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Abstract

Adult hippocampal neurogenesis occurs throughout life and supports healthy brain functions. The 

production of new neurons decreases with age and deficiencies in adult neurogenesis are 

associated with neurodevelopmental and degenerative disease. The rate of neurogenesis is 

dynamically sensitive to one’s environmental conditions and experiences, and certain stimuli are 

known to robustly enhance neurogenesis in rodent models, including voluntary exercise, enriched 

environment, and electroconvulsive shock. In these models, information about an organism’s 

environment and physiological state are relayed to neurogenic cell types within the hippocampus 

through a series of tissue and cellular interfaces, ultimately eliciting a neurogenic response from 

neural stem cells and newborn neurons. Therefore, understanding how novel genes and proteins 

act in specific cell types within this circuit-level context is of scientific and therapeutic value. 

Several well-studied neurotrophic factors have been implicated in environmentally-enhanced 

neurogenesis, and this review will serve to highlight recently-discovered, novel molecular 

mediators of neurogenesis in response to environmental cues. Furthermore, the contribution of 

advancing large-scale gene expression and function assessment technology to past, present, and 

future efforts to elucidate cell type-specific molecular mediators of environmentally-enhanced 

neurogenesis will be summarized.

Introduction

Neurogenesis, the process by which new neurons are created from stem cells, is the driving 

force in sculpting the central nervous system during prenatal and juvenile periods of 

development. In mammals, neurogenesis is known to persist under basal conditions in 

restricted areas of the brain throughout life; the subventricular zone (SVZ) near the lateral 

ventricle, and the dentate gyrus (DG) of the hippocampus (Zhao, et al., 2008). The SVZ 

generates inhibitory neurons that migrate through the rostral migratory stream to the 

olfactory bulb, while the DG yields excitatory granule cells that integrate into the existing 

hippocampal circuitry. SVZ neurogenesis has not been confirmed to occur in humans, but 

hippocampal neurogenesis is thought to play a critical role in supporting normal brain 
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function throughout life in both human and rodents (Aimone, et al., 2010, Aimone, et al., 

2011, Akers, et al., 2014, Clelland, et al., 2009, Deng, et al., 2010, Frankland, et al., 2013, 

Imayoshi, et al., 2008, Opendak and Gould, 2015). Deficits in adult hippocampal 

neurogenesis are associated with both neurodevelopmental and degenerative diseases, 

including autism and Alzheimer’s disorders (Balu and Lucki, 2009, Christian, et al., 2014, 

Donovan, et al., 2006, Kempermann, et al., 2008, Mu and Gage, 2011, Sahay and Hen, 2007, 

Wegiel, et al., 2010). During adult hippocampal neurogenesis, new neurons are developed 

from a largely quiescent pool of adult neural stem cells (aNSCs) in a tightly-regulated, 

multi-step process that includes aNSC activation, lineage determination, proliferation of 

intermediate progenitors, maturation and survival of newborn neurons, and integration with 

mature neural networks (Kempermann, et al., 2015).

Neurogenesis can be influenced locally by growth factors and neurotransmitters exchanged 

by neurons and glia in the neurogenic niche, but also by broader physiological and 

environmental factors that an animal experiences. The interaction between environment and 

neurogenesis can be thought of as a series of interfaces through which information is relayed 

from peripheral sources to the proximal cell types involved directly in neurogenesis within 

the hippocampus, with the final interface regulating activity of aNSCs and newborn neurons 

themselves (Figure 1). Certain experiences, such as isolation, aging, and stress, are known to 

have a negative effect on neurogenesis (Czeh, et al., 2002, Dranovsky and Hen, 2006, 

Fowler, et al., 2002, Gould and Tanapat, 1999, Gould, et al., 2000, Jin, et al., 2003, Klempin 

and Kempermann, 2007, Kuhn, et al., 1996, Lieberwirth, et al., 2012, Stranahan, et al., 2006, 

Warner-Schmidt and Duman, 2006, Xu, et al., 2007), while enriched environment, voluntary 

exercise, and diet can enhance neurogenesis (Boitard, et al., 2012, Brown, et al., 2003, 

Clark, et al., 2010, Garrett, et al., 2012, Kobilo, et al., 2011, Lee, et al., 2002a, Lee, et al., 

2002b, Lindqvist, et al., 2006, Stangl and Thuret, 2009, Tozuka, et al., 2009, van Praag, 

2008, van Praag, et al., 1999, Vivar, et al., 2013, Yu, et al., 2014). There is a rich literature 

documenting the neurogenic phenotypes that result from these treatments, and there is great 

interest in understanding what specific molecular pathways and mechanisms are responsible 

for facilitating the interaction between environment and neurogenesis. Numerous peripheral 

growth factors and metabolic regulators have been well-studied with respect to their 

response to physical activity and their roles in adult neurogenesis, and several pathways 

within the DG have been strongly implicated in environmentally-induced neurogenesis. 

However, probing molecular changes that occur within aNSCs and newborn neurons 

themselves has proven to be a major hurdle because these neurogenic cell types are 

relatively rare and intricately interwoven with more abundant mature neurons and glia in the 

mixed tissue environment of the DG.

Studying the molecular mechanisms underlying environmentally-enhanced neurogenesis has 

profound implications for understanding disease mechanisms. Because the progression of 

most neurodevelopmental and degenerative disorders is the result of both genetic and 

environmental components, investigating the molecular biology underlying the contribution 

of environment to adult neurogenesis at proximal levels will help researchers understand the 

etiology of these diseases and identify effective therapeutic strategies that may act with high 

specificity in neurogenic cell types. This review will serve to highlight recently discovered 

molecular mediators of environmentally-enhanced neurogenesis and describe ongoing 

Eisinger and Zhao Page 2

Cell Tissue Res. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efforts and current challenges in identifying novel genes and proteins through advancing 

large-scale, genome-wide technologies.

Models of environmental influence on neurogenesis

In the context of the environment-neurogenesis interaction, “environment” necessarily refers 

to both the conditions of an animal’s environment, and how the animal behaves within that 

environment. For example, the presence of toys and running wheels are conditions of an 

enriched environment, and an animal experiences those conditions through the actions of 

exploration and running. Therefore, it becomes impossible to completely dissociate 

environment from physiology, and these collectively represent an animal’s experiences. 

Various experimental paradigms have been developed to model aspects of environmental 

influence on neurogenesis. This review will consider three such models; physical activity 

(PA), enriched environment (EE), and electroconvulsive shock (ECS).

i. Environmental Enrichment

Environmental enrichment (EE) is defined as housing conditions that provide enhanced 

sensory, cognitive, or motor stimulation (Zhou, et al., 2017). Such housing conditions may 

include cardboard rolls, toys, textured ribbons, and running wheels (Monteiro, et al., 2014). 

EE can also include a component of social enrichment when animals are group housed, or 

dietary enrichment through the use of non-standard food. In some EE paradigms, conditions 

are changed every few days to maintain novelty, or exposure to EE is restricted. The 

contribution of each component of the enriched environment cannot be disentangled post 
hoc, and EE must therefore be considered as a mixture of effects. EE has been shown to 

promote neurogenesis, angiogenesis, spatial navigation, and pattern separation, as reviewed 

by Clemenson et al. (Clemenson, 2015).

ii. Physical activity

PA can be considered as a specific, physiological component of EE, and is usually modeled 

in rats and mice by providing voluntary access to running wheels or by forced running on a 

treadmill. Recently, it was shown that the presence of a locked wheel alone has an effect on 

neurogenesis that is distinct from that of running per se (Dostes, et al., 2016). Some groups 

therefore house control animals with a locked wheel to control for the novelty of the object. 

PA is known to increase proliferation within the DG (Ables, et al., 2010, Olson, et al., 2006, 

Stranahan, Khalil and Gould, 2006, van Praag, Kempermann and Gage, 1999), as well as 

dendritic spine density of newborn neurons (Leuner and Gould, 2010, Redila and Christie, 

2006, Stranahan, et al., 2007). PA causes a transient increase in DG cell proliferation that 

returns to basal levels after approximately two weeks, followed by a sustained effect on new 

neuron production that is attributed primarily to enhanced survival (Kronenberg, et al., 

2006). Several cellular mechanisms have been proposed to explain PA-induced proliferation, 

but none can fully account for all experimental observations at this time (Overall, et al., 

2016). In addition to changes in neurogenesis, PA enhances spatial memory in the Morris 

water maze, Y-maze, T-maze, and radial arm maze tests (Fordyce and Farrar, 1991, van 

Praag, 2008). For a comprehensive review of the neurogenic, neurophysiological, and 
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behavioral phenotypes associated with PA, see Vivar et al. (Vivar, Potter and van Praag, 

2013).

iii. Electroconvulsive shock

Electroconvulsive therapy (ECT) is a highly effective treatment option for specific forms of 

depression, mania, and schizophrenia (Aksay, et al., 2016). Compared with PA and EE 

treatments, ECS is decidedly less natural, and is more analogous to the physiological 

medical intervention of ECT. In humans, ECT is performed under general anesthesia with 

muscle relaxants. In early rodent experiments, ECS was performed in awake animals, but 

modern protocols typically include anesthesia via an inhaled agent (Schloesser, et al., 2015). 

ECS can be performed as a single, acute shock, or as a chronic course of repeated daily 

shocks. In 2000, multiple groups discovered that tonic-clonic seizures induced by ECS 

robustly trigger adult hippocampal neurogenesis (Madsen, et al., 2000, Malberg, et al., 2000, 

Scott, et al., 2000). More recently, it has been suggested that neurogenesis is required for the 

antidepressant-like effects of ECS (Schloesser, Orvoen, Jimenez, Hardy, Maynard, Sukumar, 

Manji, Gardier, David and Martinowich, 2015).

Novel mediators of environmentally-induced neurogenesis

The act of running causes the release of molecules in peripheral tissues that promote 

structural regeneration of muscle and vasculature, regulate body fluids, and manage glucose 

and protein metabolism. Many of these compounds are secreted into the blood and cross the 

blood-brain barrier, where they can modulate pathways involved in hippocampal 

neurogenesis. Most famous among these proteins are insulin-like growth factor 1 (IGF-1), 

vascular endothelial growth factor (VEGF), and the hormone adiponectin. These proteins are 

upregulated in response to PA and can enter the brain to promote proliferation, 

differentiation, maturation, and survival. These and additional peripheral factors that mediate 

effects of PA on hippocampal neurogenesis are reviewed by Bolijn and Lucassen (Bolijn, 

2015), including leptin, angiotensin II, glucocorticoids, adrenaline, reactive oxygen species, 

AMP-kinase, peroxisome proliferator-activated receptor (PPAR), PPAR γ co-activator 1α 
(PGC-1 α), ciliary neurotrophic factor (CNTF), and proinflammatory cytokines.

Quiescent aNSCs residing in the subgranular zone (SGZ) of the DG are maintained through 

slow, controlled self-renewal. Once activated, aNSCs give rise to proliferating adult neural 

progenitor cells (aNPCs), which differentiate into nascent granule cell neurons that migrate 

through the DG, mature, and form synapses with established neuronal networks. Pathways 

within aNSC/aNPCs and newborn neurons that receive information from exogenous sources 

represent the final interface between environmental influences and increases in activation, 

proliferation, differentiation, survival, and maturation. Well-established factors that mediate 

effects of EE and PA on adult neurogenesis include brain-derived neurotrophic factor 

(BDNF) (Fang, et al., 2013, Farmer, et al., 2004, Gibbons, et al., 2014, Griffin, et al., 2009, 

Ji, et al., 2014, Johnson and Mitchell, 2003, Johnson, et al., 2003, Molteni, et al., 2002, 

Russo-Neustadt, et al., 1999, Tong, et al., 2001) and nerve growth factor (NGF) (Chae and 

Kim, 2009, Molteni, Ying and Gomez-Pinilla, 2002, Neeper, et al., 1996, Tong, Shen, 

Perreau, Balazs and Cotman, 2001, Zaben and Gray, 2013). The following section will 
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highlight recently-discovered, novel mediators of environmentally-induced neurogenesis, 

which are summarized in Table 1.

i. Adiponectin

Adiponectin is a hormone produced by fat cells that influences numerous physiological 

processes, including glucose metabolism and inflammation. Although studies dating back to 

2002 have investigated adiponectin levels in response to PA due to interest in its role in 

regulating insulin activity (Ferguson, et al., 2004, Hulver, et al., 2002), it was only recently 

proven that adiponectin crosses the blood-brain barrier to mediate the pro-neurogenic and 

anti-depressive effects of PA in mice (Yau, et al., 2014). In this work, Yau and colleagues 

demonstrated that PA-induced increases in cell proliferation (as measured by BrDU and 

Ki67) and DCX+ new neuron production was completely ablated in adiponectin knockout 

animals. The ratio of BrdU/DCX co-labeling was unchanged in the knockout mouse, 

indicating that adiponectin did not influence the process of neuronal differentiation itself. 

Because BDNF levels were enhanced by PA in both WT and knockout mice, it is likely that 

adiponectin acts downstream of BDNF in the response to PA. Finally, application of 

adiponectin to cultured N2a cells and NPCs concurrently with knockdown of either one of 

the adiponectin receptors (ADNRs) revealed that adiponectin’s interaction with ADNR1, 

rather than ADNR2, was responsible for adiponectin-elicited cell proliferation. In 2015, 

Nicolas and colleagues reported that the antidepressant-like effects of EE were mediated by 

adiponectin through a neurogenesis-independent mechanism (Nicolas, et al., 2015). The 

same group went on to show that this EE-induced adiponectin pathway reverses the pro-

inflammatory phenotype of depressive mice by reducing the inflammatory action of 

microglia (Chabry, et al., 2015). Therefore, there are likely to be multiple avenues by which 

adiponectin can influence neurogenesis and brain plasticity in response to both PA and EE.

ii. Cathepsin B

A novel myokine, Cathepsin B (CTSB), was recently shown to be elevated in plasma after 

exercise, and it was demonstrated that PA-induced neurogenesis and enhanced memory were 

ablated in CTSB knockout mice (Moon, et al., 2016). The same study suggests that CTSB 

may exert its effects by positively regulating BDNF within aNPCs; when exogenous CTSB 

was applied to hippocampal progenitor cells, Bdnf transcript levels increased, and inhibition 

of CTSB conversely reduced Bdnf. CTSB has also been implicated in angiogenesis in a 

meningioma cell line (Tummalapalli, et al., 2007), which could be an indirect mechanism by 

which CTSB activity may improve nutrient and oxygen delivery to neurogenic cells through 

enhanced vasculature. In an Alzheimer’s disease (AD) model mouse, injections of adeno-

associated virus expressing Ctsb reduced amyloid-β levels (Embury, et al., 2016). Because 

exercise is known to counteract cognitive decline in aging and AD (Cotman and Berchtold, 

2002, Intlekofer and Cotman, 2013), CTSB may promote brain health through neurogenic 

and non-neurogenic mechanisms. Considering these recent findings, CTSB represents an 

interesting potential therapy for brain health, but it remains to be seen whether peripherally 

administered CTSB can enhance neurogenesis or promote cognitive function.
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iii. CX3Cl1

Microglia are the resident immune cells of the brain, and play important roles in regulating 

aNSC activity and neurogenesis (De Lucia, et al., 2016, Sierra, et al., 2014, Sierra, et al., 

2010). Therefore, genes and proteins in microglia that respond to environmental stimuli may 

bridge environment and neurogenesis through immune pathways. For example, the 

chemokine CX3CL1 (also known as fractalkine or neurotactin) promotes a preponderance of 

neuroprotective microglia over pro-inflammatory microglia (Cardona, et al., 2006). Vukovic 

et al. found that wheel running increased hippocampal CX3CL1 levels, particularly in aged 

animals (Vukovic, et al., 2012). Furthermore, they demonstrated that co-culturing NPCs 

from running mice with microglia from sedentary mice abolished the effect of running on 

enhanced aNPC activity, suggesting that PA-induced CX3CL1 acts within microglia, which 

can in turn regulate aNSCs in neurogenesis. The role of CX3CL1 as an environmentally 

malleable regulator of the microglia-aNSC interaction was further confirmed when Reshef et 

al. found that functional deletion of CX3CL1’s receptor, CX3CR1, which is expressed 

exclusively in microglia, prevented the effect of EE on neurogenesis (Reshef, et al., 2014). 

Recently, Littlefield et al. used lipopolysaccharide (LPS) as an immune challenge to reduce 

neurogenesis in aged mice and found that wheel running prevented the LPS-induced loss of 

new neurons in a manner that correlated strongly with the proportion of microglia that 

expressed BDNF (Littlefield, et al., 2015). This indicates that BDNF may have an indirect 

mechanism of promoting neurogenesis by influencing microglia activity, in addition to its 

well-studied activity in aNSCs themselves.

iv. Diazepam binding inhibitor

In the adult hippocampus, neurons projecting from the DG to CA3 are recurrently connected 

with local inhibitory interneurons, and these inhibitory neurons are responsible for 

determining levels of ambient GABA in the DG. NPCs and their progeny express functional 

GABA receptors, and GABA signaling is crucially involved in both embryonic and adult 

hippocampal neurogenesis, influencing progenitor proliferation, fate specification, migration 

of new neurons, and synaptic integration (Ge, et al., 2007). Pioneering studies by Overstreet-

Wadiche and colleagues discovered that adult-born new neurons initially receive GABAergic 

inputs exclusively (Overstreet Wadiche, et al., 2005), and later revealed the importance of 

GABA signaling in granule cell maturation and experience-dependent synapse un-silencing 

(Chancey, et al., 2013, Dieni, et al., 2012). In particular, parvalbumin (PV)-expressing 

interneurons have been shown to synapse directly on proliferating newborn progeny and 

couple circuit activity to neurogenesis (Song, et al., 2013). Song et al. describe a diametric 

model in which PV+ neurons simultaneously promote aNSC quiescence through tonic, 

ambient GABA and survival/maturation of newborn progeny synaptically (Song, et al., 

2014). This occurs because, during the first two weeks after a granule cell is born, 

intracellular Cl− concentrations are relatively high, and the opening of GABAARs results in 

a net efflux of Cl− ions and depolarization of the newborn neuron (Owens and Kriegstein, 

2002). In contrast, aNSCs with lower intracellular concentrations of Cl− are inhibited by 

GABAAR activity. However, it was unclear how PA-induced GABA signaling could result in 

an increase in proliferation if such signaling would be expected to maintain aNSC 

quiescence. This was recently resolved by Dumitru et al. (Dumitru, et al., 2017), who 

demonstrated that diazepam binding inhibitor (DBI), which binds to the benzodiazepine 
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binding site of GABAARs, is expressed in aNSCs and serves to reduce GABA currents in 

these cells, counteracting the negative effect of increased GABA on aNSC proliferation. 

Furthermore, knockdown of DBI abolished EE-induced increases in the production of DCX

+ newborn neurons, the number of dividing Ki67+ cells, and the percentage of proliferating 

aNSCs.

v. Neuropsin

Suzuki et al. investigated the secretory serine protease neuropsin for a potential role in 

regulating PV+ interneurons in response to EE and PA (Suzuki, et al., 2014). Neuropsin 

cleaves its target, neuregulin-1 (NRG-1), allowing NRG-1 to interact with p185 (ErbB4) in 

PV+ interneurons in a neural activity-dependent manner (Tamura, et al., 2012). In 

neuropsin-deficient mice, the intensity of PV+ terminals was reduced in DG, indicating that 

neuropsin controls PV activity and GABA signaling in PV-neurons. EE triggered enhanced 

PV immunoreactivity and elevated hippocampal neuropsin mRNA and protein, suggesting 

that neuropsin may link environmental stimuli to GABA signaling in PV+ neurons. 

However, induction of PV by EE was not abolished by deletion of neuropsin, which shows 

that EE-induced PV induction occurs, at least in part, through a neuropsin-independent 

mechanism. Whether neuropsin is required for EE-induced neurogenesis remains to be 

tested.

vi. Tamalin

Yanpallewar et al. (Yanpallewar, et al., 2012) noted that the scaffold protein tamalin (also 

known as General Receptor for phosphoinositides 1 Associated Scaffold Protein, encoded by 

the Grasp gene) modulated morphine and cocaine sensitivity by altering adaptive neural 

plasticity involved with addiction, and asked whether Tamalin might influence plasticity in 

the context of ECS. To this end, they observed a dramatic increase in Grasp mRNA within 

the DG as measured by in situ hybridization, which was strongest at 1–3 hours after ECS 

and returned to basal levels by 24 hours. Interestingly, the tamalin knockout mouse exhibited 

no defects in basal proliferation and survival of aNPCs, and tamalin is not required for 

normal development. However, tamalin was required for ECS-induced proliferation, 

neurogenesis, mossy fiber sprouting, granule cell dendrite arborization, and LTP. Therefore, 

tamalin may act specifically to facilitate neural plasticity in response to hippocampal neural 

activity, but no follow-up studies have pursued this intriguing protein as of yet.

vii. Gadd45b

Upregulation of Growth Arrest and DNA Damage inducible Beta (Gadd45b) after ECS was 

first detected in a microarray experiment of rat DG tissue in 2006 (Ploski, et al., 2006). 

Three years later, it was identified as an immediate early gene in mature hippocampal 

neurons that is transiently and robustly upregulated after ECS (Ma, et al., 2009). In that 

study, Gadd45b knockout mice did not have significantly altered neurogenesis, but showed 

reduced levels of proliferation and dendritic development in response to both ECS and 7 

days of wheel running. Because Gadd45b is known to be an epigenetic modifier, the authors 

measured methylation levels of key neurogenic genes in WT and KO animals. They found 

that ECS induced demethylation of regulatory elements within Bdnf and Fgf1 in WT 

animals, but failed to do so in KO littermates. In this way, it is thought that transient 
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increases in Gadd45b activity may result in long-lasting changes in DNA methylation and 

neurodevelopment. More recently, the same group expanded upon their work by showing 

that Gadd45b is essential for ECS-induced proliferation of both quiescent aNSCs and 

proliferating progenitors (Jun, et al., 2015).

viii. Glycogen synthase kinase-3 β

In addition to activation and proliferation of aNSCs, altering the maturation and survival of 

newborn neurons can affect the output of neurogenesis. Wnt3 is produced by astrocytes and 

induces NeuroD1, a proneuronal transcription factor, through the canonical Wnt/β-catenin 

signaling pathway (Kuwabara, et al., 2009). Wnt3 was observed to increase in DG astrocytes 

after PA, which was accompanied by enhanced production of neurons in both young and 

aged mice (Okamoto, et al., 2011). Inhibition of glycogen synthase kinase-3 (Gsk3)-

mediated phosphorylation of β-catenin is considered to be the key event in the Wnt/β-

catenin pathway (Wu and Pan, 2010). Using a retroviral strategy, it was recently shown by 

Llorenz-Martin et al. (Llorens-Martin, et al., 2016) that over-expressing Gsk3β specifically 

in newborn granule neurons resulted in a cell-autonomous impairment of PA-induced 

maturation, as measured by the number of dendritic spines, the percentage of mushroom 

spines, and the head diameter of mushroom spines. In this study, however, Gsk3β over-

expression also impaired these neuronal development parameters under basal conditions; 

therefore, it is possible that the action of Gsk3β opposes neuronal maturation generally, and 

not specifically in the context of PA. Because of its diverse functions, Gsk3 has long been of 

interest as a therapeutic target (Pandey and DeGrado, 2016). Although over-expression of 

Gsk3β can restrict the efficacy of PA-induced neuronal maturation, it has not yet been shown 

that inhibiting Gsk3β can enhance the same processes.

ix. Dynamin-related protein 1

Maturation of new neurons from aNSCs in adult animals requires that energy and metabolic 

demands be met sufficiently by the developing cell. Dynamin-related protein 1 (DRP1) 

facilitates mitochondrial fission, and was recently found to be upregulated in the cortex of 

aged mice in a treadmill running paradigm (Gusdon, et al., 2017). Steib et al. (Steib, et al., 

2014) observed that developing neurons undergo dramatic changes in mitochondrial 

distribution and shape. This group genetically manipulated Drp1 in the context of PA and 

discovered that inhibition of Drp1 impairs neurogenesis, while over-expression enhances 

PA-induced acceleration of neuronal maturation. Because DRP1 is a critical regulator of 

mitochondrial function, the effects seen in these experiments may not be attributable 

exclusively to DRP1, but may instead reflect the broader contribution of mitochondria to PA-

induced neurodevelopment. Furthermore, inhibition of Drp1 also diminished neurogenesis 

under basal conditions, indicating that mitochondria activity is fundamentally coupled to 

neurogenesis. This notion is supported by experiments in which inhibition of mitochondria 

activity through ablation of the mitochondrial transcription factor A (Tfam) impaired 

neurogenesis at the intermediate progenitor cell (IPC) level (Beckervordersandforth, et al., 

2017). Furthermore, enhanced mitochondrial function ameliorated aging-associated defects 

in neuronal maturation and in a mouse model of AD (Richetin, et al., 2017). Therefore, it 

can be concluded that mitochondria are essential for basal and PA-induced neuronal 

development, and DRP1 is one protein that can be targeted to impact mitochondrial function.
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iv. Grf2

Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) are members of a family of calcium-activated 

guanine nucleotide exchange factors that can activate Ras and Rac GTP-ases (Feig, 2011). 

GRF1 was observed to promote survival of new DG neurons (Darcy, et al., 2014a), and EE-

enhanced survival of new neurons was ablated in GRF2 KO mice (Darcy, et al., 2014b). 

GRF2 knockout also impaired LTP through its downstream effector, Erk MAP kinase. 

Retroviral shRNA knockdown of GRF2 in newborn neurons showed that it promotes 

survival in a cell-autonomous manner under basal conditions. However, whether GRF2 

expressed in aNSCs is critical for EE-enhanced neurogenesis and how GRF2 may exert such 

a function remain to be explored.

Genome-wide studies of environmentally-enhanced gene regulation

The genes and proteins described so far have been shown to facilitate the environmental 

impact on neurogenesis through experimental validation. However, many of them were 

chosen as candidates due to their close relationship to well-established neurogenic pathways. 

Genome-wide screening techniques allow researchers to cast a broader net when searching 

for genes that may be involved in the neurogenic response to environmental stimuli, and can 

offer a big-picture understanding of gene and protein networks acting in concert to 

coordinate cellular changes. The following sections will discuss unbiased, large-scale studies 

of gene expression associated with hippocampal neurogenesis in response to PA, ECS, and 

EE, which are summarized in Table 2. From the historical context of early experiments, 

progress of the field will be summarized, and recent advancements will be highlighted.

1. Physical activity

Researchers began using microarray technology to measure gene expression in the rat 

hippocampus in response to PA in the early 2000’s. Tong et al. (Tong, Shen, Perreau, Balazs 

and Cotman, 2001) applied a t-test analysis to microarray data and detected 88 differentially 

expressed genes (DEGs), equally split between up- and down-regulation after three weeks of 

wheel running. They observed increases in Bdnf, Vgf, and genes related to neuronal 

signaling, plasticity, extracellular matrix, protein trafficking, biosynthetic processes, and 

immune response. Molteni et al. (Molteni, Ying and Gomez-Pinilla, 2002) normalized array 

signal to five housekeeping genes and considered expression ratios ≥ 1.8 or ≤ 0.5 to be 

significantly different after three days, seven days, or 28 days of running, resulting in 15 up-

regulated genes and two down-regulated genes. DEGs included key neurotrophins (Bdnf, 
Ngfb, Fgf2, Trkb), synapse-related genes, neurotransmitters, and signal transduction-related 

molecules. These pioneering studies provided the first glimpse into the global impact of 

wheel running on hippocampal gene expression. However, these early experiments yielded 

relatively few individual gene results overall, representing the small but robust tip of a much 

larger iceberg.

As microarray platforms advanced and granted more power in discerning expression 

changes, researchers were able to detect hundreds of DEGs in hippocampal tissue after eight 

weeks of wheel running (Kohman, et al., 2011). In addition to hallmark neurotrophins, such 

as Bdnf, novel regulatory gene networks emerged from this richer dataset. Gene ontology 
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(GO) analysis implicated chromatin remodeling as a mechanism by which PA facilitates 

changes in cellular activity within the hippocampus. Lee et al. (Lee, et al., 2014) compared 

the transcriptional effects of wheel running on rat hippocampus to that of a resistance wheel 

running paradigm in which wheels were loaded with 30% of the subject’s body weight. 

They determined that intensity of PA has a significant influence on dynamic gene 

expression, and specifically that the addition of resistance causes a greater number of genes 

to be down-regulated relative to sedentary controls. Non-resistance wheel running induced 

changes in metabolism, endocrine system, and molecular transport, and genes altered 

specifically by resistance wheel running were related to inflammatory/immune response, 

protein synthesis, and cellular movement. This finding suggests that mild and intense 

exercise may exert distinct effects on the adult hippocampus. Inoue et al. (Inoue, et al., 2015) 

used a treadmill running paradigm and concluded that mild exercise below the lactate 

threshold is more effective than intense exercise in promoting adult neurogenesis as 

measured by DG cell proliferation. Mild exercise in these experiments led to a greater 

number of expression changes measured by microarray, but hallmark factors Bdnf, Igf1, and 

Vegf were unchanged by either treatment. These discrepancies may be due to the timing of 

tissue collection, as samples were collected two days after the cessation of running, which 

could allow for running-induced elevation of neurotrophins to subside. Furthermore, the 

treadmill running design is a forced exercise model that employs mild electric shocks to 

motivate running, which could introduce an additional stress component to transcriptional 

perturbations. DEGs in this study were enriched for lipid metabolism, protein synthesis, and 

inflammatory/immune response, demonstrating a degree of consistency across experiments 

in biological processes associated with PA despite methodological differences.

Whole hippocampus was used for all the microarray experiments described thus far. One 

limitation of this approach is that the hippocampal tissue is composed of numerous cell 

types that are likely to act in transcriptionally distinct ways in response to PA. It would 

therefore be expected that cell type-specific gene networks would be lost in the bulk output 

of a such a system. Additionally, a readout of mixed tissue would be biased towards mature 

neurons, glia, and secreted factors, and biased against rarer NSCs and newborn neurons. One 

strategy to tailor a microarray experiment more towards neurogenic cell types is to restrict 

tissue collection to the DG itself, where neurogenesis occurs. Guerrieri and van Praag 

(Guerrieri and van Praag, 2015) measured gene expression specifically from DG in response 

to 3 days, 7 days, and 14 days of wheel running and identified novel candidate genes that 

had not been previously implicated in the brain’s response to PA, including upregulation of 

Wdr37, Armc8, Phactr1, Zmpste24, and Pfkp. Armc8 has been linked to carcinogenesis 

(Fan, et al., 2014), while Phactr1 is involved in capillary tube formation in endothelial cells 

(Allain, et al., 2012). It is therefore possible that these developmental genes may contribute 

to the cellular division processes of neurogenesis and angiogenesis in response to PA.

2. Electroconvulsive shock

Large-scale gene expression studies of ECS began around the same time as those of PA; the 

first experiment using a custom chip targeting 645 genes in the rat hippocampus in 2003 

identified increases in Bdnf, Wnt2, Ngf, Fgf2, Fgfr1, Vegf, Npy, Sst, Egr1/2/3, and Fos 
(Newton, et al., 2003). The following year, Altar et al. (Altar, et al., 2004) used a genome-
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wide chip to discern hippocampal gene changes resulting from both acute and chronic ECS. 

They observed 26 genes specifically changed by chronic ECS, which may be more relevant 

to the clinical effects of the sustained course of treatment as used in human patients. The 

same study included cortical tissue, in which only three genes were changed by ECS. The 

authors interpreted this finding to indicate that the hippocampus is primarily responsible for 

mediating the chronic effects of ECS. In 2007, Conti et al. performed a microarray study of 

ECS generated region-specific transcriptional profiles from hippocampus, prefrontal cortex 

(PFC), frontal cortex (FC), amygdala, hypothalamus, dorsal raphe (DR), and locus coeruleus 

(LC) (Conti, et al., 2007); in this dataset, hundreds of DEGs were detected in hippocampus, 

but even more were observed in PFC, FC, amygdala, and especially LC. The large 

discrepancy between studies of specific brain regions may be due primarily to differences in 

ECS protocol; Altar et al. utilized one shock per day for 10 consecutive days and collected 

tissue four hours later, while Conti et al. applied four shocks per day for two days and 

collected tissue one hour later. The neurogenic niche was targeted by Ploski et al. (Ploski, 

Newton and Duman, 2006), who used laser capture microdissection to isolate the granule 

cell layer of the rat DG after ECS treatment. Their microarray data revealed ECS-induced 

upregulation of Gadd45b, Slc1a1, and Ell2, for which dynamic expression could not 

previously be detected in whole hippocampus.

In addition to directly measuring gene expression, various techniques have been used to 

study other mechanisms of gene regulation in response to ECS. By combining chromatin 

immunoprecipitation (ChIP) with microarray technology, Tanis et al. (Tanis, et al., 2008) 

profiled promoters bound by the transcription factor CREB. It was observed that 

hippocampal CREB occupancy and phosphorylation was rapidly enhanced by ECS in 

promoters of gene networks involved in angiogenesis, neurogenesis, plasticity, and trophic 

support, supporting a role for CREB as a high-level coordinator of gene transcription in the 

neurogenic response to ECS. Guo et al. (Guo, et al., 2011) used methyl-sensitive cut 

counting (MSCC) to quantify CpG methylation in DG tissue at single-nucleotide resolution 

after ECS, implicating epigenetics as a general mechanism by which ECS-induced 

neurogenic gene networks are regulated by external stimuli. MicroRNAs (miRNAs), 

considered to be another form of epigenetic regulation of transcription, were investigated 

using a microarray containing probes for 350 miRNAs in hippocampus after ECS 

(O’Connor, et al., 2013). 10 miRNAs were found to change in mice raised under normal 

conditions, but the effect was much more pronounced in mice exposed to early life stress, as 

demonstrated by significant changes in 86 miRNAs. These changes exhibited convergence 

with miRNAs altered by ketamine, suggesting that ECS may exert its anti-depressive effects 

through epigenetic control by miRNAs. However, functional validation of identified genes is 

largely lacking.

3. Environmental enrichment

The first genome-wide experiment to investigate the transcriptional effects of EE was carried 

out in mouse cortex (Rampon, et al., 2000) and showed that EE influences gene expression 

related to neuronal structure, plasticity, and neurotransmission, although not directly related 

to neurogenesis per se. Early microarray data from the hippocampus of rats housed in an 

enriched environment for two weeks implicated kinase/phosphatase networks, synapse-
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related molecules, transcription factors, metabolic enzymes, and the immune system among 

58 EE-modulated genes in the neurogenic niche (Keyvani, et al., 2004). A mouse study 

using five months of EE detected 41 altered genes (Lazarov, et al., 2005), indicating that EE 

has long-lasting effects on gene expression. Gadd45b was among these genes, which may 

therefore act as a convergent epigenetic regulator of neurogenesis in response to both EE and 

ECS.

Future directions and perspective

While genome-wide studies have been performed in hippocampal tissue and specifically 

within the neurogenic DG, our knowledge of how molecular pathways act across the series 

of interfaces that relay information to neurogenic cells from an animal’s environment 

remains primitive. To understand how neurogenesis is orchestrated by an interacting network 

of diverse CNS cell populations, we must be able to attribute gene expression and protein 

activity triggered by environmental stimuli to their respective cell types. Modern 

technologies, including translating ribosome affinity purification (TRAP), RiboTag, and 

fluorescence-activated cell sorting (FACS), have allowed researchers to isolate and purify 

specific cell types (Okaty, et al., 2011). Single-cell RNA sequencing is also emerging as a 

powerful tool to achieve unprecedented specificity in gene expression (Poirion, et al., 2016). 

Researchers can use these approaches coupled with models of environmentally-induced 

neurogenesis to deduce the transcriptional activity of individual cells in the DG as they 

respond to environmental stimuli. A recent publication by Lacar et al. (Lacar, et al., 2016) 

demonstrates such a design with dentate granule neurons. In this study, mice were exposed 

to 15 minutes of EE and sacrificed one hour later. Single nuclei were dissociated from DG 

tissue and immunostained for PROX1 and FOS to identify dentate granule neurons that had 

been activated by EE, and RNA-seq data were generated from both active (PROX1+FOS+) 

and inactive (PROX1+FOS-) cells. Over 3,000 DEGs were identified, which highlights the 

degree to which increasing tissue/cell specificity improves the power of gene expression 

analysis. Up-regulated DEGs were enriched for downstream targets of FOS as expected, and 

bore other hallmarks of neuronal activity, including genes related to the MAPK pathway, 

postsynaptic density, and potassium ion transport. Genes more highly expressed in quiescent 

neurons represented mitochondria activity and DNA repair. This study serves as a proof of 

concept that transcriptional effects of environmental stimuli can be observed in cell type-

specific expression data. This type of data has recently been generated and analyzed from 

NSCs (Shin, et al., 2015) and newborn neurons (Gao, et al., 2017). Therefore, an effective 

strategy for studying environmentally-induced neurogenesis will involve combining models 

of environmental stimuli with transgenic animals and new technology to capture RNA and 

protein activity within specific neurogenic cell types as they respond to external influences. 

For a single cell type, information on epigenetic changes can be collected and layered with 

expression data to gain mechanistic insight of gene regulation. By assessing the parallel 

activity of the various cell types interacting within DG tissue to regulate neurogenesis, 

circuit-like models of activity can be constructed to understand the molecular biology at 

work at the cellular interfaces that transduce an animal’s experience into a neurogenic 

response. Finally, gain- and loss-of-function analysis of identified genes and pathways will 

validate the roles of novel regulatory factors. Identifying and characterizing key molecules in 
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this process will inform efforts to develop targeted therapies with specific effects on brain 

health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic of how environmental stimuli and experience can modulate neurogenesis 

through multiple levels of information relay and interfacing tissue and cell types. 

Environmental experiences, including stress/anxiety, physical exercise (PA), 

electroconvulsive shock (ECS), and environmental enrichment (EE) are depicted in the 

outermost circle. Going inward, concentric circles represent peripheral tissues, brain, dentate 

gyrus, and the neurogenesis itself. Arrows passing from cell types depicted in outer circles to 

cell types within inner circles indicate information being relayed across tissue and cell 

interphases from distal sources to the proximal cell types involved in neurogenesis. 
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Peripheral tissues communicate with the brain via blood-borne factors and neuronal 

connections, and cells within the dentate gyrus communicate with aNSCs and newborn 

neurons via secreted factors and neurotransmitters, such as GABA.
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