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Abstract

Purpose of review—Previous concepts regarding the pathways involved in the generation of 

angiotensin II (Ang II) are been challenged by studies showing the existence of a peptide acting as 

an endogenous antagonist of Ang II. The discovery that angiotensin-(1-7) [Ang-(1-7)] opposes the 

pressor, proliferative, profibrotic, and prothrombotic actions mediated by Ang II has contributed to 

the realization that the renin angiotensin system is comprised by two opposing arms: the pressor 

arm constituted by the enzyme angiotensin converting enzyme (ACE), Ang II as the product, and 

the Ang II type 1 receptor (AT1) as the main protein mediating the biological actions of Ang II; the 

second arm is composed by the mono carboxypeptidase –angiotensin converting enzyme 2 

(ACE2)–, Ang-(1-7) produced through hydrolysis of Ang II, and the Mas receptor as the protein 

conveying the vasodilator, antiproliferative, anti-fibrotic, and anti-thrombotic effects of Ang-(1-7).

Recent findings—Experimental and clinical studies demonstrate a role for the Ang-(1-7)/

ACE2/Mas-axis in the evolution of hypertension, the regulation of renal function, and the 

progression of renal disease including diabetic nephropathy. Additional evidence suggests that 

reduction in the expression and activity of this vasodepressor component may be a critical factor in 

mediating the progression of cardiovascular disease.

Summary—Further research on the contribution of the Ang-(1-7)/ACE2/Mas-axis to 

cardiovascular pathology will lead to the development of new pharmacological approaches 

resulting in the design of molecular or genetic means to increase the expression of ACE2, allow 

for increased tissue levels of Ang-(1-7), or both.
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Introduction

Remarkable progress continues to be made in unraveling the contribution of the renin 

angiotensin system to cardiovascular pathology and, specifically the role of the 

vasodepressor pathway composed by the triad of the enzyme angiotensin converting enzyme 

2 (ACE2), the heptapeptide product angiotensin-(1-7) [Ang-(1-7)], and the mas receptor. 

Work originating from our research program established the basis and initial mechanisms for 

the inclusion of the Ang-(1-7)/ACE2/Mas-axis as a critical counter balancing component of 
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the pressor pathway composed by the angiotensin converting enzyme (ACE), the octapeptide 

angiotensin II (Ang II) and its signaling action following binding to the subtype I Ang II 

receptor. Over the last decade data continues to support the hypothesis that the pathological 

actions of Ang II on cardiovascular regulatory activity may in part result from a diminished 

expression or activity of the components of the Ang-(1-7)/ACE2/mas-R axis. This review 

provides a birds-eye-view on the progress made over the last two years. The fact that 2010 

publications to date tally 48 in PubMed for the term Ang-(1-7) documents how significant 

progress is been made on this topic.

Angiotensin-(1-7) Formation and Signaling Mechanisms

There are two biochemical pathways that account for the formation of Ang-(1-7) (Figure 1). 

The first entails the hydrolysis of angiotensin I (Ang I) by the tissue endopeptidases: prolyl-

endopeptidase (EC 3.4.21.26), neutral endopeptidase 24.11 (neprilysin; EC 3.4.24.11), and 

oligopeptidase 24.15 (thimet oligopeptidase EC 3.4.24.15) [1;2]. The second pathway entails 

the cleavage of the Pro7-Phe8 bond of Ang II by angiotensin converting enzyme 2 (E.C. 

3.4.15.1; ACE2) [3;4], an exopeptidase which has also been shown to cleave Ang I into 

angiotensin-(1-9) [Ang-(1-9)] [3]. Among the Ang-(1-7) forming enzymes, the kcat/km of 

ACE2 is 500-fold higher for Ang II compared to the kcat/km for Ang I. A third pathway 

leading to the ultimate generation of Ang-(1-7) may result from the discovery of an extended 

form of Ang I, the dodecapeptide angiotensin-(1-12) [Ang-(1-12)] [5]. The studies reported 

by Nagata et al. [5] showed that this novel angiotensinogen derived peptide was capable of 

generating Ang II and possessed vasoconstrictor activity that were blocked by prior 

administration of the ACE inhibitor, captopril or the type 1 Ang II receptor (AT1) 

candesartan. In confirming their findings, we showed in the isolated heart preparation, a late 

formation of Ang-(1-7) after administration of Ang-(1-12) [**6]. More detailed information 

regarding the biochemical pathways leading to Ang-(1-7) formation and metabolism are 

published [7–9].

The Mas receptor has been identified as the protein transducing the vasodilator and 

antiproliferative actions of Ang-(1-7) [10–12]. The Mas protein is a G-protein couple 

receptor originally linked to modulation of growth regulating pathways involved in 

oncogenic effects and high expression in testis, hypothalamus and amygdala [13;14]. In a 

detailed study of the function of the Mas receptor Kostenis et al. [15] showed that in 

transfected Mas cells this G-protein coupled receptor antagonized Ang II actions at the Ang 

II type 1 receptor (AT1) owing to formation of a hetero-oligomeric complex. This important 

study explains previous findings of a weak direct vasodilator effect of Ang-(1-7) [16] that 

contrasts with effects of the heptapeptide in reducing pressor actions of Ang II both in vitro 

and in vivo [*17–29]. See also annotated references 20, 24, 26, 27 and 28. Although a search 

of the current literature did not reveal the existence of a detailed analysis of renal mas 

distribution, a picture of the mas receptor localization in rat kidney suggest that it may reside 

in proximal and distal tubules (Alomone Labs; http://www.alomone.com/p_postcards/

database/510.htm). On the other hand, Metzger et al. [14] reported the presence of mas 

mRNA in renal tissues from mice and rats.
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The signaling mechanisms by which Ang-(1-7) antagonizes the pleiotropic actions of Ang II 

remain under investigation. Earlier studies implicated a stimulatory action of the 

heptapeptide on release of endothelial derived nitric oxide (NO) and vasodilator 

prostaglandins [30–40] as well as potentiation of the vasodilator and metabolic actions of 

bradykinin [41–46]. Intracellular mediators accounting for the antagonistic actions of Ang-

(1-7) on Ang II responses may include phosphorylation of both Akt (adipose tissue, skeletal 

muscle, and liver) and GSK-3β in liver and skeletal muscle of the rat [*47]. In keeping with 

this finding, Sampaio et al. [38] reported that Ang-(1-7) stimulates AKt kinase from human 

endothelial cells. In vascular smooth muscle cells Ang-(1-7) inhibited Ang II stimulation of 

mitogen-activated protein kinase activities (ERK1/2) [48]. A preliminary observation by 

Tallant and Gallagher, reported as abstracts [49;50] only, suggests that Ang-(1-7) may 

upregulate the mitogen-activated DUSP-1 in vascular smooth muscle cells.

As progress continues to be made in the understanding of the molecular mechanisms of 

Ang-(1-7) signaling, other new information is accumulating as to the actions of Ang II and 

Ang-(1-7) in the regulation of ACE2 gene and activity. Ishiyama et al. [51] first reported that 

blockade of AT1 receptors was accompanied by increase cardiac ACE2 transcripts, a finding 

that was interpreted to indicate that Ang II may exert a negative influence in the regulation 

of ACE2. These findings were corroborated in further studies in astrocytes in culture [52], 

and later in neonatal cardiac myocytes and fibroblasts [53]. In these experiments, the 

observation that Ang-(1-7) by itself had no effect on ACE2 mRNA while it blocked the 

reduction in ACE2 transcripts produced by Ang II or endothelin-1 through activation of the 

extracellular signal-regulated kinase ERK1/ERK2 is reminiscent of the conclusions made by 

Kostenis et al [15] showing that Ang-(1-7) antagonizes AT1 receptors.

A conflicting report in primary human cardiac fibroblast suggests that Ang II stimulates 

rather than suppress ACE2 gene expression [*54]. As recognized by the authors [54], their 

findings may be restricted to the type of cell employed in their experiments and the state of 

cell differentiation, as the work showing increased cardiac ACE2 mRNA following chronic 

blockade of Ang II production or activity by lisinopril or losartan [55] is in support of the 

view of a negative Ang II effect on ACE2 transcripts. Our studies [56;57] showing 

upregulation of ACE2 mRNA in the aorta of SHR given the AT1 receptor blocker olmesartan 

or in the neointima of olmesartan-treated SHR are also at variance with the idea that Ang II 

exerts a positive regulatory action on ACE2.

The Ang-(1-7)/ACE2/Mas-axis in Hypertension. Focus on the Kidney

Since we first proposed that a deficit in the counter regulatory effects of Ang-(1-7) may 

directly contribute to the pathogenesis of human essential hypertension [58] evidence for 

this possibility continues to gain support mostly from data obtained in experimental models 

of the disease. As commented by us elsewhere [59], the paucity of clinical studies directed 

to address this possibility are rooted in the belief that the antihypertensive actions resulting 

from inhibition of Ang II synthesis or activity suffice to explain their cardio-renal protective 

effects. Advances in the understanding of the molecular and physiological mechanisms of 

ACE2 has began to reverse this tide but the task is a difficult one as it entails the design of 
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agents that will increase the activity of ACE2, augment tissue levels of Ang-(1-7), or both in 

combination [60–62].

Clinical studies supporting the view of hemodynamic and end-organ effects of Ang-(1-7) are 

summarized elsewhere [59]. A first glimpse to the possible favorable actions of Ang-(1-7) in 

contributing to the antihypertensive actions of ACE inhibition was gained from the 

observation of an increased excretion of Ang-(1-7) in the urine of essential hypertensives 

whose blood pressure was controlled by a 6-month treatment with captopril [63]. Two years 

later, a more detailed study was performed in 31 normal healthy volunteers and 18 untreated 

essential hypertensive subjects [64]. This study showed that urinary excretion rates of Ang-

(1-7) in the essential hypertensive subjects averaged almost one-half of those measured in 

the normotensive controls [64]. Additional studies showed that administration of the Ang II 

receptor blocker (ARB) irbesartan was associated with increases in plasma Ang-(1-7) 

concentrations [64;65]. Similar findings were reported in salt-sensitive hypertensive subjects 

medicated with omapatrilat, a potent dual inhibitor of ACE and neprilysin [66]. Changes in 

the sodium status may regulate the influence of Ang-(1-7) on the action of ACE inhibitors as 

in healthy normal volunteers, the increases in Ang-(1-7) produced by the combination of 

enalapril and a low salt diet were much greater than those observed in the same subjects 

when exposed to the low salt diet alone [67].

Along the animal and human nephron, multiple studies have documented the presence of 

renin angiotensin system components underscoring the concept that the kidney is a site at 

which an intrarenal system participates in the regulation of glomerular-tubular balance in 

health and disease [9;68;69]. Increase expression of cortical and medullary Ang II and 

cortical ACE2 activity was found in a model of hypertension with increased tissue renin 

[70]. And the blood pressure lowering action of administering lisinopril or losartan to 

normotensive rats were associated with increased urinary excretion of Ang-(1-7), augmented 

expression of cortical renin and angiotensinogen gene transcripts, and higher cortical ACE2 

activity in renal membranes from the same treated animals [71]. In an experimental model of 

renal hypertension, the administration of a selective Ang-(1-7) receptor blocker or an ACE2 

inhibitor was associated with worsening of hypertension and renal function [17].

The experimental evidence demonstrating a palette of actions of Ang-(1-7) and ACE2 in the 

regulation of nephron function [72;73] correlates with newer studies showing that altered 

ACE2 expression or activity contributes to the progression of renal disease and diabetic 

nephropathy [74]. Lely et al. [74;75] showed neo-expression of ACE2 in the glomerular and 

peritubular capillary endothelium of biopsied kidneys of patients with primary and 

secondary forms of renal disease as well as renal transplants. In patients with diabetes and 

overt nephropathy, an increase in the ACE/ACE2 ratio resulted from a decreased expression 

of tubulointerstitium and glomeruli ACE2 [76]. Similar findings were also reported in 

patients with diabetic nephropathy [*77]. These findings are in keeping with the observation 

of increased deposition of collagen I, collagen III and fibronectin in the glomeruli and 

increased urinary albumin excretion compared to age-matched control mice in mutant male 

ACE (−/−) mice [78]. Of additional interest is the recent report demonstrating the presence 

of serum ACE2 autoantibodies in patients with connective tissue diseases to constrictive 

vasculopathy, pulmonary arterial hypertension (PAH), or persistent digital ischemia [77;79]. 
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These findings are in keeping with the observation of reduced plasma Ang I, Ang II, and 

Ang-(1-7) levels in patients with systemic sclerosis compare to controls [80]. Since the ratio 

of Ang II/Ang-(1-7) indicated a prevalence of Ang II over the countervailing Ang-(1-7), 

these data provide additional support for an important interaction among ACE2 and Ang-

(1-7) in multiple disease states in which the actions of Ang II favor proliferative, profibrotic, 

and thrombotic effects.

Conclusion

The question posed on the title as to whether more of Ang-(1-7) or less of Ang II may 

participate in the pathogenesis of hypertensive vascular disease cannot be answered with 

certainty but the research done to-date continues to support the hypothesis that a decrease in 

the expression or activity of Ang-(1-7) renders the cardiovascular system more susceptible to 

the pathological actions of Ang II. In the kidney, the opposing effects of low and high doses 

of Ang-(1-7) on tubular sodium reabsorption needs further study, as binding of Ang-(1-7) to 

mas may alter expression or activity of AT1 or AT2 receptors [9,15]. In addition, 

accumulating evidence suggest that ACE2 may play a critical role in modulating the relative 

contributions of Ang II and Ang-(1-7) to blood pressure regulation and that changes in the 

relative tissue expression of ACE and ACE2 activities may be deterministic in diseases of 

the heart, the blood vessels, and the kidneys. While the experimental evidence is rather 

appealing, there is a real need to extend these findings to human’s conditions such as 

essential hypertension, chronic renal disease, and diabetes.
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Figure 1. 
Schematic representation of the components of the renin angiotensin system.
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