2-encoding transposon Tn4401a was iden-
tified. The Tn4401a transposon was localized within a copy of insertion sequence IS26
(ΔIS26). Target site duplications of 5 bp (ATGCA) at the boundaries of Tn4401a indicated
insertion by transposition. Upstream from ΔIS26*1, an ISEc21-like element and a 916-bp
fragment of an ISEc15-like element (ΔISEc15) were found. The ISEc21-ΔISEc15 structure
was at the boundary of the plasmid backbone, downstream of vagCD, in the same
configuration previously described in the IncR MDR plasmid pKP1780 (24).

In the remaining part of the MDR region, an IS1 that was followed by a 674-bp
segment of the IncN replication region (ΔrepA) (25) was found at the boundary of the
plasmid backbone, downstream of retA. The IS1-ΔrepA structure was also identified in
pKP1780 at a similar position (24). Next to this sequence, an intact IS903.B-like element
and a second copy of a IS903.B-like element truncated at the 3= end (ΔIS903.B) were
found. The deleted part of IS903.B was occupied by a Tn1721-like fragment (ΔTn1721-
like) consisting of the 38-bp inverted repeat (IRtnp) of the transposon, tnpA, tnpR, and
tnpM. The Tn1721-like sequence also included an integron similar to In37 from pHSH2,
the variable region of which comprised the aacA4, blaOXA-1, catB3, and arr-3 cassettes
(26). The IRi of In37 was located within the tnpM gene of the Tn1721-like transposon,
while the 3=CS of In37 was truncated 174 bp after the start codon of orf5 (Δorf5).
Immediately downstream of Δorf5, a Tn501-like sequence including the 38-bp inverted
repeat (IR) of the transposon, a chrA-like gene encoding a chromate ion transporter, an
IS6100, a macrolide resistance operon [mph(A)], and the remaining part of IS26 (ΔIS26*2)
was found. A similar structure, which confers resistance to ampicillin, streptomycin,
sulfonamides and mercury, has also been observed in plasmid pLEW517 from the
primate intestinal E. coli strain 517-2H1 (27).

The type B plasmids pCfr-36049cz and pEco-36682cz appeared to be derivatives of

FIG 1 Linear maps of the blaKPC-2-carrying plasmids. For each plasmid, the type of plasmid sequence is indicated in red next to the plasmid name. Arrows show
the direction of transcription of open reading frames (ORFs), while truncated ORFs appear as rectangles (arrows within rectangles indicate the direction of
transcription). Resistance genes, insertion sequence (IS) elements, and transposases are shown in red, yellow, and green, respectively. intI1 genes are shaded
blue. Gray arrows or rectangles indicate plasmid scaffold regions; the replication genes are shown in purple. The remaining genes are shown in white.
Homologous segments (representing �99% sequence identity) are indicated by light gray shading. Thin lines above and below the maps correspond to highly
similar sequences from other plasmids.
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type A IncR KPC-2-encoding plasmids characterized during the present study. Type B
plasmids differed from type A plasmids by the presence of an additional 34,522-bp
sequence (nt 41399 to 75920; GenBank accession number MF497781) upstream of
ΔIS26*1. This sequence comprised two fragments of the Tn1331 transposon flanking a
central sequence (Fig. 1). The central sequence (nt 46232 to 74780; GenBank accession
number MF497781) shared extensive similarity with the sequence of pN-Cit (96%
coverage and 95% identity), an IncN3-type plasmid originally described from C. freundii
STE strain collected in France from a patient who had been transferred from India (28).
The IncN3-derived sequence possessed genes encoding a transfer locus, and a repA
gene that was 98% similar to the respective region of pN-Cit. However, a part of the
IncN3 transfer system was missing, explaining the inability of pCfr-36049cz and pEco-
36682cz to transfer via conjugation.

Plasmids pCfr-33795cz and pMmo-37590cz, which were assigned to type C, included
a contiguous segment of 4,062-bp (nt 261 to 4322; GenBank accession number
MF497782) containing the partitioning genes, parA, parB, and parC, and the replication
gene repA (Fig. 1). The parABC operon of pCfr-33795cz and pMmo-37590cz was
identical to those of IncP6-type plasmids like pCOL-1 described from the KPC-2-
producing Pseudomonas aeruginosa COL-1 strain isolated in Colombia (29) and to
pLNU-11 (GenBank accession number KX863568), which was identified from a C.
freundii ATetA strain captured from the sediments of an urban coastal wetland. The
putative repA product of pCfr-33795cz and pMmo-37590cz showed high amino acid
sequence similarity (99%) with the replication initiation protein of pLNU-11. Addition-
ally, type C plasmids included a 3,835-bp segment (nt 1 to 260 and 26477 to 30051;
GenBank accession number MF497782) consisting of genes encoding a DNA invertase/
recombinase (int), a deoxymethyltransferase (dmt), and a DNase (drn) of type II restric-
tion module. The int-dmt-drn region has also been observed in IncQ1 blaGES-5-carrying
plasmids isolated from E. coli and Serratia marcescens strains persisting in Canada (30).
The remaining 22,154-bp sequence of pCfr-33795cz and pMmo-37590cz (nt 4323 to
26476; GenBank accession number MF497782), which contained the KPC-2-encoding
transposon Tn4401a, was identical to the MDR region of type A and B plasmids (Fig. 1).
In contrast, in plasmid pCOL-1, the blaKPC-2 gene was part of the Tn4401b isoform of the
transposon and was located in a different insertion site.

In conclusion, the present study reports the “hidden outbreak” of ST18 KPC-2-
producing C. freundii isolates in a Czech hospital. However, the blaKPC-2 gene was also
identified in other STs of C. freundii and other species of Enterobacteriaceae. In one of
the patients, four different KPC-2 producers were identified during the hospitalization,
implying in vivo horizontal transfer of the blaKPC-2-carrying plasmid. Sequencing data
confirmed the presence of the same blaKPC-2-carrying plasmid in two of these isolates
(Table 1), further supporting this hypothesis. Of note was that, in the remaining two
isolates recovered from the same patient, two different types of blaKPC-2-carrying
plasmids were identified, indicating the ability of enterobacterial plasmids to further
evolve through reshuffling.

Illumina analysis results showed that, in 6 out of the 10 isolates, the KPC-2-encoding
transposon Tn4401a was localized on an IncR-type plasmid (type A). To our knowledge,
this is the first report on complete sequences of IncR plasmids carrying Tn4401a
transposon. However, previous studies have reported the presence of multireplicon
IncFIIK2-IncR KPC-2-encoding plasmids from ST101 K. pneumoniae isolated in Italian
hospitals (31, 32). In addition, type B plasmids were derivatives of type A IncR blaKPC-2-
positive plasmids carrying an IncN3-derived segment. Type C plasmids belonged to the
IncP6 group and shared the same KPC-2-encoding MDR region with type A and B
plasmids. Therefore, en bloc acquisition of the KPC-2-encoding MDR region by an
InpP6-type replicon from type A or B plasmids is a plausible hypothesis regarding the
formation of type C blaKPC-2-carrying plasmids. All three types of plasmids were
noncapable of transferring the blaKPC-2 gene via conjugation, due to partial deletion or
absence of the transfer system genes. Thus, the hypothesis of mobilization in trans of
the blaKPC-2-carrying plasmids by a coresident plasmid cannot be excluded.
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The data presented here contribute to the current knowledge of KPC-2-producing
Enterobacteriaceae. In agreement with the results of previous studies (16, 24, 31, 32), our
findings underline the increasing clinical importance of the IncR plasmid family as well
as the spreading potential of large MDR segments through reshuffling of enterobac-
terial plasmids.

Accession number(s). The nucleotide sequences of pCfr-31816cz, pCfr-36049cz,
pMMO-37590cz, pCfr-27569cz, pCfr-31260cz, pCfr-33038cz, pCfr-36808cz, pKpn-
35786cz, pEco-36682cz, and pCfr-33795cz have been deposited in GenBank under
the accession numbers MF497780, MF497781, MF497782, MG557994, MG557995,
MG557996, MG557997, MG557998, MG557999, and MG558000, respectively.
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Supplemental material for this article may be found at https://doi.org/10.1128/AAC
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