Fig. 7.
Blocking α-syn transmission blocks mitochondrial pathology. a, b A53T cells were co-cultured with GFP-expressing isogenic-corrected cells at DIV 14 and differentiated together (DIV 60) in the presence of either monoclonal anti-α-syn or IgG control antibody. Micrographs depict antigenic labeling of PS129 in co-cultured GFP+ve (Corr) and GFP−ve (A53T) hNs and show that anti-α-syn decreased PS129 labeling in GFP+ve hNs. scale bar: 10 μm (a). Quantification of data (b). Data represent mean ± s.e.m. **P < 0.0001 by ANOVA followed by Tukey’s post hoc test, n = 9, DIV: 60. c, d Co-culture of GFP+ve, MitoDSRed+ve corrected hNs with either hiPSC-derived corrected hNs or A53T hNs (as schematically depicted) in the presence of either monoclonal anti-α-syn, IgG or Vehicle, scale bar: 10 μm (c). Quantification of the effect of monoclonal anti-α-syn on the percentage of total GFP+ve hNs that have fragmented mitochondria (d). Data represent mean ± s.e.m. **P < 0.01 by ANOVA followed by Tukey’s post hoc test, n = 8 coverslips over 3 independent differentiations. e, f Co-culture of GFP+ve, MitoDSRed+ve WT hNs with either hESC-derived WT, A53T or E46K hNs (as schematically depicted) in the presence of either monoclonal anti-α-syn, IgG or Vehicle, scale bar: 10 μm (e). Quantification of the effect of monoclonal anti-α-syn on percentage of total GFP+ve hNs that have fragmented mitochondria (f). Data represent mean ± s.e.m. **P < 0.01 by ANOVA followed by Tukey’s post hoc test, n = 10 coverslips over 3 independent differentiations. Clipart was obtained at clker.com