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Abstract

Huntington’s disease (HD) is a complex neurodegenerative disorder that has no cure. Although 

treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot 

be stopped or reversed. HD is characterized by degeneration of the striatum and associated 

pathways that leads to impairment in motor and cognitive functions as well as psychiatric 

disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD 

nonhuman primate (NHP; i.e. rhesus macaque; HD monkeys) shows high similarity in its 

progression with human patients. Progressive brain atrophy and changes in white matter integrity 

examined by magnetic resonance imaging (MRI) are coherent with the decline in cognitive 

behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher 

anxiety and irritability/aggression similar to human HD patients that other model systems have not 

yet replicated. While a comparative model approach is critical for advancing our understanding of 

HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-

term assessment of translatable outcome measures. This review summarizes the progress in the 

development of the transgenic HD monkey model and the opportunities for advancing HD 

preclinical research.
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Introduction

Neurodegenerative disorders such as Parkinson’s disease (PD) and Huntington’s disease 

(HD) that severely impair basal ganglia functions are complex disorders that lead to motor 

and/or psychological impairments. Different models from cell culture to rodents to 

nonhuman primates (NHPs) have been developed to investigate disease mechanisms and 
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develop cures for PD and HD. The key for clinical translation to assess effective diagnostics 

and the therapeutic efficacy of novel treatments has relied on the development of animal 

models with measurable clinical and pathological features consistent with those seen in 

human patients. In that regard, this review will highlight the progress made towards the 

development of a transgenic HD monkey model. Data from these animals will be compared 

with those gathered from various rodent HD models. The advantages and challenges in 

developing such an animal model will be discussed.

Brief Overview of Basal Ganglia

The basal ganglia play a key role in motor and non-motor functions affected in various brain 

disorders including PD and HD. The basal ganglia consist of the dorsal striatum that 

comprises the caudate nucleus and putamen, and the ventral striatum that comprises the 

nucleus accumbens and olfactory tubercle. In general, the caudate nucleus can be subdivided 

into the head, body and tail (Yeterian and Van Hoesen 1978). Although the caudate nucleus 

and putamen are separated by the internal capsule and often referred to collectively as the 

dorsal striatum in primates, they are functionally distinct with the putamen involved in 

sensorimotor processing while the caudate nucleus is involved in cognitive functions (Hewitt 

1961; Smith et al. 2014). Basal ganglia nuclei also include the pallidum that is comprised of 

the internal and external segments of the globus pallidus (GP) in primates, which is referred 

to as GPi and GPe, respectively. The subthalamic nucleus (STN) is another important 

structure in the basal ganglia. Moreover, the substantia nigra is comprised of two sub-nuclei. 

The substantia nigra pars compacta (SNc) contains dopaminergic neurons and the substantia 

nigra reticulata (SNr) contains GABAergic projection neurons.

The striatum receives input from nearly all of the cerebral cortex. In the dorsal striatum, 

major cortical inputs originate from associative and sensorimotor cortices (Selemon and 

Goldman-Rakic 1985), while the ventral striatum receives its main cortical input from limbic 

cortices. Although relatively homogenous in cell density, acetylcholinesterase staining (and 

other neurochemical markers) reveal a patchwork pattern to the striatum (Graybiel and 

Ragsdale 1978), referred to as striosomes and matrix compartments. Dysregulation of this 

compartmentation may be involved in the development of repetitive motor behaviors 

(Canales and Graybiel 2000).

Striatal neurons can be categorized as projection neurons and interneurons. The main 

projection neurons are medium spiny neurons (MSNs). These GABAergic neurons are found 

in both the striosomes and matrix, accounting for over 90-95% of the total neuron 

population in the rat striatum (Fujiyama et al. 2011; Kawaguchi et al. 1989; Oorschot 1996; 

Penny et al. 1988). MSNs of the striosomes receive input from the corticolimbic cortex and 

amygdala, and project to the SNc (Fujiyama et al. 2011; Graybiel and Ragsdale 1978; 

Kawaguchi et al. 1989; Kincaid and Wilson 1996). Matrix MSNs mainly receive input from 

the sensorimotor cortex and nigrostriatal pathway and project to the GP and SNr (Fujiyama 

et al. 2011; Graybiel and Ragsdale 1978; Kawaguchi et al. 1989; Kincaid and Wilson 1996).

The direct and indirect pathway model has been widely used for the understanding of basal 

ganglia functions (DeLong 1990). The direct pathway is comprised of neurons that 
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preferentially express D1 dopamine receptors, substance P and dynorphin, and project 

directly to the GPi and SNr via monosynaptic connections that link the striatum and basal 

ganglia output nuclei. Selective activation of this pathway is thought to facilitate locomotion, 

likely through disinhibition of thalamocortical neurons from their tonic GABAergic control 

by the basal ganglia output nuclei (Freeze et al. 2013; Roseberry et al., 2016). On the other 

hand, the indirect pathway is comprised of neurons that preferentially express D2 dopamine 

receptors and enkephalin and project to the GPe and the STN via polysynaptic pathways that 

link the striatum and GPi/SNr. The indirect pathway is considered as the NO-GO pathway 

because its selective activation decreases locomotion, most likely through increased basal 

ganglia inhibitory tone over thalamocortical neurons that reduces cortical outflow (Freeze et 

al. 2013; Lim et al. 2014; Roseberry et al., 2016, Sato and Parent 1998). The distinct 

functions of the two pathways allow bidirectional modulation of the basal ganglia network. 

Normal basal ganglia function relies on balanced activity between these two pathways (Lim 

et al. 2014).

The functions of the direct and indirect pathways are mediated through the GABAergic 

MSNs, the principal output cells whose activities are regulated by striatal interneurons (Hu 

et al. 2014; Lim et al. 2014). There are four main types of striatal interneurons based on their 

neurochemical content which include (1) choline acetyltransferase (ChAT), (2) parvalbumin 

(PV), (3) calretinin (CR) and (4) neuronal nitric oxide synthase (NOS), β-nicotinamide 

adenine dinucleotide phosphate-diaphorase (NADPH-d), somatostatin (SS) and neuropeptide 

Y (NPY) (Figueredo-Cardenas et al. 1996; Hu et al. 2014; Lanciego et al. 2012; Maurice et 

al. 2015; Petryszyn et al. 2014; Petryszyn et al. 2017; Smith et al. 2014; Wu and Parent 

2000). Morphological heterogeneity among striatal interneurons are well described in rats, 

monkeys and humans (Petryszyn et al. 2014). Striatal interneurons constitute approximately 

20%-25% of all striatal neurons in primates, but only 2–3 % in rodents (Graveland and 

DiFiglia 1985; Graveland et al. 1985; Tepper and Bolam 2004). Cholinergic (or ChAT) 

interneurons in the striatum are large and aspiny (Lim et al. 2014). Cholinergic interneurons 

are categorized as tonically active neurons (TANs) and play a key role in dopamine-

dependent striatal plasticity, reward-related learning and motivated behaviors (Aosaki et al. 

1994; Apicella 2007; Wang et al. 2006). Parvalbumin (PV) interneurons are also named 

GAGAergic fast-spiking parvalbumin-positive interneurons that are involved in feedback 

and feedforward inhibition of projection neurons activity (Hu et al. 2014; Lee et al. 2017). 

Recent study demonstrated that suppression or over-activation of PV interneurons activity 

can regulate MSN firing (Lee et al., 2017), which provides evidence for their key regulatory 

role in striatal microcircuits to enhance early stage learning (Lee et al. 2017; Xu et al. 2016). 

Calretinin (CR) interneurons are the most abundant striatal interneurons in nonhuman 

primates and humans (Petryszyn et al. 2014; Wu and Parent 2000). The rodent striatum 

comprises primarily medium-sized CR interneurons, while the monkey and human striatum 

contain both large and medium-sized CR interneurons that create an elaborated network 

(Petryszyn et al. 2017). Moreover, large-sized CR+/ChAT+ striatal interneurons are only 

found in monkeys and humans, but not in rodents, which further suggests their crucial role 

in striatal functions in primates (Petryszyn et al. 2017). The fourth population of striatal 

interneurons co-express NADPH-d/SS/NPY/NOS and are categorized as “persistent and 

low-threshold spike” neurons (Kawaguchi et al. 1995; Smith et al. 2014). However, 
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variations in the quantity and combination of these chemicals were observed, suggesting 

unique functional roles, perhaps even related to neurodegeneration and excitotoxicity 

(Figueredo-Cardenas et al. 1996). Overall, the basal ganglia regulate activity of multiple 

brain regions in order to control motion function, motor learning, executive functions, and 

emotions (Lanciego et al. 2012). Additional details about the function and anatomy of the 

basal ganglia can be found in other reviews part of this Special Issue.

HD Symptoms

HD patients display a variety of symptoms that can be classified as motor, cognitive or 

psychiatric in nature. Although motor symptoms of the disease are often the most notable 

and the reason for the initial name “Huntington’s chorea,” a multidimensional approach 

assessing all three impacted areas may be more appropriate for diagnosis (Biglan et al. 2013; 

Rub et al. 2016). One of the earliest motor symptoms of HD is impairment of eye saccades 

(Rub et al. 2016; Tabrizi et al. 2012). Many juvenile-onset patients also experience rigidity 

and seizure (Cloud et al. 2012; Geevasinga et al. 2006; Nance and Myers 2001; van Dijk et 

al. 1986). Patients quickly deteriorate in motor ability (Roos 2010; Ross et al. 2014; Tabrizi 

et al. 2012; Tabrizi et al. 2013), most notably in bradykinesia and chorea (Biglan et al. 

2013).

Other early symptoms include cognitive deficits such as speech delay in juvenile-onset HD 

(Solomon et al. 2007; Yoon et al. 2006). In fact, mild cognitive deficits may be noticed 

before formal diagnosis (Lawrence et al. 1998; Tabrizi et al. 2012; Vaccarino et al. 2011). In 

a study in which subjects were asymptomatic but genetically confirmed for the HD 

mutation, there were already signs of cognitive decline (Lawrence et al. 1998). These 

“preclinical” subjects showed deficits in attention set shifting with significantly more errors 

than non-carriers on a visual discrimination test involving an extradimensional shift. 

Cognitive symptoms progress as disease severity increases. In early stages of symptomatic 

HD, patients started showing “subcortical” dementia, with errors in executive function like 

planning and decision-making which is different from Alzheimer’s disease (Lawrence et al. 

1996). These early-stage HD patients were also significantly worse at pattern and spatial 

recognition, exhibited shortened spatial span, used a less efficient search strategy during 

spatial working memory tasks, had slower thinking times and continued to show difficulty 

with attention set shifting. At advanced stages, patients experienced more widespread 

dementia that included temporal lobe and hippocampal cognition (Lange et al. 1995). Most 

patients have difficulty with memory recall (Zizak et al. 2005), specifically immediate 

memory recall (Ho et al. 2003). Primary deficits include decreased processing speed, 

decreased attention, difficulty with initiation, poor executive function independent of 

medication, motor impairment or altered psychological state (Bates et al. 2015; Beglinger et 

al. 2010; Duff et al. 2010; Ho et al. 2003; Paulsen et al. 2013; Peavy et al. 2010; Ross et al. 

2014; Tabrizi et al. 2013). These studies suggest cognitive decline begins pre-

symptomatically and progressively worsens along with the disease course in HD patients 

(Beglinger et al. 2010; Duff et al. 2010; Stout et al. 2011).

Psychiatric symptoms include aggression, affective disorders, irritability, obsession-like 

symptoms, behavioral disorders and personality disorders (Berrios et al. 2001). Perhaps the 
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first psychiatric symptoms include apathy (Tabrizi et al. 2013) and difficulty recognizing 

emotion (Tabrizi et al. 2012). Depression is common and suicide is increased in HD patients 

compared to the general population (Di Maio et al. 1993). Some have suggested that the 

presence of psychiatric symptoms, such as affective disorders like depression, may be 

genetically linked to the family tree (Folstein et al. 1983). In fact, this study showed that in 

certain families, depression rates were as high as 41% and began as many as 20 years before 

HD onset. Suicide is a major concern in HD, even being noted as a feature of the illness in 

Huntington’s original description (Huntington 1872). There is not only an increase in suicide 

rates among HD patients, but also in patients who are suspected of having HD, but have not 

yet been diagnosed (Di Maio et al. 1993; Schoenfeld et al. 1984). This suggests that 

psychiatric symptoms may actually peak during early stages of the illness and not related to 

the diagnosis itself.

Many of these symptoms result from damage to the pathways connecting to and from the 

striatum or secondary brain regions affected by HD. Oftentimes rodent models are limited 

from replicating the HD phenotype seen in patients (Chan et al. 2015; Howland and Munoz-

Sanjuan 2014; Morton and Howland 2013; Pouladi et al. 2013). No effective treatment has 

been developed based on successful outcomes in rodent models of HD which is largely due 

to inherent differences between the two species, but new rodent models are being developed 

with better representation of human conditions including neuropathology and molecular 

mechanisms (Alexandrov et al. 2016; Ament et al. 2017; Howland and Munoz-Sanjuan 

2014; Pouladi et al. 2013). There is no doubt that rodent models will continue to be a 

relevant model for elucidating HD pathogenesis and assessing new therapies (Crook and 

Housman 2011); however, it is also clear that a large preclinical animal model is needed that 

could better capture a broader, if not full, spectrum of progressively evolving clinical 

symptoms in human HD patients (Chan et al. 2015; Howland and Munoz-Sanjuan 2014; 

Morton and Howland 2013; Pouladi et al. 2013).

Huntington Disease Overview-Genetics and Pathology

HD is a genetic disorder caused by an unstable CAG expansion at the N-terminus of the 

Huntingtin (HTT) gene (MacDonald et al. 1993; Snell et al. 1993). HD is characterized by 

neuronal aggregates and cell loss initially at the striatum (Alzheimer 1911; Jelgersma 1908) 

and cerebral cortex, which subsequently extend to other brain regions (Sapp et al. 1997). 

With CAG repeats above 40, individuals are at risk for developing HD (Gil and Rego 2008; 

Langbehn et al. 2010; Li and Li 2006; Ross et al. 2014). The CAG expansion in the 

precoding region for HTT causes misfolding of the HTT protein and the formation of HTT 

aggregates (Bates et al. 2015; Crook and Housman 2013; DiFiglia et al. 1997; Gupta et al. 

2012; Sieradzan et al. 1999). These changes result in oligomerization and aggregation of 

HTT in neurons throughout the brain, disrupting cellular functions including transcriptional 

dysregulation of BDNF and impairment of proteostasis that have led to the loss or alteration 

of neural functions such as synaptic dysfunction, mitochondrial toxicity and impairing 

axonal transport, thus resulting in the elevation of glutamate, reduction of BDNF and 

neuronal death (Bates et al. 2015; Crook and Housman 2013; Sieradzan et al. 1999).
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HD aggressively targets the GABAergic MSNs of the striatum (Crook and Housman 2013; 

Davies and Ramsden 2001; Gil and Rego 2008; Li and Li 2006; Ross et al. 2014), affecting 

both the direct and indirect pathway with earlier pathology in the indirect pathway neurons 

(Deng et al. 2004; Vonsattel and DiFiglia 1998). Mouse models for HD suggest that 

aggregates in the MSNs precede symptom onset (Laforet et al. 2001). The first areas of the 

striatum compromised include the caudal putamen, the tail of the caudate nucleus and the 

dorsomedial head of the caudate nucleus (Rub et al. 2016; Rub et al. 2015; Tabrizi et al. 

2012; Vonsattel et al. 1985). During early stages of the disease, nuclear inclusions and cell 

loss increase and spread through the rest of the striatum that lead to degeneration of the GPe, 

SNr and SNc (Deng et al. 2004; Rub et al. 2016; Rub et al. 2015). Although there is 

significant loss of projection neurons such as MSNs, the interneurons are often spared in HD 

(Petryszyn et al. 2017). For example, the sparing of the CR interneurons has been suggested 

for their neuroprotection role in maintaining intracellular calcium homeostatsis via calcium 

binding property of calretinin (Petryszyn et al. 2017). Direct interaction between CR and 

mutant HTT (mHTT) has been demonstrated in vitro while over expression of CR can 

ameliorate mHTT induced cytotoxicity (Dong et al. 2012). In the cerebral cortex, isocortical 

layers III, V and VI show the most severe cell loss (Rub et al. 2015). As the disease 

progresses, secondary structures such as the motor and limbic pathways of the thalamus, 

cerebellum, oculomotor nuclei of the brainstem, pontine nucleus, inferior olive, reticulo-

tegmental pons, raphe nucleus, superior olive and vestibular nuclei are also implicated (Rub 

et al. 2015). It has been theorized that HD is a multisystem degenerative disease in which all 

affected structures are connected to well-known targets, but spread far beyond the striatum 

and its cortical circuits (Lange and Aulich 1986; Rub et al. 2013; Vonsattel 2008). An fMRI 

study suggested that impairment is due not simply to atrophy of these structures, but to 

decreased connectivity (Dumas et al. 2013). Even presymptomatic HD patients showed signs 

of decreased connectivity of the left frontal, right parietal and bilateral visual cortices 

(Dumas et al. 2013). A recent report on changes in white matter of HD monkey further 

support the widespread progressive temporal-spatial microstructural changes of fiber 

bundles connecting cortical areas to the striatum as disease progress (Meng et al. 2017). 

Clearly the neural pathology of HD is a complex multisystem disorder and not limited to the 

striatum and cerebral cortex.

HD animal models

Mouse HD models

Many transgenic mouse models have been developed and used extensively in HD research 

trying to replicate human HD conditions to find a cure for HD. These include transgenic 

mice expressing the N-terminal of the HTT gene(Davies et al. 1997; Schilling et al. 1999), 

transgenic mice expressing full-length HTT (Slow et al. 2005) and CAG repeats knock-in 

mice (Ament et al. 2017; Holter et al. 2013; Kumar et al. 2016; Wheeler et al. 2000). Among 

the wealth of HD mouse models, R6/2 and N171-82Q are two of the most commonly used 

models in HD research. Both models were developed about 20 years ago and were very well 

characterized (Mangiarini et al. 1996; Schilling et al. 1999). The R6/2 mouse carries exon 1 

with 115-156 CAG repeats and 262 base pairs of intron 1 under control of the human HTT 
promoter (Mangiarini et al. 1996). R6/2 mice show signs of motor deficit between five to six 
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weeks, failure to gain weight at seven weeks, neurodegeneration at 10 weeks, and death 

between 12-14 weeks (Stack et al. 2005; Turmaine et al. 2000; Wade et al. 2008). N171-82Q 

mice carry a 171 amino acid fragment of human HTT with 82 CAG repeats under control of 

the mouse prion promoter (Schilling et al. 1999). N171-82Q mice fail to gain weight at eight 

to10 weeks, show motor deficit at 12 weeks, develop neurodegeneration at 16-20 weeks and 

die at 24-30 weeks (Li et al. 2003; Saydoff et al. 2006).

Monkey HD model

In addition to rodent models, the recent development of HD monkeys has led to a new 

interest in transgenic nonhuman primate modeling of human diseases (Jennings et al. 2016; 

Niu et al. 2015; Niu et al. 2014; Yang et al. 2008). Longitudinal assessment continues 

throughout the lifespan of HD monkeys and is ongoing. A current effort is underway to 

establish a self-sustainable colony and the production of HD monkeys for HD research 

community with emphasis in preclinical research. One key distinction between rhesus 

macaque and humans is the HTT gene in rhesus macaques carries only 10-11 CAG repeats 

while threshold for CAG repeats in human HD is ~35 (Bates et al. 2015; Putkhao et al. 

2013). To date, data from eight HD monkeys have been reported, and five of them were part 

of a longitudinal study since they were one week old (Berrios et al. 2001; Chan et al. 2015; 

Chan et al. 2014; Kocerha et al. 2013; Meng et al. 2017; Yang et al. 2008). rHD1-5 carried 

exon 1 of the human HTT gene regulated by human polyubiquitin-C promoter, which 

expressed N-terminal 67 amino acids. rHD1 carried a single copy of the transgene with 29 

CAG repeats and rHD2 had two copies of the transgene with 83 CAG repeats (Chan et al. 

2014; Yang et al. 2008). rHD3 expressed 84 CAG repeats with two copies, rHD4 expressed 

27 CAG repeats with two copies and rHD5 expressed 88 CAG repeats with two copies 

(Yang et al. 2008). rHD3-5 were euthanized soon after birth due to severe motor impairment. 

rHD6, 7 and 8 carried exons 1-10 of the human HTT gene coding N-terminal 508 amino 

acids with 67-72 CAG repeats under control of the human HTT promoter (Chan et al. 2015; 

Kocerha et al. 2013; Meng et al. 2017; Raper et al. 2016).

Comparative neuropathological hallmarks of HD Patients to HD Mice and 

NHPs

As mentioned, neuropathology in HD patients begins in the striatum and cerebral cortex 

(Alzheimer 1911; Jelgersma 1908; Rub et al. 2016; Sapp et al. 1997). It then follows the 

circuitry of the striatum to affect widespread regions of the brain in later stages of the 

disease (Rub et al. 2015; Vonsattel et al. 1985). Both R6/2 and N171-82Q express high 

levels of the mutant HTT in the brain. Immunohistochemistry revealed nuclear aggregates of 

mutant HTT in the striatum of both mouse models. Striatal atrophy is found in the R6/2 

model with up to 25% neuronal loss (Stack et al. 2005). Cortical and striatal atrophy is also 

found in the N171-82 Q model (Aggarwal et al. 2012). Ultimately, atrophy of the thalamus, 

hippocampus and piriform cortex occurred in the R6/2 model (Aggarwal et al. 2012). The 

N171-82Q mice also showed significant atrophy of the neocortex, hippocampus, piriform 

cortex and amygdala by the end of the disease at five to six months of age (Aggarwal et al. 

2012). Furthermore, changes in neural activity of the GPe and decreased connectivity of the 
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MSNs of the indirect pathway in R6/2 mice were also observed (Akopian et al. 2016; 

Cepeda et al. 2013).

Similar to HD rodent models, post-mortem brain tissues of infant HD monkeys (rHD4 and 

5) revealed high levels of mutant HTT aggregate in the striatum, cerebral cortex, 

hippocampus and cerebellum (Fig 1a). Widespread nuclear inclusions and axonal aggregates 

of mutant HTT were also observed throughout the striatum and cerebral cortex (Fig 1b–f). 

Axons appeared dystrophic and fractured, indicating distress and degeneration (Wang et al. 

2008). Recent studies on two adult HD monkeys (rHD1 and rHD7) at five years of age 

reveal the accumulation of mHTT aggregate, intranuclear inclusions and extensive neuronal 

loss in the striatum, but with a distinct pattern correlated with genotypes and expression 

levels of the mHTT transgene (Chan et al. 2015). rHD1 had significant loss of striatal mass 

while rHD7 retained comparable volume with control monkeys even with a significant 

decrease in neural cells, suggesting ongoing neurodegeneration in rHD7 (Chan et al. 2015). 

Together with progressive decline in cognitive and motor impairment in these animals, 

neuropathology supports the dysfunction in the fronto-striatal pathways and abnormal 

striatal outflow (Chan et al. 2015). Although neuropathological studies on HD monkeys are 

limited due to the number of available animals and resources, further in-depth 

neuropathological study on HD monkeys and comparison with rodents and humans will 

provide insightful mechanisms on HD pathogenesis.

Using MRI, brain volume changes were observed in a small cohort of HD and wild-type 

control monkeys with respect to age. The rate of the change in brain volume was influenced 

by mutant HTT transgenes. rHD1 had the highest mutant HTT expression and heavily 

aggregated mutant HTT protein and exhibited a significantly faster reduction rate in striatal 

volume and enlargement of lateral ventricles compared to the controls (Fig 2a, b) and HD 

monkeys (rHD6-8s) with lower mutant HTT expression (Chan et al. 2015). These results 

suggest progressive striatal atrophy, similar to that seen in HD patients. In vivo proton 

magnetic resonance spectroscopy (MRS) for N-acetylaspartate (NAA) was used to assess 

neuronal survival (Chan et al. 2015). MRS data showed decreased NAA in the caudate 

nucleus and putamen of HD monkeys compared to the controls, suggesting the loss of 

striatal neurons (Fig 2c). Stereological counting of cells in the caudate nucleus and putamen 

of post-mortem brain sections indicated a decrease, not just in striatal volume, but in the 

number of neurons in both the caudate nucleus and putamen (Fig 2d, e). Interestingly, rHD1 

and rHD7 carried two distinct mutant HTT transgenes in which rHD1 developed at a more 

rapid rate of striatal atrophy and cell loss. Although MRI did not reveal significant striatal 

atrophy in rHD7 compared to the controls, MRS and post-mortem neuropathology indicated 

significant reduction in neurons that further suggest a slower progression rate occurred in 

rHD7 compared to rHD1, while the loss of striatal neurons preceded the loss of striatal 

volume (Chan et al. 2015). These results indicate progressive death of striatal neurons, not 

simply shrinkage or glial cell loss as disease progress in HD monkeys (Chan et al. 2015). 

Recent study on white matter integrity of HD monkeys by longitudinal diffuse tensor 

imaging (DTI) reveals progressive changes in whole brain white matter as disease progress 

from infancy to adulthood (Meng et al. 2017). Thus the combination of noninvasive 

structural MRI and MRS is important to reveal HD status of the affected areas because 

compensatory response to neuronal cell loss might occur to maintain physical mass of the 
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areas at early stages of the disease. Together with DTI, noninvasive MR imaging can be used 

as a powerful diagnostic tool for clinical assessment.

While neuropathological assessment of HD monkeys is ongoing and very limited data is 

available for comprehensive comparison with rodent models and human patients, 

encouraging data including evidence of axonal aggregates, cell distress and 

neurodegeneration revealed in HD monkey brain suggest the resemblance between HD 

monkeys and humans patients. Even though neuropathology of HD monkeys may be similar 

to that seen in HD patients, in-depth analyses with additional HD monkeys in the future is 

critical to fuhrther confirm and support our findings, thus to better assess the potential of the 

HD monkey model in HD translational research.

Cognitive behavioral assessment in HD rodents and monkeys

Perhaps the most notable symptoms for HD are motor deficits, with the hallmark feature 

being a dance-like movement called chorea (Huntington 1872). Many patients also 

experience rigidity and bradykinesia (Biglan et al. 2013). Although not as obvious, 

oculomotor impairment is often one of the first symptoms to present (Tabrizi et al. 2012; 

Rub et al. 2015).

Several tests have been developed to evaluate motor deficits in mice. These tests include 

swimming, walking across a narrow beam and walking or running on a spinning rod. 

However, some mouse models such as the short-stop and C6R models never show motor 

deficit (Wang et al. 2008). R6/2 mice begin to display motor symptoms as early as five to six 

weeks and N171-82Q mice start showing deficits after 12 weeks (Pouladi et al. 2013; Wang 

et al. 2008). In the swimming tank test where mice swim to a platform to escape the water, 

R6/2 mice displayed abnormal front and hind limb kicking (Carter et al. 1999). This 

abnormal swimming stroke caused them to take longer to reach the platform than control 

mice. As animals age, R6/2 mice also showed decreased speed in beam walking, with some 

even falling off the beam during late stages of sickness (Carter et al. 1999). N171-82Q mice 

also showed decreased speed crossing the beam (Southwell et al. 2009). On the spinning 

rotarod test, both R6/2 and N171-82Q mice progressively worsened on maintaining balance 

on the spinning rotarod (Carter et al. 1999). However, N171-82Q mice did not exhibit 

difficulty until five months of age (Southwell et al. 2009). With age, R6/2 mice began to 

show gait abnormalities, most notably with reduced stride length and increased front/hind 

paw overlap (Carter et al. 1999), while N171-82Q mice showed abnormal gait characterized 

by hyperkinesia and rigidity (Preisig et al. 2016).

Compared to HD rodents, HD monkeys with severe impairment presented with dystonia, 

chorea, difficulty swallowing and difficulty breathing as early as at birth (Yang et al. 2008). 

In order to evaluate motor impairment over time, a rating scale, Huntington’s Disease 

Primate Motor Rating Scale (HDPMRS), similar to that used in patients was developed. 

Using a scale of 0-4, the test assesses ability, bradykinesia, rigidity, dystonia and chorea in 

various regions of the body. HD monkeys had an elevated score on the assessment compared 

to age-matched controls at two years of age (Chan et al. 2014). Lower limb dystonia was the 

most noticeable deficit. Motor impairment interfered with cognitive testing around 16 
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months of age and was measured by the object discrimination reversal (ODR) and detour 

reaching/barrier task. In this study, monkeys had to reach around a barrier to retrieve a 

reward such as M&M candy. The HD NHPs had significantly more motor-related problems 

with reward retrieval on both easy and difficult tasks (Fig 3) (Chan et al. 2015; Chan et al. 

2014). These findings aligned with neuropathology of rHD1 and rHD6, 7 & 8 which suggest 

fronto-striatal dysfunction as discussed previously. rHD1 also presented with tonic-clonic 

seizures around 22 months of age. Seizure is commonly developed in a juvenile form HD 

patient rather than an adult form (Cloud et al. 2012; Geevasinga et al. 2006; van Dijk et al. 

1986). Overall, motor impairment gradually increased with age in HD monkeys (Chan et al. 

2015; Chan et al. 2014).

In addition to motor symptoms, HD patients also experience cognitive difficulties. 

Oftentimes, patients are already showing signs of cognitive impairment at the onset of motor 

symptoms (Duff et al. 2010; Paulsen et al. 2013; Peavy et al. 2010; Stout et al. 2012; 

Vonsattel and DiFiglia 1998). Speech and language delay, psychiatric and cognitive 

difficulties were observed in juvenile HD (Ribai et al. 2007; Yoon et al. 2006). Cognitive 

deficit in HD is very different from dementia in Alzheimer’s disease. Impairment in HD is 

most notable with attention shifting and executive function (Lawrence et al. 1996), with 

more global deficits in late stages of the disease (Lange et al. 1995).

In the spatial learning task called the Morris water maze, R6/2 mice acquired the task as 

easily as control mice (Lione et al. 1999). However, they failed to continue to improve on 

subsequent trials like control mice did starting at nine weeks of age (Fink et al. 2013). This 

difference was not due to motor impairment, as swimming speed was no different between 

the two groups until day 16 of testing when R6/2 mice began to swim more slowly (Lione et 

al. 1999). These findings indicate that the mice were not impaired at learning pre-

symptomatically, but showed cognitive decline after onset of motor symptoms. Additionally, 

a two-choice tank swim test was used to test visual and reversal discrimination. Once HD 

mice became symptomatic, their ability to acquire this task severely decreased (Lione et al. 

1999; Menalled and Brunner 2014; Oakeshott et al. 2013). The HD mice also failed to learn 

reversal discrimination at older ages using light as a visual stimulus. R6/2 mice were 

significantly worse than control mice at alternation tests in a T maze (Lione et al. 1999). 

These results show cognitive decline in R6/2 HD mice can be assessed.

Due to the much longer lifespan of monkeys, age-appropriate behavioral tests can be 

designed throughout life. Both control monkeys and rHD1 showed normal acquisition of 

cognitive tasks early in life (Chan et al. 2014). This finding showed normal cognitive 

development, which is consistent with that of HD patients. However, with age, rHD1 showed 

deterioration of cognitive skills. At eight months, there was a delay on a pattern 

discrimination test (Fig 4a). By nine months, rHD1 consistently failed to reach criterion for 

a discrimination task when all age-matched control NHPs were successful (Fig 4b) (Chan et 

al. 2014). These tests evaluate function of the striatocortical loop, meaning that the 

neuropathology seen in these monkeys was producing a cognitive deficit similar to that of 

humans. In an object discrimination task meant to test prefrontal cortical function, this same 

HD monkey was making almost twice the mistakes of control monkeys at 16 months. This 

difference was notable for barrier and perseveration reaches in both moderate and difficult 
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version of the test (Fig 4c, d). rHD1 also showed impairment on a recognition memory task 

testing the function of the medial temporal lobe and hippocampus. Impairment was seen as 

early as four months and persisted through the 16-month testing (Fig 4e, f). In addition to 

rHD1, three additional HD monkeys (rHD6-8s) with expectation of slower disease 

progression also participated in similar cognitive testing (Chan et al. 2015). At eight months, 

they performed more barrier reaches and perseveration errors than age-matched control 

monkeys (Fig 5a, b). Interestingly, at 36 months, they showed increased latency on a 

visuomotor lifesaver task in which they had to remove candy lifesavers off a metal rod that 

could not be ascribed to motor deficits (Fig 5c, d). All monkeys acquired tasks normally, 

which indicate normal cognitive development. Based on the aforementioned reports, HD 

monkeys displayed cognitive deficit with increasing age (Chan et al. 2015).

HD monkeys displayed progressive cognitive deficits similar to those of HD patients that 

exhibit damage to subcortical processing as well as executive functions of the prefrontal 

cortex. It is important to note that an ongoing effort is to characterize the HD monkey model 

from infancy and throughout their lifespan in order to lay out the disease development 

timeline with milestone clinical events. Although this is an ongoing study, recent reports 

suggest the promise and potential of the HD monkey model in facilitating the finding of HD 

cures. Nonetheless, future study in a larger cohort of HD monkeys will help in compiling 

necessary data before cognitive therapies could be effectively tested using only the NHP 

model.

Psychiatric disturbance is one of the clinical areas that most HD patients also experience 

(Killoran and Biglan 2012; Raper et al. 2016; Ross 2004; Thompson et al. 2012). Psychiatric 

impairment may not be linked to other markers of disease course or symptoms, but rather 

they seem to develop independently (Zappacosta et al. 1996). Symptoms include aggression, 

irritability, affective disorders, behavioral disorders and personality disorders (Berrios et al. 

2001; Bouwens et al. 2015; Dale and van Duijn 2015; Paulsen et al. 2005; Van den Stock et 

al. 2015). Depression is common (Paulsen et al. 2005), and suicide is increased in HD 

patients compared to the general population (Di Maio et al. 1993).

Studying the psychiatric status of mice is a challenging task with limitations that might be 

difficult to overcome. Open field-testing is one of the most common methods to study 

emotions such as fear. Depression in mice can be studied by using a forced swim test in 

which “depressed” mice float instead of swimming or trying to climb out. R6/2 mice show 

increased tendency of floating shortly after symptoms emerge when compared to control 

mice on a forced swim test, suggesting possible depression (Ciamei et al. 2015). Monitoring 

home cage behavior such as grooming, fighting and time spent in groups are also commonly 

used for evaluating mouse psychiatric conditions. However, quantitative measurement of 

psychiatric behavioral changes such as emotion and mood swing remains challenging and 

difficult in rodents due to limitation in quantitative tools for measuring progression of a 

broad spectrum of psychiatric symptoms observed in HD patients.

Assessment of psychiatric changes in NHPs is feasible and well established (Raper et al. 

2016). Acute stressor has been successfully used to measure emotional and hormonal 

responses in nonhuman primates including HD monkeys (Kalin and Shelton 1998; Raper et 
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al. 2016; Raper et al. 2013). HD monkeys were evaluated at five years of age, which is the 

equivalent to a young adult human. At this age, HD monkeys showed increased coo 

vocalizations (Fig 6a). Baby monkeys usually use this call to try to re-connect with their 

family. Using a coo vocalization at this age and in this way suggests increased anxiety 

(Hauser 1991; Pfefferle et al. 2014; Rowell and Hinde 1962). They also showed less freezing 

compared to age-matched control monkeys (Fig 6b), but increased hostility (Fig 6c). These 

two findings combined suggest that, although HD monkeys may exhibit decreased fear, they 

also have increased anger and aggression (Raper et al. 2016). In fact, one of the HD 

monkeys, rHD1, had to be stopped from visuospatial cognitive testing due to self-injurious 

behavior developed during testing (Chan et al. 2015). Study on emotional dysfunctions in 

adult HD monkeys strongly suggested the development of increased anxiety and irritability/

aggression and are parallel with hyperactivity in innate immune response (Raper et al. 

2016). Similar observation has also been reported in human HD patients (Bjorkqvist et al. 

2008; Bouwens et al. 2015; Dale and van Duijn 2015; Forrest et al. 2010; Paulsen et al. 

2005; Shannon and Fraint 2015; Van den Stock et al. 2015; Vassos et al. 2007; Wild and 

Tabrizi 2014). Due to the high homology in socio-emotional behavior between humans and 

NHPs (Watson and Platt 2012; Yue et al. 2014), findings in HD monkeys further suggest 

their potential in replicating progressive psychiatric disturbance in HD patients which is 

important in understanding HD pathogenesis and developing early diagnostic tools as well 

as novel cures for HD. One of the ongoing efforts is to develop a cohort of second 

generation HD monkeys and establish a small social group, thus progressive decline in 

psychiatric functions and change in social behavior can be closely monitored and possible 

biological markers can be identified to reveal disease progression and translation readiness.

Anxiety, aggression, irritability and self-injurious behavior have all been identified in HD 

patients and in HD monkeys (Dale and van Duijn 2015; Raper et al. 2016; Van den Stock et 

al. 2015; Vassos et al. 2007). The HD monkey model provides a unique opportunity and 

platform for understanding how HD impacts psychiatric behaviors. To date, no effective 

treatments have been developed using the currently used HD mouse models (Wild and 

Tabrizi 2014). With further characterization, HD monkeys can be a potential preclinical 

large animal model to study all three aspects of the disease; motor, cognitive and psychiatric. 

Thus novel therapeutics, or combinations of therapies, can be evaluated by assessing all 

symptoms simultaneously.

Discussion

Over the past several decades, NHPs have provided models for various diseases, many of 

which have resulted in successful therapies and vaccines. For example, deep brain 

stimulation, a commonly used and highly successful treatment for Parkinson’s disease, was 

first tested in a NHP model for the disease (Benazzouz et al. 1993) and later corroborated in 

patients (Limousin et al. 1995). Nonetheless, practicality and ethical boundaries should be 

cautiously assessed prior to considering the NHP model.

Although HD monkeys may hold great promise, there are limitations in NHP research. 

Unlike rodents, rhesus macaque has a long pubertal age and gestation time; thus, the 

breeding of HD monkeys is a relatively challenging, slow and expensive process. 
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Neurodegenerative disease such as HD is a progressive inherited disorder that evolves 

throughout the lifespan of affected individuals. There is increasing evidence that suggests 

that motor deficits are preceded by cognitive behavioral dysfunctions and the development 

of early dysfunctional biomarkers has been the key interest in multiple longitudinal human 

studies and the development of therapeutic targets. While the development of HD in human 

patients is a relatively long process dictated by the size of CAG repeats, the benefit of a large 

animal model such as HD monkeys that is capable of capturing key clinical features with 

similar disease progression determined by using similar clinical assessment tools for humans 

may facilitate clinical translation (Howland and Munoz-Sanjuan 2014; Menalled and 

Brunner 2014; Morton and Howland 2013; Pouladi et al. 2013). Thus the longer 

developmental course in HD monkeys may allow key clinical development of HD that may 

not be possible to capture in short lived rodents. The recently established Transgenic 

Huntington’s Disease Monkey Resource (THDMR) sponsored by the NIH has a specific 

mission to produce and promote the preclinical applications of the HD monkey model (Chan 

et al. 2015; Meng et al. 2017; Moran et al. 2015; Raper et al. 2016). Besides the production 

of HD monkeys, a biological material bank was also established with samples including 

serum, plasma and cerebrospinal fluid (CSF) that were collected throughout the lifespan of 

HD monkeys from prodromal to symptomatic stages are available for the HD research 

community.

Increased interest in cell models for HD may be appropriate for studying the response of 

isolated neurons in terms of cell death, aggregates, or dystrophia (An et al. 2012; Carter et 

al. 2014; Kunkanjanawan et al. 2016). However, isolated cells cannot address the complex 

circuitry of the human brain or, obviously, the symptoms of the disease. Mouse models for 

the disease may be used to address the neuropathology and motor symptoms, but assessment 

of cognitive and psychiatric symptoms remains challenging and their translational value has 

yet to be determined. There is no perfect model of human diseases, as HD rodent and NHP 

models are equally important for the understanding of HD pathogenesis and the cures for 

HD. Translational value of rodents has drawn concerns after failure in clinical translation 

while the increasing interest in developing large preclinical animal models further suggest 

the potential of the HD monkeys (Menalled and Brunner 2014; Philips et al. 2014; Zeidler et 

al. 2015). In fact, our HD monkey is the first transgenic NHP model of human disease and is 

the prototype model of the species. Continued effort in longitudinal assessment and the 

development of social group study will greatly benefit our understanding on how cognitive 

behavioral dysregulation has evolved in HD. HD monkeys provide a unique opportunity to 

investigate some of the most important clinical aspects in HD that are largely unanswered. 

HD monkeys also allow the testing of therapeutics against the neuropathological, motor, 

cognitive and psychiatric changes associated with the disease and can be assessed 

simultaneously using similar human clinical tools. Therefore, one should consider it 

unethical not to consider the potential of HD monkeys in advancing preclinical research and 

facilitating clinical translation of novel therapeutics and treatments for HD patients.
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Fig 1. Neuropathological changes in NHP model for HD
(a) Immunoblot for mEM48 shows high molecular mass oligomeric HTT (arrow head) and 

soluble HTT using γ-Tubulin as a control. (b–e) HTT inclusions in the cerebral cortex and 

striatum as shown by immunohistochemistry for mEM48. (b–c) Scale bars = 100mm (d–e) 

Scale bars = 10mm. (f) HTT aggregates causing disruption of the axon in a cortical neuron, 

scale bar = 5 μm (Yang et al. 2008; Wang et al 2008).
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Fig 2. Decrease in striatal volume and cell number in HD NHPs
(a–b) Increase in lateral ventricles and decrease in striatal volume of HD transgenic NHP 

compared to control NHP shown by MRI. (c) Decrease in striatal NAA at 48 months of HD 

NHP compared to control NHP assessed by proton MRS. (d) Decrease in Nissl-positive cells 

by stereological counting in the caudate nucleus and (e) putamen of HD NHPs compared to 

control. rHD1 carried exon 1 of the human HTT gene regulated by human polyubiquitin-C 

promoter, which expressed N-terminal 67 amino acids with 29 polyQ repeats. rHD7 carried 

exons 1-10 of the human HTT gene coding N-terminal 508 amino acids with approximately 

67-72Q under the control of the human HTT promoter. (Chan et al. 2015).
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Fig 3. Motor difficulty in HD NHPs
HD NHPs show increased motor problems on an object retrieval detour task at 16 months. 

rHD1 showed no impairment, but rHDs6-8 showed significant (p<0.05) impairment. rHD1 

carried exon 1 of the human HTT gene regulated by human polyubiquitin-C promoter, 

which expressed N-terminal 67 amino acids with 29 polyQ repeats. rHD6, 7, and 8 

(rHDs6-8), on the other hand, carried exons 1-10 of the human HTT gene coding N-terminal 

508 amino acids with approximately 67-72Q under the control of the human HTT promoter. 

rHD1 carried exon 1 of the human HTT gene regulated by human polyubiquitin-C promoter, 

which expressed N-terminal 67 amino acids with 29 polyQ repeats. (Chan et al. 2015).
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Fig 4. Cognitive impairment in HD NHPs
(a) HD NHPs show a slight increase in the number of errors made before reaching criteria on 

a pattern discrimination task at 8 months. (b) There is also a slight increase in errors at a 

concurrent discrimination task at 9 months. At 16 months, HD NHPs made almost twice as 

many barrier and preservative reaches as control NHPs on moderate (c) and difficult (d) 

trials. (e) Memory recognition test visual paired comparison at 4 months, scores are percent 

correct when looking at novel objects at a delay of 10, 30, 60, or 120 seconds. (f) Memory 

recognition test delayed non-matching to sample at 16 months, scores are percent correct at 

30, 60, 120, and 600 seconds. rHD1 carried exon 1 of the human HTT gene regulated by 

human polyubiquitin-C promoter, which expressed N-terminal 67 amino acids with 29 

polyQ repeats. rHD7 carried exons 1-10 of the human HTT gene coding N-terminal 508 

amino acids with approximately 67-72Q under the control of the human HTT promoter. 

(Chan et al. 2014).
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Fig 5. Cognitive impairment in HD NHPs
(a) At 16 months, HD NHPs showed more barrier reaches than control NHPs on an object 

retrieval detour task. (b) At 16 months, HD NHPs also showed an increase in the number of 

preservative reaches on the same task. (c-d) HD NHPs increased in latency on a visuomotor 

task at 36 months (d), but not at 8 months (c) compared to control NHPs. rHD1 carried exon 

1 of the human HTT gene regulated by human polyubiquitin-C promoter, which expressed 

N-terminal 67 amino acids with 29 polyQ repeats. rHD7 carried exons 1-10 of the human 

HTT gene coding N-terminal 508 amino acids with approximately 67-72Q under the control 

of the human HTT promoter. (Chan et al. 2015).
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Fig 6. Psychological symptoms in HD NHPs
(a) Mature HD NHPs showed an increase in coo vocalizations when alone or introduced to 

an intruders profile or stare compared to control NHPs. (b) HD NHPs exhibited decreased 

freezing compared to control NHPs when presented with an intruder profile. (c) Overall, HD 

NHPs increased in hostile behavior compared to control NHPs when alone or introduced to 

an intruder’s profile (Raper et al. 2016).
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