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Abstract

Objective—Magnetic resonance imaging (MRI) is an essential imaging modality in non-invasive 

splenomegaly diagnosis. However, it is challenging to achieve spleen volume measurement from 

3D MRI given the diverse structural variations of human abdomens as well as the wide variety of 

clinical MRI acquisition schemes. Multi-atlas segmentation (MAS) approaches have been widely 

used and validated to handle heterogeneous anatomical scenarios. In this paper, we propose to use 

MAS for clinical MRI spleen segmentation for splenomegaly.

Methods—First, an automated segmentation method using the selective and iterative method for 

performance level estimation (SIMPLE) atlas selection is used to address the concerns of 

inhomogeneity for clinical splenomegaly MRI. Then, to further control outliers, semiautomated 

craniocaudal spleen length-based SIMPLE atlas selection (L-SIMPLE) is proposed to integrate a 

spatial prior in a Bayesian fashion and guide iterative atlas selection. Last, a graph cuts refinement 

is employed to achieve the final segmentation from the probability maps from MAS.
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Results—A clinical cohort of 55 MRI volumes (28 T1 weighted and 27 T2 weighted) were used 

to evaluate both automated and semi-automated methods.

Conclusion—The results demonstrated that (1) both methods achieved median Dice > 0.9, (2) 

outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.97 

Pearson correlation of volume measurements with the manual segmentation.

Significance—This work performed spleen segmentation on MRI splenomegaly using MAS.

Index Terms

Spleen Segmentation; MRI; Multi-atlas; multi-contrast; splenomegaly

I. Introduction

Abnormal enlargement of the spleen, called splenomegaly [1], is a clinical finding in the 

patients with liver disease [2], cancer [3] and infection [4]. To quantify spleen enlargement, 

non-invasive spleen volume estimation approaches have been proposed using different 

imaging modalities (e.g., ultrasound [5–8], computed tomography (CT) [9–12], magnetic 

resonance imaging (MRI) [13, 14]). Slice-by-slice manual tracing on three-dimensional (3D) 

spleen volumes has been regarded as the gold standard of in vivo spleen size estimation [14]. 

However, the manual delineation is resource and time consuming, especially for large 

cohorts. To alleviate manual efforts and accelerate the spleen volume estimation, many 

endeavors haven been made. One direction is to replace 3D delineation with less time 

consuming one-dimensional (1D) manual measurements (e.g., splenic width, length, 

thickness) [7]. With 1D measurements, the whole spleen volume can be estimated using 

regression models. Another direction seeks to obtain 3D volumetric spleen segmentation 

automatically using medical image segmentation approaches [15]. Previous automatic spleen 

segmentation methods are typically able to be categorized by, but not limited to, shape/

contour based models [16], intensity based models [17], graph cuts [18], learning based 

models [19], and atlas-based methods [20].

Most previous spleen segmentation methods were proposed using CT imaging since it has 

been used as the standard technique in abdominal imaging [7]. One of the essential benefits 

for medical imaging processing is that the image intensities in CT are the quantitative 

Hounsfield Unit (HU). The scaled intensity feature are essential in the learning based 

segmentation methods, such as discriminative models [21] and vantage point forests (V.P. 

Forests) [22]. In the past decades, MRI has been successfully used in clinical diagnosis and 

scientific investigations. Compared with CT, MRI eliminates the radiation risk for patients 

[23, 24], and the frequency of clinical abdominal MRI renders MRI based spleen volume 

estimation techniques an attractive target. However, the intensities in clinical acquired MRI 

are heterogeneous (Fig. 1a) and without absolute scales, such as HU in CT. Therefore, the 

intensity based segmentation methods developed for CT cannot be directly applied on MRI. 

Relatively few spleen segmentation methods have been proposed for MRI. Behrad et al. 

proposed an MRI spleen segmentation method using neural networks and recursive 

watershed [19]. Farraher et al. achieved accurate spleen segmentation using a semi-

automated dual-space clustering segmentation technique [25]. Wu et al. integrated Gabor 
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texture features with snake post-processing for MRI spleen segmentation [26]. Pauly et al. 

proposed the supervised regression method to perform the whole body segmentation on the 

particular MRI Dixon sequences [27]. The multi-atlas segmentation (MAS) method is 

regarded as state-of-the-art and has been deployed on various scenarios on both CT and MRI 

[28–35]. Yet, MAS has not been applied to spleen segmentation on clinically acquired 

splenomegaly MRI.

In this paper, (1) we evaluate the performance of Selective and Iterative Method for 

Performance Level Estimation (SIMPLE) atlas selection method [36] based on our previous 

efforts on CT spleen segmentation [31, 32]. (2) For the particular concerns for MRI clinical 

splenomegaly images, we propose the L-SIMPLE method to achieve the robust spleen 

segmentation using craniocaudal spleen length (L). To perform the evaluation and validation, 

55 clinical acquired MRI volumes were examined, consisting of 28 T1-weighted (T1w) and 

27 T2-weighted (T2w) scans (Fig. 1b), which represented the two major contrast 

mechanisms in clinically acquired abdominal MRI.

This paper extends a previous conference paper [33] in the following ways. First, a more 

complete description of the different MAS methods is provided. Second, a graph cut based 

refinement is created to ensure the topological correctness. Third, more thorough analyses of 

using craniocaudal spleen length and graph cuts are demonstrated.

II. Method

A. Multi-atlas Segmentation Framework

The general MAS framework consists of preprocessing, image registration, atlas selection, 

label propagation and multi-atlas label fusion (MLF) [30]. Briefly, first a target image was 

preprocessed using N4 bias field correction [37] and resampled to 1.5 mm isotropic voxel 

size using FMRIB’s Linear Image Registration Tool (FLIRT) [38]. Second, each atlas image 

was sequentially affinely registered and non-rigidly registered using DEnsE Displacement 

Sampling (DEEDS) [39]. Registration accuracy is essential in the atlas based segmentation 

methods; DEEDS was chosen based on its superior performance in a relevant comparative 

evaluation [40]. Third, atlases selection is performed to address substantial registration 

failures. Finally, MLF was conducted on the selected registered atlases using joint label 

fusion (JLF) [41]. In this paper, a substantial algorithmic focus is on designing and 

evaluating atlas selection methods (Fig. 2).

B. Automated Pipelines

Two automated pipelines (without manual intervention) were evaluated as shown in Figure 

2.

Pipeline 1—Pipeline 1 consisted of a naïve strategy that excluded the atlas selection step in 

the MAS framework (Fig. 2). Note that registration failures typically occur more frequently 

in abdominal registrations (Fig. 3) compared with brain registrations. Therefore, using all 

registered atlas images might lead to inaccurate label fusion results (Fig. 3; blue rectangles).

Huo et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pipeline 2—To alleviate registration failures, the Selective and Iterative Method for 

Performance Level Estimation (SIMPLE) method [36] was used in the atlas selection in 

Pipeline 2 (Fig. 2). The SIMPLE method was proposed as a voting based label fusion 

method. In this work, SIMPLE was used in the similar way as a recent work [31], where 

SIMPLE has been applied to the atlas selection by iteratively evaluating the Dice similarity 

coefficient between intermediate segmentation and atlases.

C. Semi-automated Pipeline using craniocaudal spleen length

The SIMPLE atlas selection in Pipeline 2 only considered the registered atlas labels in an 

iterative atlas selection manner without taking the anatomical information from the intensity 

atlases into account. Therefore, although the SIMPLE method was able to achieve robust 

performance on most of the cases, it would not be able to select better atlas candidates when 

multiple registration failures occur in a similar fashion (pink rectangles in Fig. 3). Therefore, 

we proposed to use craniocaudal spleen length (L) to guide the atlas selection (Pipeline 3 in 

Fig. 2).

Pipeline 3—In clinical diagnosis of splenomegaly, one dimensional (1D) measurements 

had been used to estimate spleen volume efficiently. Following [32], the 1D craniocaudal 

spleen length (L) yielded 0.8613 Pearson correlation with ground truth on spleen volume 

estimation using ≈ 1 minute manual efforts. Therefore, the craniocaudal spleen length was 

employed in Pipeline 3 to guide the atlas selection. The craniocaudal spleen length was 

calculated by multiplying slice thickness by the numbers of visible slices on axial direction 

[7]. The number of visible slices is typically derived manually by experts [7]. In this study, 

since we had delineated the whole spleen for all volumes, we derived the numbers of visible 

slices automatically by subtracting the smallest axial slice number from the largest axial 

slice number that contained the spleen label. Then, atlas selection was deployed by choosing 

the ten atlases whose craniocaudal spleen length values were the closest to the target image.

D. Semi-automated Pipeline using L-SIMPLE

In Pipelines 2 and 3, the SIMPLE and craniocaudal spleen length (L) were used to conduct 

atlas selection respectively. In this paper, we propose the L-SIMPLE method, which 

employed the craniocaudal spleen length as a prior information to guide the SIMPLE atlas 

selection (Pipeline 4 in Fig. 2).

Pipeline 4—In Pipeline 4, the L-SIMPLE method was proposed to perform the atlas 

selection by integrating the craniocaudal spleen length (L) with the SIMPLE approach under 

a Bayesian framework. A probabilistic map was obtained by averaging the ten registered 

spleen labels, whose craniocaudal spleen lengths were the closest to the target image. Then 

the probabilistic map served as a prior in L-SIMPLE to guide the iterative atlas selection. 

The inputs of L-SIMPE were (1) The craniocaudal spleen lengths of the target image, and 

(2) registered spleen label atlases A = {A1, A2, …, AM}, where each Aj represented the jth 

label atlas in total M available atlases. The outputs of L-SIMPLE were N selected atlases A′ 
for the following multi-atlas label fusion (N ≤ M). The complete L-SIMPLE algorithm was:
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Step 1) The A were used as all atlases initially. The spleen spatial prior p(T) was 

obtained by averaging the r registered label atlases, whose craniocaudal spleen length 

had the smallest differences compared with target image’s craniocaudal spleen 

length. p(T = 1) was the probability prior map of the spleen (spleen label was 1), 

while p(T = 0) was the probability prior map of non-spleen tissues as well as 

background.

Step 2) The iterative atlas selection strategy was performed. Ak represented the set of 

the remaining nk atlases at iteration k. For each voxel i, the likelihood function of 

spleen was defined by

(1)

Step 3) Using the prior in step 1 and likelihood function in step 2, the Bayesian 

posterior probability of spleen at voxel i was derived as

(2)

Step 4) The intermediate spleen segmentation S at voxel i was obtained by

(3)

Step 5) The one-dimensional weight vector w was defined by the Dice similarity 

coefficient (DSC) between each  and S.

(4)

Step 6) For the k+1 iteration, the Ak+1 was a subset of Ak by comparing wj with 

mean (w̄) and standard deviation (σw) of w.

(5)
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Step 7) If the nk+1 (size of Ak+1) was less than the minimum number of atlases N 
(herein, 10) or nk+1 = nk, the L-SIMPLE was terminated and Ak was returned as 

selected atlases. Otherwise, the method performed another iteration at step 2.

E. Refinement Using Graph Cuts

Since the MAS segmentation was conducted based on voxel wise voting, spleen topology 

(one connected component) was not guaranteed. Therefore, a post processing step using 

graph cuts was used to ensure the topological correctness of MAS spleen segmentation. The 

graph cuts method proposed in [31] was used in this work, which maximized the Markov 

random field (MRF) based energy function [42, 43].

III. Data

A clinical cohort containing 55 abdominal MRI volumes was acquired from 26 patients with 

splenomegaly. Eight patients were scanned one time, seven patients were scanned twice, 

while eleven patients were scanned three times. This cohort has two major features. First, the 

cohort was a multi-contrast dataset, which consists of 27 T1w and 28 T2w images. This 

dataset was used to evaluate the performance of the proposed methods on clinically acquired 

multi-contrast MRI images. Second, the cohort had large variations on spleen volume size 

for splenomegaly, varying from 368 cubic centimeter (cc) to 5670 cc. The mean spleen 

volume was 1881 cc while the standard deviation was 1219 cc.

The leave-one-subject-out strategy was employed for the empirical validation, which means 

that the 55 MRI image volumes were used as either atlases or target images in each leave-

one-subject-out test. To achieve the 3D whole spleen labels on atlases, the manual 

delineation was obtained on every volume by an experienced rater. The whole spleen 

segmentation for each scan was traced slice-by-slice (axially).

IV. Experiments and Results

The Wilcoxon signed rank test [44] was used for statistical analyses. All statements of 

statistical significance are made using the Wilcoxon signed rank test for p<0.05.

A. Validation the Rationale of Using L

1) Experiments—Fifty-five clinical scans were used to evaluate the rationale of using 

craniocaudal spleen length in atlas selection. We consecutively performed affine and rigid 

registration using DEEDS registration method [39] on all possible combinations between 55 

image volumes. (1) Each image was used as a target image. (2) All the other available 

images except the target image’s longitudinal scans were employed as moving images, 

which were then registered to the target image. This strategy was called “leave-one-subject-

out”, which means the longitudinal scans (three at maximum) for every target image were 

excluded from the atlases. Therefore, 52 to 54 atlases were used for each target image. (3) 

The affine transformation and non-rigid transformation field were applied on the spleen 

labels of source images. (4) The DSC values were calculated between source images and 

target. Finally, affine and non-rigid registrations were performed on 2890 pairs of source and 

target 3D volumes using 55 scans.
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2) Results—The registrations were conducted on 2890 pairs of scans. In each pair, the 

craniocaudal spleen length of source and target scan were used as x and y coordinates in the 

Fig. 4. The color of each dot indicated the DSC value between the registered source spleen 

label and target spleen label. From the scatter plot, the registrations between scans with 

similar craniocaudal spleen length typically achieved better performance on DSC.

B. Validation on Four Pipelines

1) Experiments—The same 55 scans were used in the leave-one-subject-out validations 

on the four different pipelines respectively. The selection of atlases and target images was 

the same as section IV.A “Validation the Rationale of Using L”. In these experiments, 

Pipeline 1 to 4 were deployed as atlas selection and label fusion as Figure 2.

We also compared our pipelines with a recent learning based method called vantage point 

forest (V. P. Forests) [22]. The code was downloaded from the link in that paper. All the 

parameters were set to the default except the “num_labels”. In this study, we set num_labels 

= 1 since we only had one spleen label.

2) Results—The qualitative results of four pipelines are demonstrated in Fig. 5. The 

qualitative results of comparing the proposed Pipeline 4 with other method had been shown 

in Fig. 6 and Table 1. The performance of graph cuts using DSC is significantly higher than 

without graph cuts refinement.

C. Sensitivity Analyses on Multi-Contrast Scenarios

1) Experiments—The multi-contrast images (e.g., T1w and T2w) in clinical acquired 

images were heterogeneous on both absolute intensity and intensity contrast. In this 

experiment, we explored the robustness of the MAS methods on the multi-contrast images. 

Moreover, we evaluate the performance of using (1) both T1w images as atlases and targets, 

(2) both T2w images as atlases and targets, (3) T1w images as atlases and T2w images as 

targets, and (4) T2w images as atlases and T1w images as targets.

2) Results—For T1w target images, using both T1w and T2w atlases achieved 

significantly higher DSC than using all T1w or T2w atlases. For T2w target images, using 

both T1w and T2w atlases achieved significantly higher DSC than using all T1w or T2w 

atlases. No significant differences were detected.

V. Discussion

Fully automated segmentation methods are commonly preferred over manual or semi-

manual segmentation methods. Therefore, we evaluate the fully-automated Pipeline 1 and 

Pipeline 2. The results demonstrated that the Pipeline 2 was able to achieve 0.9 median DSC 

on spleen segmentation for splenomegaly. However, outliers (e.g., bad segmentations with 

DSC<0.7) were generated from the registration failures. Such poor cases were typically not 

desired in the clinical scenarios. To alleviate such failures, the 1D manual measurement L 

was introduced to form the Pipeline 3 and Pipeline 4. From the validations, the Pipeline 4 

achieved more robust segmentations (Pearson correlation > 0.97) without sacrificing on 

segmentation accuracy (DSC>0.9) compared with Pipeline 2. Meanwhile, the number of 
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worst cases (DSC<0.8, DSC<0.75 and DSC<0.7) were alleviated when introducing the L. 

Since manual efforts were still required in Pipeline 4, a meaningful future work would be 

automated craniocaudal spleen length estimation using machine learning and artificial 

intelligence.

In this work, four atlas selection strategies (none, automated, manual, semi-automated) have 

been evaluated. Other atlas selection methods could be used to further leverage the 

performance of the atlas based spleen segmentation. Craniocaudal length L can be used for 

spleen volume estimation directly using regression models (with 0.816 correlation to the true 

volume reported in [10]). The proposed pipelines not only achieved higher correlation scores 

but also provided the 3D volumetric segmentations that the regression was not able to. The 

computational time of registering one atlas to target image was typically <5 min in our 

experiments. The computational time would be further reduced when performing atlas 

selection (e.g., using the information from spleen length L). Another direction worth pursing 

using the spleen length L and its spatial information to initialize or leverage the image 

registration. In the future, the publicly available dataset from VISCERAL Anatomy3 

challenge could be used to evaluate the proposed method or new methods on abdominal 

organ segmentation [45].

VI. Conclusion

In this paper, we have proposed the L-SIMPLE method and evaluated the performance of 

multi-atlas segmentation on clinical acquired MRI for splenomegaly patients. The rationale 

of introducing the manual measurement L was illustrated in Fig. 4. Fig. 5 and Fig. 6 

demonstrated that the fully automated Pipeline 2 (SIMPLE+MLF) and semi-automated 

Pipeline 4 (L-SIMPLE + MLF) both achieved DSC>0.9. By using the feature L, Pipeline 4 

achieved 0.97 Pearson correlation with the manual segmentation (in Fig. 7 and Table 1), 

which was better than either fully automated pipelines or only using the spleen length L. The 

performance of all the four pipelines were better than the V. P. Forests method, which shown 

the robustness of the proposed methods on the multi-contrast MRI segmentation. By using 

the prior from the manually traced L, the worst cases of the spleen volume estimations were 

alleviated as shown in Fig. 6 and Table 1. The number of worst cases (DSC<0.8, DSC<0.75 

and DSC<0.7) for the Pipeline 3 and 4 were less than Pipeline 1 and 2. Although the 

improvements on DSC, MSD, HD using the graph cuts refinement were not large compared 

with omitting refinement, the graph cut ensures the topological correctness of the final 

spleen segmentation (one connected component).

Fig. 8 evaluated the sensitivity of the proposed method on multi-contrast scenarios. The 

results demonstrated that the proposed method yields consistent segmentation performance 

even if the contrast mechanism of atlases and targets are different (T1w and T2w). 

Meanwhile, using all available atlases, the performance of the segmentation was better than 

to pre-classify them to T1w atlases or T2w atlases.
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Fig. 1. 
(a) presents heterogeneous sequences in clinical acquired abdominal MRI as well as the 

examples of splenomegaly spleens on MRI. (b) shows the spleen size and sequence type of 

all 55 MRI.
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Fig. 2. 
Multi-atlas labeling steps for each of the four pipelines. Pipeline 1 conducted multi-atlas 

label fusion (MLF) on all registered atlases without using atlas selection. Pipeline 2 

employed the SIMPLE atlas selection method before performing MLF. Pipeline 3 used the 

craniocaudal spleen length (L) to guide the atlas selection. Pipeline 4 evaluated the proposed 

L-SIMPLE method, which integrated the feature L to the SIMPLE atlas selection under the 

Bayesian framework. For all pipelines, a post refinement procedure was included to ensure 

the topological correctness of the spleen segmentation (one connected component).
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Fig. 3. 
This figure presents an example of using different atlas selection strategies. The upper panel 

reflects the registration results of registering each atlas to the target image. The target image 

is shown as the left figure on the lower panel. The registered atlases are arranged based on 

the Dice similarity coefficient (DSC) to the target manual segmentation, whose DSC 

increased from top left to bottom right. Pipeline 1 (in blue rectangles) employed all 

registered atlases in the label fusion. Pipeline 2 (in pink rectangles) performed the atlas 

selection using SIMPLE method. Pipeline 3 (in green rectangles) used the craniocaudal 

spleen length (L) to guide the atlas selection. Pipeline 4 (in yellow rectangles) integrated L 

and SIMPLE to the proposed L-SIMPLE method under the Bayesian framework. In this 

example, Pipeline 4 chose the better atlas candidates (lower rows in upper panel) for the 

atlas selection, which achieved the highest DSC relative to the manual segmentation.
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Fig. 4. 
The scatter plot demonstrated that 2890 registrations have been performed on all possible 

combinations between 55 clinical acquired splenomegaly images. The coordinate of each dot 

corresponded to the craniocaudal spleen length (L) of the source and target scan of the 

registration. The color of each dot indicated the DSC value between the registered spleen 

label and the manual segmentation.
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Fig. 5. 
The qualitative results of four pipelines on the three subjects with largest, median and 

smallest DSC of Pipeline 4 with GC were shown with manual segmentation. For each 

pipeline, the “no GC” indicated the results without Graph Cuts while the “with GC” 

demonstrated the results with Graph Cuts.
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Fig. 6. 
The quantitative results of four pipelines on Dice similarity coefficient (DSC), mean surface 

distance (MSD) as well as Hausdorff distance (HD) are shown in boxplots. The “no GC” 

indicated the results without Graph Cuts while the “w. GC” demonstrated the results with 

Graph Cuts. The statistical analyses were conducted between the proposed Pipeline 4 L-

SIMPLE with Graph Cuts method (marked as reference “Ref.”) with other approaches. 

Statistically significant, differences are marked with a “*” symbol. Non-significant 

differences are indicated with “N.S.”
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Fig. 7. 
The correlation analyses between different pipelines with manual segmentation. The semi-

automated pipelines achieved higher Pearson correlation values than fully-automated 

pipelines and fully-manual L measurements. The “+” and “=” indicated that the Pipeline 3 

and 4 integrated the information derived from Pipeline 1 and 2 plus the craniocaudal spleen 

length (L). The “corr.” reflected the Pearson correlation values. The “no GC” indicated the 

results without Graph Cuts while the “with GC” demonstrated the results with Graph Cuts
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Fig. 8. 
The sensistivty analyses of the proposed L-SIMPLE method on multi-contrast images. (a) 

demonstrates that using both T1w and T2w images as atlases achieved better performance 

than only using T1w or T2w atlases on segmenting T1w images. (b) shows that using both 

T1w and T2w images as atlases achieved better performance than only using T1w or T2w 

atlases. From (a) and (b), it is evident that the performance of using the same sequence on 

both atlases and targets did not yield a significant difference on DSC compared with using 

the different sequences for atlases and targets respectively. The “*” symbol indicates 

significant differences.
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