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Abstract

In natural behavior we actively gather information using attention and active sensing behaviors 

(such as shifts of gaze) to sample relevant cues. However, while attention and decision making are 

naturally coordinated, in the laboratory they have been dissociated. Attention is studied 

independently of the actions it serves. Conversely, decision theories make the simplifying 

assumption that the relevant information is given to the decision maker, and do not attempt to 

describe how she may learn and implement active sampling policies. In this paper I review recent 

studies that address questions of attentional learning, cue validity and information seeking in 

humans and non-human primates. These studies suggest that learning a sampling policy involves 

large scale interactions between networks of attention and valuation, and that these policies are 

motivated by reward maximization, uncertainty reduction and the intrinsic utility of cognitive 

states. I discuss the importance of using such paradigms for formalizing the role of attention and 

devising more realistic theories of decision making that capture a broader range of empirical 

observations.

Introduction

The oculomotor system of humans and non-human primates holds a privileged status in 

neuroscience research. Motivated by the relative simplicity of the eye motor plant, the 

relative ease of measuring eye movements in the laboratory and the high degree of similarity 

between humans and non-human primates, scores of investigations have examined saccades 

– the rapid shifts of gaze that primates use to scan visual scenes – and characterized the 

neural pathways involved in their generation.

However, while these studies have elucidated many of the sensorimotor mechanisms 

involved in saccades, progress has stalled in explaining the cognitive aspects of saccades and 
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attention – specifically, how the brain selects task-relevant cues. While behavioral evidence 

makes it clear that gaze is under strong task-related control – with humans deploying gaze 

very selectively to stimuli that are relevant to their immediate actions with minimal influence 

from salient distractors (Tatler, Hayhoe, Land, & Ballard, 2011; Yarbus, 1967) - 

computational models of gaze allocation are based primarily on bottom-up saliency (Berg, 

Boehnke, Marino, Munoz, & Itti, 2009; White BJ, Berg DJ, Marino RA, Itti L, & DP, 2017) 

with many fewer attempts to model task-related control (Navalpakkam & Itti, 2005; Tatler et 

al., 2011).

This gap in our understanding is particularly vexing for neurobiological investigations of 

oculomotor structures implicated in the selection of targets for attention or gaze, which 

include the superior colliculus, the frontal eye field (FEF) and the lateral intraparietal area 

(LIP) (Bisley & Goldberg, 2010; Krauzlis RJ, Lovejoy LP, & A., 2013; Thompson & Bichot, 

2005). While abundant evidence shows that neurons in these areas encode top-down visual 

selection – selectively signaling the locations of task-relevant visual stimuli - we have little 

insight into how these responses arise. How do target selection neurons “know” which target 

to select? What is the computational definition of a “task-relevant” cue? While several lines 

of research have linked target selection responses in LIP with simple decisions based on 

perceptual evidence or rewards (Hanks TD & C., 2017; Kable & Glimcher, 2009; Sugrue, 

Corrado, & Newsome, 2005), these studies have yet to consider the unique information 

sampling nature of gaze (Gottlieb, Hayhoe, Hikosaka, & Rangel, 2014) and leave persistent 

unresolved questions about the selection process encoded by the cells (Gottlieb, 2012; 

Maunsell, 2004).

In this article I argue that, to understand task-related control, we must acknowledge the 

essential role of attention and gaze in sampling information – the fact that, in natural 

conditions, gaze and attention implement an active sensing policy that is coordinated with 

the decision maker’s beliefs, goals or actions. While the informational – or epistemic - 

nature of saccades and attention is recognized by theoretical frameworks of predictive 

coding, which emphasize the imperative of minimizing surprise or free energy (Karl Friston, 

2010; K. Friston & Ao, 2012; Karl Friston et al., 2015; Schwartenbeck, Fitzgerald, Dolan, & 

Friston, 2013) or by expanded reinforcement learning theories (Iigaya, Story, Kurth-Nelson, 

Dolan, & Dayan, 2016) – we have scant empirical data that can constrain or refine these 

theories.

I this paper I review the few studies that have addressed this question, with a focus on the 

features of behavioral paradigms that can probe the logic of active sensing policies and the 

key current findings regarding these policies in humans and monkeys. I argue that, although 

these approaches are relatively new to the field, developing them is essential for expanding 

our current understanding of both attention and decision making and bringing about a closer 

integration of research on these topics.

What does an observing decision entail?

Because questions of active sampling are relatively unfamiliar in the study of oculomotor 

control, it is useful to start by considering the computations that they may entail. Active 
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sampling is an ubiquitous aspect of natural behavior, and a core building block of the 

perception-action cycle: before deciding what to do at an intersection we look at the traffic 

(or a traffic sign, or a traffic light) and, before deciding whether to reach for the peanut 

butter jar we look at the jar. As these example illustrate, understanding active sampling 

requires us to consider two related decisions: the selection of a task-relevant cue, followed 

by the decision of which action to take based on that cue.

Sequential decisions of this kind are typically analyzed (e.g., in reinforcement learning 

frameworks) using a Markov decision chain such as that illustrated in Fig. 1A, which 

specifies a sequence of states that the decision maker expects to traverse in a task, and the 

probabilistic actions and transitions that are possible from each state. In the case of a 

pedestrian reaching an intersection (Fig. 1A), the chain may start with the decision of 

whether to look at the traffic light or a cloud, followed by the decision of whether to stop or 

proceed followed by the observation of an outcome (e.g., staying safe, operationalized as a 

reward probability).

Our concern is with the first decision in this chain – the determination of which stimulus to 

sample – and the diagram in Fig. 1A illustrates three key points about this step: it depends 

on prior knowledge of the task structure, it may be guided by both expected rewards and the 

prospect of resolving uncertainty, and it requires the agent to estimate the desirability of the 

available cues in advance of the full sensory discrimination. I discuss each feature in turn.

Model-based selection

One of the most important features of active sampling policies is that, like other types of 

decisions, they depend on prior knowledge of the task structure. This knowledge is 

embodied in a task model such as that shown in Fig. 1A, which specifies the states and 

actions involved in a task, as well as the relation between stimuli and subsequent states. It is 

only based on this knowledge that the agent can estimate the probability (or uncertainty) of 

competing actions and the meaning of sensory cues as well as the information that the cues 

may bring about future states (e.g., that the colors of the traffic light are associated with 

crossing or waiting). Mechanistically, this feature implies a hierarchical process whereby 

prior knowledge organizes local sampling strategies. As we will see in the following 

sections, the role of hierarchical learning in taskrelated saccade and attention control is an 

important topic for further investigation.

Dependence on reward and uncertainty

A second critical feature is that, in the context of a task model, there are two possible 

mechanisms for distinguishing between informative and uninformative cues: the reward 

expectations associated with a cue, and the prospect that a cue will alter the decision maker’s 

beliefs about future states, and these mechanisms may play differential roles according to the 

context (Johnson, Sullivan, Hayhoe, & Ballard, 2014; Sullivan, Johnson, Rothkopf, Ballard, 

& Hayhoe, 2012).

In conditions where the decision maker can act based on the sampled information – so called 

instrumental sampling paradigms - an informative cue is by definition one that signals the 

more desirable action, and thus the reliability of a cue is closely correlated with the chance 
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of success in the task. In the example shown in Fig. 1A, if the pedestrian looks at the traffic 

light and takes the action signaled by that light – be it to stop or proceed – she has correctly 

estimated the state of the world and has a high chance of success in the task (high reward 

probability). However, should the pedestrian decide to look at the cloud, she will choose her 

actions at random and is likely to have a much lower reward probability. Although the 

saccade or shift of attention is not the reward-harvesting action and not the decision maker’s 

primary goal, these actions acquire indirect reward value, because the eventual probability of 

success of the action sequence is larger if one starts by sampling an informative rather than 

an uninformative cue.

However, it is important to note that, while informativeness is closely aligned with reward 

associations in some instrumental contexts, this relationship is not obligatory in all task 

conditions. These conditions include non-instrumental paradigms in which agents may 

simply want to know but cannot act on the outcome (discussed in the following sections), as 

well as natural behaviors involving curiosity that are beyond the scope of this review 

(Gottlieb, Oudeyer, Lopes, & Baranes, 2013).

While reward associations are inconsistent markers for cue reliability, a more useful quantity 

is the potential of a cue to alter the decision maker’s beliefs about future task states – or in 

other words, the expected information gains (EIG) associated with sampling a cue. The 

pedestrian in Fig. 1A starts the task with uncertainty about which action to take (e.g., may 

believe that stopping or crossing are equally desirable alternatives) and expects that her 

beliefs about the most appropriate action will be modified if she observes the traffic - but not 

if she observes the cloud. Note that the EIG associated with different sampling strategies can 

be precisely computed based on knowledge of a task model, by comparing the distributions 

of possible beliefs before and after observing a cue – for instance, using common 

information metrics such as KL divergence or differences in Shannon entropy (Fig. 1A 

legend). In the following sections I will describe experiments illustrating how such 

computations may help allocate gaze.

Prospective nature

A final important aspect of information sampling is that it requires the agent to make a 

sampling decision before discriminating the sampled information (Navalpakkam & Itti, 

2005). The pedestrian in Fig. 1A must decide to look at the traffic light before knowing 

whether the light is red or green or whether she will stop or proceed – indeed, she must 

decide to attend in order to enable the perceptual discrimination.

This is an important feature that has been ignored in traditional paradigms. By instructing 

participants to attend to well defined cues (e.g., “look at the red horizontal line”) these 

paradigms confound the sensory discrimination of the detailed stimulus features (i.e., is it 

red and horizontal) with the determination of task-relevance (i.e., that color and orientation 

are the relevant dimensions to monitor in the task, rather than, for instance, size or location). 

To understand active sampling therefore, we must think of shifts of gaze or attention as 

proactive requests for information – or, to use other terms, questions that we pose to the 

world or the opening of information channels – and attempt to understand how the agent 
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selects which question to ask based on the estimated costs and benefits associated with the 

possible answers.

Armed with these considerations, we can now review some of the empirical studies devoted 

to active sampling mechanisms.

Learning and encoding of cue validity

A few seminal experiments in humans and monkeys have probed some of the features I 

described in the previous section, including the use of information gains to guide saccade 

sampling decisions, the neural mechanisms involved in estimating and updating cue 

reliability, and the explicit encoding of reliability in cortical area LIP. I will review each in 

turn.

To understand whether human observers guide saccadic scanning based on estimates of 

information gains, Yang and colleagues trained participants to use visual scanning to infer 

which type of pattern – zebra-like stripes or cheetah-like spots – was lurking underneath a 

masked visual display (Yang, Lengyel, & Wolpert, 2016). Participants made a series of 

saccades before classifying the pattern and received information in a gaze-contingent fashion 

– through transient removals of the mask in a local region around their current fixation (Fig. 

2A). To model optimal behavior, the authors used a Bayesian active sampling (BAS) model 

that (1) updated its estimates of the posterior probability of each candidate pattern based on 

the information acquired in each successive fixation, and (2) estimated the expected 

information gains (EIG) of each potential (next) fixation location based on its current beliefs 

and the known statistics of the candidate patterns. The key finding was that gaze allocation, 

while falling somewhat short of optimal predictions, was strongly biased toward locations 

with high expected gains in information (Fig. 2B, C). The findings are consistent with 

previous investigations (Najemnik & Geisler, 2005; Renninger, Verghese, & Coughlan, 

2007) and clearly illustrate how saccades may be guided by mathematically defined 

measures of EIG.

The idea that cue reliability – equivalent to EIG - impacts saccades and attention is 

supported by a separate series of studies using an extension of the Posner cueing paradigm 

in which cue was systematically manipulated (S. Vossel et al., 2014; S. Vossel, C., K.E., & 

J., 2015; S. Vossel, Thiel, & Fink, 2006). The key behavioral finding of these studies is that 

participants showed a robust sensitivity to reliability, such that the cueing effects on reaction 

times (RT) – the RT difference for target detection on valid versus invalid trials - increased 

in proportion of reliability (Fig. 1D). Even though the participants in this paradigm did not 

have a choice of which cue to sample, they nevertheless adjusted the weight they afforded to 

a predictive cue based on its estimated reliability. A second important behavioral finding is 

that participants flexibly updated their estimates of cue reliability when tested in a dynamic 

regime in which this quantity changed throughout a session in an unannounced fashion. This 

dynamic updating was successfully modeled using a hierarchical Bayesian framework which 

represented, at successive levels, beliefs about the immediate target location, beliefs about 

the current validity of the cue and beliefs about the volatility of the environment (the extent 

to which cue reliability was expected to change) (S. Vossel et al., 2015).
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Functional magnetic imaging (fMRI) suggested that the updating of cue reliability involves 

several areas, most notably the temporal parietal junction (TPJ), putamen, the frontal eye 

fields (FEF) and the intraparietal sulcus (IPS) (S. Vossel et al., 2014; S. Vossel et al., 2015; 

S. Vossel et al., 2006). These areas had stronger responses on invalid relative to valid trials - 

and these responses, as well as the connectivity between the TPJ and FEF, putamen and 

intraparietal sulcus (IPS) increased as a function of cue reliability – i.e., were highest when 

the reliability was high and invalid trials were rare. Together with supporting evidence from 

a study using trans cranial magnetic stimulation (Mengotti, Dombert, Fink, & Vossel, 2017) 

the findings support the idea that the TPJ signals a reliability-weighted visual prediction 

error - the “surprisingness” of a target at an invalidly cued location - that is used to update 

estimates of validity based on trial by trial observations. Additional evidence suggests that 

the learning rates in this paradigm are sensitive to cholinergic tone (S Vossel et al., 2014) 

and that different updating mechanisms may be involved depending on the type of 

information conveyed by the cues (e.g., spatial versus feature cueing (Dombert, Fink, & 

Vossel, 2016; Dombert, Kuhns, Mengotti, Fink, & Vossel, 2016); or sensory versus motor 

cueing (Kuhns, Dombert, Mengotti, Fink, & Vossel, 2017)). These studies therefore, reveal 

some of the mechanisms involved in learning and updating the predictive properties of visual 

cues.

A more recent study by Leong and colleagues suggest that, in addition to sensory prediction 

errors, learning to attend may also be sensitive to the rewards of the task (Leong, Radulescu, 

Daniel, DeWoskin, & Niv, 2017). Participants performed a dynamic decision making 

paradigm in which they learnt to choose one of several options that differed in their reward 

probabilities. To track attention allocation, the experimenters constructed each option as a 

triplet of images - a face, a tool and a landmark – in which one of the images, initially 

unknown to participants, was predictive of a high reward probability. Using a combined gaze 

and fMRI measure of attention, the authors could measure learning not only at the level of 

choice (the extent to which participants learnt to choose the most valuable triplet) but also at 

the level of attention (the extent to which they learnt to attend to the predictive image within 

a triplet). The findings suggested that attention used a simple win-stay/lose shift strategy, 

tending to persist on a feature if that feature was associated with recent rewards but shift to 

another feature/dimension after reward omission. Switches of attention were associated with 

enhanced connectivity between the dorsal fronto-parietal network and the ventromedial 

prefrontal cortex (vmPFC), suggesting that, at least in some cases, learning to attend is 

sensitive to reward mechanisms.

Although these fMRI investigations highlight the neural systems that may be recruited 

during reliability updating, they have yet to identify explicit signals encoding cue reliability 

or link them explicitly with the neural systems generating shifts of gaze or attention. In a 

recent study in our laboratory, we asked whether cue reliability may be encoded in monkey 

area LIP, which is implicated in task-related saccadic control and is sensitive to both rewards 

and informational factors (Gottlieb et al., 2014).

To examine this questions we trained monkeys on a novel paradigm in which they made two 

contingently related saccades on each trial - a first saccade to gather information from a 

visual cue, and a second saccade to report a decision based on that information (Fig. 3A). As 
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in the study of Yang et al., the monkeys received the cue information in a gaze-contingent 

fashion - only after making a saccade to a cue - and made their saccadic decision based on 

advance information regarding cue reliability. The monkeys were trained on cues of 100%, 

80% and 55% validity that remained stable throughout the recording sessions, so that we 

examined the steady-state encoding rather than dynamic updating of cue reliability.

When afforded the opportunity to choose which cue to sample, the monkeys consistently 

chose to inspect the more accurate cue, verifying that they adopted a reliability-based 

sampling policy. Consistent with this finding, LIP neurons showed robust modulations by 

cue reliability on both forced choice trials (in which a single cue appeared inside their 

receptive field; RF) and, importantly, in free-choice trials (Fig. 3B) in which the monkeys 

had the opportunity to freely select a cue. To see whether these responses were explained 

merely by reward probability, we compared the neurons’ responses to informative cues 

(which had different reward expectations by virtue of their reliability (cf Fig. 1A) and a set 

of uninformative stimuli (which were not expected to convey decision information but had 

equal reward expectation as the informative cues; Fig. 4A). Reinforcement model 

simulations showed that, if neurons encoded only reward probability, they should 

discriminate equally well between the different uninformative stimuli and informative cues, 

as these items had equivalent reward expectation. However, this prediction was disconfirmed 

by the data. LIP neurons robustly discriminated between cues that had high or low 

reliability, but did not discriminate between uninformative stimuli with high or low reward 

expectations (Fig. 4B). Together with an additional control experiment ruling out the 

possibility that the cells respond to reward prediction errors, these findings establish that LIP 

cells encode a bona fide representation of cue reliability that is independent of simple reward 

mechanisms.

In sum, these findings suggest that in humans, the learning and updating of cue reliability 

involves large scale interactions between several systems including cholinergic systems and 

networks involved in attention and reward valuation. In monkeys, explicit signals of cue 

reliability are encoded in parietal oculomotor cells and can contribute to the top-down 

orienting of attention and gaze.

Incentive salience and non-instrumental information seeking strategies

The reliability-based effects discussed in the previous section are consistent with a reward 

maximizing strategy, because they arise in contexts in which the participants made decisions 

based on the sampled information. Converging evidence however, shows that animals – 

including humans, pigeons and monkeys – also seek out cues that are reward predictive even 

if they cannot take actions based on the sampled information (e.g., (Eliaz & Schotter, 2007; 

Falk & Zimmermann; Zentall & Stagner, 2012)).

Fig. 1B shows the structure of an observing paradigm that was recently used to reveal such 

non-instrumental information seeking in monkeys (Bromberg-Martin & Hikosaka, 2009). In 

this paradigm the monkeys given the opportunity to sample one of two cues, A or B, which 

had different reliabilities in predicting the size of a reward that would be given at the end of 

the trial. If the monkeys chose the informative cue (A in Fig. 1B), this cue changed to one of 
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two patterns (A1 or A2) that provided advance information about reward size. However, if 

the monkeys chose the uninformative item (B, Fig. 1B), the ensuring two patterns, B1 and 

B2, had only a random relation to reward size. Similar to instrumental settings therefore, the 

monkeys were free to observe cues of different reliabilities (cf Fig. 1A and 1B) but in 

contrast with such settings, they could take no action to alter the reward probability – so that 

the cues were associated with equivalent reward expectations. A non-instrumental setting is 

thus a useful laboratory tool for experimentally manipulating reliability independently of 

reward associations.

The monkeys tested in this paradigm developed a consistent preference for the informative 

cues, which was associated with a small increase of activity in midbrain dopamine (DA) 

cells (Bromberg-Martin & Hikosaka, 2009). A subsequent study extended this finding by 

showing that monkeys are even willing to sacrifice juice reward to view predictive cues, and 

neurons in the orbitofrontal cortex (OFC) encoded the value that the monkeys placed on this 

information (Blanchard, Hayden, & Bromberg-Martin, 2015). The responses in DA and 

OFC cells arose at the time when the sampling decisions are made – before the monkeys 

discriminated the specific reward information – and thus could motivate an information 

sampling policy.

Since the payoffs of the informative and uninformative cues were, on average, equal, prima 
facie, these results seem to imply a mechanism that is sensitive strictly to the early resolution 

of uncertainty (Blanchard et al., 2015; Bromberg-Martin & Hikosaka, 2009). However, 

because the cues provided information about a reward, an alternative possibility is that the 

monkeys were motivated by the mere desire to reveal a positive, reward associated cue 

independently of gains in information. This possibility is consistent with a large literature 

showing that stimuli that have a prior history as reward predictors gain salience and the 

ability to automatically capture attention even if they do not provide currently relevant 

information (Anderson, 2016; Foley, Jangraw, Peck, & Gottlieb, 2014; Peck, Suzuki, Efem, 

& Gottlieb, 2009).

A recent experiment by Daddaoua et al. shows that both motives – the reduction of 

uncertainty and the seeking of positive cues - shape saccadic information seeking strategies 

(Daddaoua, Lopes, & Gottlieb, 2016). In this paradigm, monkeys were given the opportunity 

to search for an informative reward cue in trials that had a 0%, 50% or 100% prior reward 

probability (Fig. 5A). Importantly, the gaze during the search phase was not under 

instrumental control and was free to express the monkeys’ genuine interest in the additional 

cue. Search rates, and the probability of revealing the cue, were higher if the trial had a 50% 

relative to a 100% reward probability, confirming a sensitivity to the prospect of reducing 

uncertainty. Importantly however, the monkeys also searched if they had no uncertainty, 

provided that the initial cue signaled a 100% rather than 0% reward probability (Fig. 5C).

The monkeys’ motivation to reveal the second cue in the 100% condition was striking, 

because this cue brought no increase in operant gains or a further reduction in uncertainty. 

The results are consistent with the findings on reward salience, and support the broader idea 

that humans have intrinsic preferences over cognitive states – preferring states in which they 

can “savor” anticipated positive events and avoiding those in which they dread anticipated 
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negative events (Golman & Loewenstein, 2016). A computational model based on savoring 

has recently proposed that the value associated with reward anticipation can be boosted by 

the positive reward prediction error (RPE) produced by a predictive cue (Iigaya et al., 2016). 

However, it remains to be determined whether this idea can explain the robust sampling 

found by Daddaoua et al. in conditions of 100% prior probability, when the sought-after cue 

was redundant and thus not associated with RPEs.

Implications and future prospects

The experiments I reviewed above are among the first attempts to probe the logic and neural 

substrates of information sampling policies in the context of visual attention and gaze – 

arguably the most intensively investigated active sensing mechanism. While our 

understanding of these questions is in its infancy, continuing these efforts, I propose, has 

potentially far reaching implications for both attention and decision research. I close by 

discussing some of these implications.

Computational description of attention

As I emphasized through the paper, the study of information sampling can be critical for 

describing attention in concrete computational terms. The lack of well accepted 

computational models of top-down attention creates confusion between “attention” and 

“decision”- related neural responses (Gottlieb, 2012; Maunsell, 2004) and makes “attention” 

seem to be a superfluous cognitive construct. The studies I reviewed are consistent with the 

longstanding views of attention as responding to informational constraints (Dayan, Kakade, 

& Montague, 2000; Karl Friston, 2010; K. Friston & Ao, 2012; Karl Friston et al., 2015; Yu 

& Dayan, 2005), and highlight empirical approaches that can provide much needed 

verification and refinement of these theoretical perspectives.

I also emphasized the fact that, beyond its well investigated effects on sensory perception 

and actions, the control of attention entails the proactive opening of an information channel 
based on the costs and benefits that the channel is estimated to bring. The evidence available 

so far suggests that three types of motives influence this type of decision. One motive relates 

simply to the extent to which information is expected to increase the operant rewards of a 

task; a second motivation is related to reducing the uncertainty of belief states; and yet a 

third motive may be related to the intrinsic utility or dis-utility of anticipating a positive or a 

negative outcome (savoring or dread). Characterizing these motives, their neural 

mechanisms and their relative contributions to sampling in different behavioral contexts will 

be a central goal of future investigations.

Finally, the evidence I reviewed highlights the fact that information sampling has significant 

costs, which may be related both to processing the sampled information and to learning an 

efficient sampling policy – learning to recognize the most reliable cues. Behavioral studies 

suggest that humans have highly efficient routines for sampling information in overlearned 

tasks (e.g., driving or preparing a sandwich; (Tatler et al., 2011)) but can perform poorly in 

conditions requiring rapid changes in sampling strategies (Morvan & Maloney, 2012). 

Understanding how we learn a sampling policy, what are the most helpful feedback regimes, 
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and what costs are entailed in sampling information, are central questions for further 

investigation.

Decision making

In addition to its relevance to attention research, an expanded understanding of active 

information sampling may be critical for devising realistic, cognitively grounded decision 

theories.

To date, the vast majority of decision research starts from the simplifying assumption that 

decision makers have little freedom on how they define a decision situation. In laboratory 

paradigms, participants may be given some amount of control about whether and for how 

long to sample decision-relevant information (Hanks TD & C., 2017), but the identity of the 

relevant sources is rarely in question. In studies of perceptual decisions, subjects make 

decisions based on a well-defined perceptual cue, while in studies of value-based decisions, 

they decide based on well-defined outcomes. Signal detection theory, which is foundational 

to much decision research, considers how an agent discriminates signal from noise – but 

makes no mention of the fact that an agent can also determine which source of information 

is a signal and which one is noise.

Realistic decision makers, however, can choose to which aspect of a decision situation to 

devote more attention, and thus have a tremendously important degree of freedom that is not 

accounted for by current theories. The evidence that information sampling is based not only 

on normative strategies for uncertainty reduction or reward maximization but also on 

idiosyncratic preferences over belief states and cognitive effort, suggests that attentional and 

information sampling strategies can significantly extend decision theories, and explain some 

of the marked individual variability and apparent irrationalities that are not currently 

explained by these theories (Bordalo, Gennaioli, & Shleifer, 2013; Polonio, DiGuida, & 

Coricelli, 2015; Reis, 2006; Sims, 2003; Woodford, 2009).

While a number of economic theories (e.g., (Caplin & Dean, 2015; Sims, 2003), similar to 

predictive coding theories, have recognized the importance of informational constraints, 

these theories are in dire need of empirical data to constrain and refine their predictions. 

Providing such data is, I propose, essential both for understanding elusive cognitive 

constructs such as selective attention, and for devising cognitively grounded decision 

theories that can account for a larger range of observations.
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Figure 1. Decision chains for sampling and actions
(A) Instrumental sampling: the agent makes a decision of which cue to sample 

(“Sampling”), discriminates the properties of the selected cue (“Discrimination”), decides 

which action to take based on the discrimination (“Action”) and realizes an outcome 

(“Outcome”, or reward, r) with probability (P(r)). In the specific example, a pedestrian 

decides whether to sample a traffic light or a cloud, discriminates the colors of the sampled 

stimuli (red/green for the light and blue/white for the cloud), and takes the decision to stop 

or proceed (NoGo/Go) in order to be safe (reward, r). The Shannon entropy of the possible 

actions is high before sampling either cue as well as after sampling the cloud (1 bit if the 
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Go/NoGo actions are equally likely) but becomes much lower depending on the reliability of 

the cue (e..g, 0 if the cue produces perfect certainty about the optimal action).

(B) Non-Instrumental Sampling: The cues indicate a pre-ordained outcome but the agent 

cannot alter the outcome.The agent makes the decision whether to sample cue A or B, and 

discriminates the signal given by the sampled cue. Signals A1 and A2, produced upon 

sampling cue A, predict with certainty whether the reward will be large or small. Signals B1 

and B2, produced by cue B are random and do not reduce the uncertainty about reward size.
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Figure 2. Behavioral measures of information-based policies
(A–C) Saccadic sampling for a categorization decision (A) When trying to categorize 

whether a fur hidden behind foliage (left) belongs to a zebra or a cheetah, evidence from 

multiple fixations (blue, the visible patches of the fur, and their location in the image) needs 

to be integrated to generate beliefs about fur category (right, here represented 

probabilistically, as the posterior probability of the particular animal given the evidence). 

Given current beliefs, different potential locations in the scene will be expected to have 

different amounts of informativeness with regard to further distinguishing between the 

categories, and optimal sensing involves choosing the maximally informative location (red). 

In the example shown, after the first two fixations (blue) it is ambiguous whether the fur 

belongs to a zebra or a cheetah, but active sensing chooses a collinearly located revealing 

position (red) which should be informative and indeed reveals a zebra with high certainty. 

(B) Revealing density maps for participants and the BAS model. The first column shows 

mean reveal density and the last three columns show mean subtracted densities for each of 

the three underlying image types (patchy, horizontal stripes, vertical stripes). Bottom: color 

scales used for all mean densities (left), and for all mean-corrected densities (right). All 

density maps use the same scale, such that a density of 1 corresponds to the peak mean 

density across all maps. (C) Histogram showing the distribution of percentile values of 

informativeness (as derived by the BAS algorithm) across all participants, trials and 

fixations.
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(D) Validity effects in a Posner cueing paradigm. The difference in mean response speed 

(RS, the reciprocal of RT) to detect targets that were validly vs invalidly cued increases as a 

function of the reliability of the cue (%cue validity, %CV). Reproduced with permission 

from Yang et al., 2016 (A–C) and Vossel et al., 2015 (D).
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Figure 3. Two step sampling task
(A) Each trial began when the monkeys achieved fixation of a central spot (small black 

circle) placing the RF of an LIP cell (dashed circle) on an eccentric screen location. (A 

representative RF in the right hemifield is shown for illustrative purposes, but was not 

visible to the monkey during the experiment.) After the monkey achieved fixation, the 

display was presented, containing two targets outside the RF (white squares) and two cues of 

which one was inside the RF and the other at the diametrically opposite location (round 

apertures containing small dots). The monkeys viewed the display for a 500 ms delay period, 

after which the fixation point disappeared, and the monkeys made a first saccade to a cue of 
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their choice (third panel, red arrow). At the end of the first saccade, the chosen cue delivered 

its information in the form of 100% coherent dot motion directed toward one of the targets 

(last panel, black arrows). After motion onset, the monkeys were free to indicate their final 

decision by making a second saccade to a target (last panel, red arrows), and the trial ended 

with a probabilistic reward (p(R)).

(B) Population responses on 2-cue trials, sorted according to the difference in validity and 

the saccade direction. Gray, blue and green traces indicate, respectively, 100%, 80% and 

55% valid cues. The cartoons show the cue that was chosen by the monkeys’ saccade (the 

higher validity of the pair) and whether that cue was inside the RF (dashed circle, higher 

firing rates) or at the opposite location (lower firing rates)‥ The saccade response (difference 

in firing rates between the two saccade directions) scaled with relative validity, being highest 

for the largest validity difference (100% vs 55% cues, left) and lowest when the cues were 

similar in validity (100% vs 80%, right panel).

(C) Time-resolved regression coefficients (sliding window of 50 ms width, 1 ms step) 

estimating the effects of the validity of the RF cue, the validity of the opposite RF cue, and 

saccade direction, velocity, latency and accuracy across the trials shown in A. Reproduced 

with permission from Foley et al., 2017.
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Figure 4. The informative/uninformative stimulus test
(A)Top row: Trial stages in the informative and uninformative task. The Informative task 

was identical to the cue choice task except that a single cue appeared in the RF, forcing the 

monkeys to complete the trial based on this cue. Bottom row: In the uninformative 

condition, a pre-cue containing moving dots appeared opposite the RF simultaneous with 

target onset, and conveyed both the reward probability of the trial (by virtue of its colored 

border) and the instruction about the final action (through the dot motion; leftmost panel). 

The pre-cue then disappeared and was replaced by an uninformative stimulus inside the RF 

(second panel). After an additional 500 ms delay period, the monkeys were required to make 

Gottlieb Page 20

Cortex. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a saccade to the RF stimulus (third panel) before making their final saccade to a target (4th 

panel). Note that, while the uninformative stimulus delivered no information (but only 

random, 0% coherence motion), a saccade to this stimulus was still valuable because it was 

necessary to obtain the reward.

(B) LIP neurons encode validity but not the cumulative future rewards of uninformative 

cues. Top row: Average firing rates (n = 69 cells) for 55% and 80% valid cues (left), and 

their yoked uninformative stimuli (right). To highlight the cue-related modulation, firing 

rates were z-scored after subtracting the average activity for each stimulus class (we use the 

term “Excess” to indicate mean-subtraction). Error bars show SEM across cells. Average 

regression coefficients for the validity/reward responses in informative and uninformative 

trials for each monkey (M1 and M2). Note that the regression coefficients estimate the size 

of the neural effects across the entire validity range (50% to 100%) and are thus nearly twice 

as large as the difference in responses between the 80% and 55% cues, which span only half 

of this range. Reproduced with permission from Foley et al., 2017.
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Figure 5. Non instrumental search behavior
(A) Task stages. The monkey initiated each trial by fixating a central point and maintaining 

gaze on it while cue1 was shown in the periphery for 0.3 s. After an additional second, the 

fixation point was replaced with a search display containing 3 white masks that the monkey 

could freely scan. If the monkey maintained gaze on a mask for 300 ms, this triggered a 

reveal of the underlying pattern (a gray square or an additional cue). In the example 

illustrated, the monkey first uncovered an uninformative gray square and later found cue 2 at 

the middle location. The search display then disappeared, and after an additional 1.3 s delay 

(blank screen) the trial ended with a tone that was accompanied by the outcome (a reward or 

a lack of reward according to the probability signaled by cue 1). The search behavior was 

entirely unconstrained and had no bearing on the final outcome.

(B) Transition statistics between cue 1 (which could signal 0%, 50% or 100% reward 

likelihood) and cue 2 (which signaled a 0% or 100% probability). If cue 1 signaled 100% or 

0% reward, cue 2 merely confirmed this prediction, bringing no new information. If cue 1 

signaled a 50% reward likelihood, cue 2 brought new information, and was equally likely to 

signal a positive or a negative outcome.

(C) The probability of finding cue 2 as a function of the prior probability signaled by cue 1, 

for two subjects (right and left panels). Points show the mean and standard errors of these 

probabilities, z-scored across all sessions. Stars indicate p < 0.025 (Wilcoxon test). The 

insets in each panel show the average of the raw data per session. The dotted red trace 

indicates 0% cue 1, the solid red trace shows 100% cue 1 and the solid blue trace shows 50% 

cue 1. Reproduced with permission from Daddaoua et al., 2016.
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