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Improving prediction of heart 
transplantation outcome using 
deep learning techniques
Dennis Medved1, Mattias Ohlsson2, Peter Höglund   3, Bodil Andersson4, Pierre Nugues1 & 
Johan Nilsson 5

The primary objective of this study is to compare the accuracy of two risk models, International 
Heart Transplantation Survival Algorithm (IHTSA), developed using deep learning technique, and 
Index for Mortality Prediction After Cardiac Transplantation (IMPACT), to predict survival after heart 
transplantation. Data from adult heart transplanted patients between January 1997 to December 
2011 were collected from the UNOS registry. The study included 27,860 heart transplantations, 
corresponding to 27,705 patients. The study cohorts were divided into patients transplanted before 
2009 (derivation cohort) and from 2009 (test cohort). The receiver operating characteristic (ROC) 
values, for the validation cohort, computed for one-year mortality, were 0.654 (95% CI: 0.629–0.679) 
for IHTSA and 0.608 (0.583–0.634) for the IMPACT model. The discrimination reached a C-index for 
long-term survival of 0.627 (0.608–0.646) for IHTSA, compared with 0.584 (0.564–0.605) for the IMPACT 
model. These figures correspond to an error reduction of 12% for ROC and 10% for C-index by using 
deep learning technique. The predicted one-year mortality rates for were 12% and 22% for IHTSA 
and IMPACT, respectively, versus an actual mortality rate of 10%. The IHTSA model showed superior 
discriminatory power to predict one-year mortality and survival over time after heart transplantation 
compared to the IMPACT model.

Heart transplantation (HT) is a life-saving operation for patients with end-stage heart disease. Despite this reality, 
the transplantation number does not increase over the years. One of the most limiting factors is the lack of donor 
organs and a conservative allocation policy that results in the loss of about half of the organs being offered1. An 
improved prediction of the outcome would augment the confidence in the post-transplantation performance and 
make it possible to optimise the allocation of organs. Furthermore, it would enable practitioners to determine the 
risk of early and late graft dysfunction more accurately and improve donor and recipient management.

Although there exist several survival models within cardiac surgery, currently there is no accepted tool for 
estimating the outcome after heart transplantation. In recent years, some risk score algorithms designed to pre-
dict post-transplantation performance have been developed, which almost all have been derivate on the sin-
gle national, multi institutional United Network for Organ Sharing (UNOS) registry2. The most notable ones 
are: Donor Risk Index (DRI), Risk Stratification Score (RSS), and Index for Mortality Prediction After Cardiac 
Transplantation (IMPACT)3–5. The IMPACT model has additionally been validated on the International Society 
of Heart and Lung Transplantation (ISHLT) registry and showed an acceptable accuracy in predicting mortality. 
Recently a multinational model, the International Heart Transplantation Survival Algorithm (IHTSA), devel-
oped on the ISHLT registry was published6. This model was designed to predict both short-term and long-term 
mortality and, in contrast to previous models, it utilises deep learning techniques. The results it obtained showed 
an improved discrimination compared with the DRI, RSS, and IMPACT models. However, the validation was 
performed on the ISHLT registry, which was also used for the development of the model6.

Even if the validation cohort was separated from the derivation cohort, the IHTSA model might be biased 
towards this registry.
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The aim of this study was to determine the most suitable risk stratification model for heart transplantation by 
applying the IMPACT and IHTSA algorithms to the UNOS registry.

Results
Characteristics of the Study Population.  The preoperative characteristics of the recipients are listed in 
Table 1 and for the donors in Table 2. The number of adult HT with a follow-up time of at least one year, from 
January 1997 to December 2011, was of 27,860, corresponding to 27,705 patients. Over the time span, the cumu-
lative sum of follow-up years was of 165,206. The median survival time was 12 years (Interquartile Range [IQR]: 
5–16). The one-year mortality was of 13% (n = 3,561). The average age of the recipients was 52 ± 13 years, with 
a range from 18 to 78 years. Most of the recipients were males 76% (n = 21,151). Multi-organ transplants were 
marginal (2.5%). The number of transplants contained in the derivation cohort was of 22,263, and the number of 
transplants in the test cohort was of 5,597.

IMPACT versus IHTSA.  The IHTSA model includes 32 recipient risk variables, while the IMPACT model 
has 18 variables; five of these variables are shared between the models: female gender, diagnosis: ischemic cardi-
omyopathy, diagnosis: congenital, infection within two weeks, and mechanical ventilation. Additionally, IHTSA 
also has 11 donor variables, while IMPACT has no donor variables.

We evaluated the original IHTSA model in the test cohort (2009–2011) for one-year mortality; it had an area 
under receiver operating characteristic (AUROC) of 0.643 (95% CI: 0.619–0.667), while IMPACT had an AUROC 
of 0.608 (0.583–0.634), P = 0.004, see Table 3. As shown in Fig. 1 and Table 3, the recalibrated IHTSA model has 
a significantly higher discrimination compared with the IMPACT model for one-year mortality, P = 0.001, corre-
sponding to an error reduction of 11.7%. Harrell’s C-index for the recalibrated IHTSA compared with IMPACT 
was substantially larger, as shown in Table 4, with about a 4% absolute difference for the later time era. This corre-
sponds to an error reduction of 10.3%. On the time era 1997–2008, on which the models were trained using 5-fold 
cross-validation technique, the recalibrated IHTSA had an AUROC of 0.688 (0.678–0.699), and IMPACT had 
0.606 (0.595–0.617) for one-year mortality, P = 0.001, Table 3. The absolute difference in C-index was 5% higher 
for the IHTSA model compared with the IMPACT model, P < 0.001, Table 4.

We analysed the sensitivity of both models relatively to the deceased patients after one year at the levels of 
25%, 50%, and 75%. Out of the transplants in the test cohort (N = 5,597), the numbers of correctly classified 
patients after one year were 4,812, 3,890, and 2,582 patients respectively for IHTSA, and 4,539, 3,396, and 2,140 
patients respectively for IMPACT. See Fig. 2 for a graph of the difference in correctly classified patients.

We furthermore compared the predicted one-year mortality rate for IMPACT and IHTSA, with the true mor-
tality rate. The predicted one-year mortality for the second time-era (test cohort) was 12% and 22% for the recal-
ibrated IHTSA and IMPACT, respectively, versus an actual mortality rate of 10%. The Hosmer-Lemeshow (HL) 
chi-square for one-year, using ten groups, was of 40 in the IHTSA model and 101 for the IMPACT model, both 
with a P-value less than 0.05. As shown in the calibration plot, Fig. 3, the predictive mortality compared with 
actual mortality was more consistent over all deciles for the ITHSA model compared with the IMPACT model.

To evaluate difference in methodology approach (deep learning versus logistic regression), we performed 
two additional experiments. We quantify the difference between the deep learning technique used by the IHTSA 
model and the more traditional logistic regression approach used by the IMPACT model, by letting the two sys-
tems use identical features. The second experiment was to assess the difference between a model that include and 
exclude donor variables.

As shown in Tables 5 and 6, a recalibrated IHTSA model including only the same risk variables as the IMPACT 
model still showed a substantial improvement in the AUROC (about 2%) and C-index in the test cohort com-
pared with the IMPACT model. The recalibrated IHTSA model excluding the donor variables showed a decrease 
in discrimination compared with the original IHTSA model, however the difference was minor, producing nearly 
the same AUROC.

Discussion
The purpose of this study was to compare the IMPACT and IHTSA models with regards to the prediction accu-
racy of one-year mortality on the UNOS database. There exist some biases in both models when used on the 
UNOS data set for the time era 1997–2008. Because IMPACT was developed on these data and IHTSA on the 
ISHLT dataset, which consists in part of the same UNOS data, the models may be subjected to a non-negligible 
overfit to the data, skewing the result towards a more positive value. Therefore, we chose to validate the models on 
a later time era, which has no overlapping patients with the training set.

The results show that the IHTSA model exhibited improved performance and accuracy compared to the 
IMPACT model. Even though IMPACT was designed to predict one-year mortality and IHTSA was created for 
long-term survival, IHTSA shows better discrimination on one-year mortality.

This study could also prove the benefits of using deep learning modelling techniques. Such techniques are 
inspired by the human brain. They consist of a network of “neurons” that emulate the properties of their real 
counterparts. Using multiple processing layers makes it possible to learn representations of data with multiple 
levels of abstraction7. These methods have improved the state-of-the-art in speech recognition, visual object rec-
ognition, object detection and many other domains8.

Our results show that the IHTSA model can be applied to predict short-term mortality with greater accuracy 
than a more traditional risk-based model based on logistic regression. Although the comparison of ROC curves 
to evaluate models in a statistically valid manner is controversial, the ROC curve is currently the most developed 
statistical tool for describing performance9,10. The improvements seen can be explained by the difference in the 
variable selection, such as the absence of donor risk factors in the IMPACT model, but also by the the neural net-
work’s ability to handle interactions between variables and nonlinearities. An increased donor age has in previous 
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Feature N

Time era 
1997–2008

Time era 
2009–2011

p-Value IMPACT IHTSA(n = 22,263) (n = 5,597)

Demographic data

  Age (years) 27,860 52 ± 13 53 ± 13 0.001 ✓

  Age >60 years 27,860 5,707 (26%) 1,809 (32%) 0.001 ✓

  Female gender 27,860 5,298 (24%) 1,411 (25%) 0.029 ✓ ✓

  Height (cm) 27,740 174 ± 10 174 ± 10 0.835 ✓

  Weight (kg) 27,760 80 ± 17 82 ± 17 0.001 ✓

  Race: African American 27,860 3,324 (15%) 1,103 (20%) 0.001 ✓

Diagnosis

  Ischemic cardiomyopathy 27,859 9,976 (45%) 2,793 (50%) 0.001 ✓ ✓

  Non-ischemic cardiomyopathy 27,859 10,247 (46%) 2,119 (38%) 0.001 ✓

  Congenital 27,859 518 (2%) 149 (3%) 0.159 ✓ ✓

  Other 27,859 852 (3%) 247 (4%) 0.001 ✓

  Graft failure 27,859 669 (3%) 197 (4%) 0.058 ✓

  Diabetes mellitus# 27,597 4,735 (22%) 1,500 (27%) 0.001 ✓

  Hypertension† 17,876 7,108 (40%) — ✓

  Infection within two weeks‡ 26,543 2,333 (11%) 594 (11%) 0.550 ✓ ✓

  Antiarrhythmic drugs prior transplant 17,266 6,371 (37%) — ✓

  Amiodarone prior to transplant 17,530 4,726 (27%) — ✓

  Dialysis prior to transplant 27,002 706 (3%) 185 (3%) 0.510 ✓

  Previous blood transfusion 15,221 5,285 (35%) 27 (29%) 0.247 ✓

  Previously transplanted* 27,860 680 (3%) 199 (4%) 0.067 ✓

  Previous cardiac surgery 14,069 1,866 (22%) 1,483 (27%) 0.001 ✓

  ICU 27,860 7,991 (36%) 1,493 (27%) 0.001 ✓

  Mechanical ventilation 27,860 625 (3%) 166 (3%) 0.532 ✓ ✓

  ECMO 27,860 90 (0.04%) 48 (1%) 0.001 ✓

  IABP 27,860 1193 (5%) 263 (5%) 0.039 ✓ ✓

  Ventricular assist device 24,357 4,665 (25%) 2,191 (39%) 0.001 ✓

  Early generationa 6,856 911 (20%) 114 (5%) 0.001 ✓

  Late generationb 6,856 536 (11%) 1,610 (74%) 0.001 ✓

  Other/Unknown 6,856 3,218 (69%) 467 (21%) 0.001

  Temporary circulatory supportc 27,860 209 (1%) 113 (2%) 0.001 ✓

Transplant era

  1996–2000 27,860 7781 (35%) — ✓

  2001–2005 27,860 8981 (40%) — ✓

  >2005 27,860 5501 (25%) 5,598 (100%) 0.001 ✓

Hemodynamic status

  PVR (wood units) 21,782 2.5 ± 1.8 2.4 ± 1.8 0.205 ✓

  SPP (mmHg) 25,100 43 ± 14 42 ± 14 0.001 ✓

Laboratory values

  Creatinine (mg/dl) 27,027 1 1.4 ± 0.8 1.3 ± 0.8 0.038 ✓

Creatinine clearance (mL/min)

  30–49 27,054 2,964 (14%) 698 (12%) 0.008 ✓

  <30 27,054 674 (3%) 189 (3%) 0.376 ✓

  Serum bilirubin (mg/dl) 26,224 1.3 ± 2 1.2 ± 2 0.001 ✓

  1.00–1.99 26,224 6,117 (30%) 1,562 (28%) 0.102 ✓

  2.00–3.99 26,224 1261 (6%) 300 (5%) 0.070 ✓

  ≥4 26,224 1314 (6%) 297 (5%) 0.007 ✓

Immunology status

  PRA > 10% 18,351 1,113 (8%) 1,114 (20%) 0.001 ✓

  HLA-DR, 2 mismatch 23,858 10,289 (55%) 2,746 (55%) 0.906 ✓

Recipient blood group

  A 27,860 9,543 (43%) 2,313 (41%) 0.036 ✓

  B 27,860 3,040 (14%) 795 (14%) 0.343 ✓

  AB 27,860 1,143 (5%) 295 (5%) 0.597 ✓

  O 27,860 8,549 (38%) 2,198 (39%) 0.092 ✓
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reports been shown to have a negative influence on short-term survival6,11. To examine this, we compared the 
difference of the deep learning model and the logistic regression model using the same variables. Here, we show 
a substantial improvement when using the deep learning approach compared with the traditional approach. 
Furthermore, we could show that the predictive availability for the deep learning model was less dependent on 
the variables included compared with a standard model. Donor variables showed to be of less importance than 
expected. A possible explanation for that may be the deep learning technology has an increased ability to identify 
new patterns with the data it has available. It is interesting to note that the two models do not show a considerable 
overlap of features. Only five features are shared by the two models out of 18 for IMPACT and 43 for IHTSA. If we 
compare the overlapping variables with the seven most important variables for IHTSA, we find that three of them 
are shared: age, diagnosis, and mechanical ventilation6.

One disadvantage of the deep learning technique is that it yields a black box model with a limited ability to 
explicitly identify possible causal relationships. Logistic regression, on the contrary, makes it feasible to determine 
the strongly predictive variables based on the size of the coefficients. To cope with the lack of a well-established 

Table 1.  The recipient features used in the IMPACT and IHTSA Models. N, number of transplants with non-
missing values. n, total number of transplants. Qualitative data are expressed as n (%), and quantitative data 
as mean ± SD. #Drug or insulin treated diabetes mellitus. †Drug treated systemic hypertension. ‡Infection 
requiring intravenous antibiotic therapy within two weeks prior to transplant. *Previous transplant—previous 
kidney, liver, pancreas, pancreas islet cells, heart, lung, intestine and/or bone marrow transplant. aEarly 
generation includes para and intracorporeal pulsatile VADs: Abiomed AB5000, Heartmate I, XE, and XVE, 
ThortecIVAD, Toyobo, Medos and LionHeart. bLater generation continuous VADs including Heartmate 
II, Jarvik, Micromed, Debakey, and VentrAssist. cIncludes ECMO and [or] extracorporeal VADs: Abiomed 
BVS5000, Bio-Medicus, TandemHeart, and Levitronix/Centrimag. ECMO, extracorporeal membrane 
oxygenation; ICU, intensive care unit; IHTSA, international heart transplantation survival algorithm; IMPACT, 
index for mortality prediction after cardiac transplantation; HLA, human leukocyte antigen; PRA, panel 
reactive antibody; PVR, pulmonary vascular resistance; SD, standard deviation; SPP, systolic pulmonary 
pressure. The t-test and chi-squared test was used for continuous respectively categorical values.

Feature N

Time era 
1997–2008

Time era 
2009–2011

p-Value IMPACT IHTSA(n = 22,263) (n = 5,597)

Demographic data

  Age (years) 27,075 32 ± 12 32 ± 12 0.515 ✓

  Female gender 27,860 6,546 (29%) 1,645 (29%) 0.979 ✓

  Weight (kg) 27,838 79 ± 19 82 ± 19 0.001 ✓

  Duration of ischemia (min) 26,029 189 ± 63 194 ± 10 0.001 ✓

  CODD: Head Trauma 27,825 13,733 (62%) 3,068 (55%) 0.001 ✓

  CODD: Cerebrovascular event 27,825 5,894 (27%) 1,297 (23%) 0.001 ✓

Donor blood group

  A 27,859 8,232 (37%) 1,983(35%) 0.030 ✓

  B 27,859 2,284 (10%) 617 (11%) 0.102 ✓

  AB 27,859 477 (2%) 125 (2%) 0.682 ✓

  O 27,859 11269 (40%) 2,873 (51%) 0.001 ✓

  Recipient-donor weight ratio 27,739 1.03 ± 0.22 1.02 ± 0.20 0.001 ✓

  Recipient-donor height ratio 27,660 0.998 ± 0.06 0.999 ± 0.06 0.068 ✓

Table 2.  The donor features used in the IHTSA model. N, number of transplants with non-missing values. 
n, total number of transplants. Qualitative data are expressed as n (%), and quantitative data as mean ± SD. 
CODD, cause of donor death; IHTSA, international heart transplantation survival algorithm; IMPACT, index 
for mortality prediction after cardiac transplantation. The t-test and chi-squared test was used for continuous 
respectively categorical values.

Time era

AUROC (95% CI)

IMPACT IHTSA P-Value IHTSA cal. P-Value

1997–2008 0.61 (0.59–0.62) 0.66 (0.64–0.67) 0.001 0.69 (0.68–0.70) 0.001

2009–2011 0.61 (0.58–0.63) 0.64 (0.62–0.67) 0.004 0.65 (0.63–0.68) 0.001

Table 3.  The AUROC for one-year mortality for the different cohorts using IMPACT and IHTSA respectively. 
AUROC, area under the receiver-operating curve; CI, confidence interval; IHTSA, international heart 
transplantation survival algorithm; cal, the recalibrated version; IMPACT, index for mortality prediction after 
cardiac transplantation.; P, probability that the result is the same as IMPACT.
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method for interpreting the weights of a connection matrix in a neural network, the developers of the IHTSA 
algorithm used a classification and regression tree (CART), fitted to the predicted median survival time, to assess 
the relative importance of the features6. Furthermore, the web-based calculator (http://ihtsa.cs.lth.se) makes it 
possible to estimate the survival on a computer or mobile device.

During 2011, approximately 17,000 donors were reported12. Unfortunately, not more than one-third of all 
donors could be utilised for heart transplantation. One explanation for this may be the uncertainty in the risk 
of early and late graft dysfunction, which means that some suitable donors are not accepted. Although there are 
many donor predictors of allograft discard in the current era, these characteristics seem to have little effect on 
recipient outcomes when the hearts are transplanted, which also is confirmed in this study13. A more liberal use of 

Figure 1.  The ROC curves show the sensitivity of prediction of one-year mortality vs. 1-specificity for the 
IMPACT (short-long dashed line) and the recalibrated IHTSA (solid line) risk algorithms is plotted on the test 
cohort (2009–2011). The gray dashed line represents the absence of discrimination.

Time era

C-index (95% CI)

IMPACT IHTSA P-Value IHTSA cal. P-Value

1997–2008 0.56 (0.56–0.56) 0.59 (0.59–0.60) 0.001 0.62 (0.61–0.62) 0.001

2009–2011 0.58 (0.56–0.61) 0.61 (0.59–0.63) 0.002 0.63 (0.61–0.65) 0.001

Table 4.  The Harrells C-index for survival for the different cohorts using IMPACT and IHTSA respectively. CI, 
confidence interval; IHTSA, international heart transplantation survival algorithm; cal, the recalibrated version; 
IMPACT, index for mortality prediction after cardiac transplantation; P, probability that the result is the same as 
IMPACT.

Figure 2.  The sensitivity of prediction of one-year mortality versus the total number of additional correctly 
classified patients by IHTSA compared with IMPACT, both in absolute numbers and percentage, plotted on the 
test cohort (2009–2011).

http://ihtsa.cs.lth.se
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cardiac allografts with relative contraindications may be warranted. A calculator would allow us to conveniently 
perform batch estimation of survival for multiple patients at the same time. This would allow the IHTSA model 
to be used as a virtual recipient-donor matching tool that models survival for potential recipients on a waiting 
list when there is a donor heart available. This could potentially increase the number of organs that could be used 
compared with a traditional criterion-based model6. Additionally, it will make it easier for other research groups 
to validate the model.

The results of this study carry limitations associated with the retrospective analysis of a registry database, the 
quality of the source data, the number of missing data, and the lack of standardization associated with multi-
center studies (such as different immunosuppressive regimens and different matching criteria). However, those 
limitations are the same for both models. Even if a comparison of risk models remains controversial, the C-index 
is probably the best statistical tool for describing performance. A C-index of <0.7 may seem low, but it should 
be kept in mind that the IHTSA model predicts long term survival, and to the best of our knowledge, it is higher 
than previously reported studies.

Conclusions
In this study, we have shown that a flexible nonlinear artificial neural network model (IHTSA), utilising deep 
learning techniques, exhibits better discrimination and accuracy than a more traditional risk score model 
(IMPACT) for predicting one-year mortality. We made public the results of this model in the form of a web-based 

Figure 3.  The observed (gray bars) and expected mortality (black bars), in percent, for each decile, for the 
IMPACT and IHTSA models, in the test cohort (2009–2011). The patients are divided into deciles according to 
their expected mortality, and the observed mortality was derived for each decile.

Time era

AUROC (95% CI)

IMPACT ANN I P-Value ANN II P-Value

2009–2011 0.61 (0.58–0.63) 0.63 (0.60–0.65) 0.027 0.65 (0.63–0.68) 0.001

Table 5.  The AUROC for one-year mortality for the test cohort (2009–2011) using an artificial neural network 
model derived on the derivation cohort (1997–2008) with IMPACT features only (ANN I) and with IHTSA 
recipient features only (ANN II). AUROC, area under the receiver-operating curve; CI, confidence interval; 
IHTSA, international heart transplantation survival algorithm; IMPACT, index for mortality prediction after 
cardiac transplantation.; P, probability that the result is the same as IMPACT.

Time era

C-index (95% CI)

IMPACT ANN I P-Value ANN II P-Value

2009–2011 0.58 (0.56–0.61) 0.60 (0.58–0.62) 0.002 0.62 (0.60–0.64) 0.001

Table 6.  The Harrells C-index for one-year mortality for the test cohort (2009–2011) using an artificial neural 
network model derived on the derivation cohort (1997–2008) with IMPACT features only (ANN I) and with 
IHTSA recipient features only (ANN II). CI, confidence interval; IHTSA, international heart transplantation 
survival algorithm; IMPACT, index for mortality prediction after cardiac transplantation.; P, probability that the 
result is the same as IMPACT.
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batch calculator that could be used as a virtual recipient-donor matching tool. This is a first step in the imple-
mentation of a deep learning architecture for transplantation data that, we hope, will pave the way for further 
improvements and an even more accurate model.

Materials and Methods
Data Source.  The data set of heart transplant patients was obtained from the UNOS database. UNOS is a 
non-profit organisation that administers the only Organ Procurement and Transplantation Network (OPTN) in 
the United States of America14. The database contains data from October 1, 1987, onwards and includes almost 
500 variables that encompass recipient, donor, and transplant information. It consists of both deceased- and liv-
ing-recipient transplants. The Ethics Committee for Clinical Research at Lund University, Sweden approved the 
study protocol. The data was anonymized and de-identified prior to analysis and the institutional review board 
waived the need for written informed consent from the participants.

Study Population.  We included all the adult HT patients (>17 years) from January 1997 to December 2011. 
The latest annual follow-up was on September 30, 2013. The data set was divided into two temporal cohorts: 
transplantation done before 2009 (derivation cohort) and after or during 2009 (test cohort). These time periods 
were chosen because both IMPACT and IHTSA were developed on patients between 1997–2008 and we wanted 
disjoint sets (derivation and test) to evaluate the prediction performance. The number of variables extracted from 
the database was 56 in total, where IHTSA uses 43 of them and IMPACT 18. The primary endpoint was one-year 
mortality and the second endpoint was all-cause cumulative mortality during the study period.

Storing the Data.  We converted the complete UNOS database containing heart transplants until 2011, 
except a few variables, into a Resource Description Framework (RDF) database following the procedure outlined 
in a previously published report15. This enabled us to use the SPARQL language to query the data and easily 
retrieve the variables used by both the IMPACT and IHTSA model to predict the mortality of the transplants16.

Statistical Analysis.  We performed the statistical analyses using the Stata MP statistical package version 
13 (2013) (StataCorp LP, College Station, TX), and with RStudio Desktop 0.99.441 (RStudio, Boston, MA) using 
R version 3.3.1. Data are presented as means with standard deviation (SD), and frequency as appropriate. The 
Anderson-Darling test was used to assess the normality of the variables17. We used the t-test and chi-squared test 
for continuous, respectively categorical values, to test if the data was significantly different from each other. As 
with all patient registries, the dataset contains missing values. We applied a probability imputation technique by 
creating a list for each variable in the data set, containing the non-missing values for that variable, and then we 
imputed each missing value with a value from the list, chosen from a uniform distribution18. In consequence, the 
distribution of the imputed values should follow that of the non-missing ones.

The discriminatory power for one-year mortality was assessed by calculating the AUROC19. We compared 
the statistical significance of the difference between the AUROC of the two models using the non-parametric 
DeLong’s test20. To evaluate the discrimination for long-term survival of the patients, we utilised the Harrell’s 
concordance index (C-index)21. We used a z-score test to compare the C-indexes22. The AUROC and C-index 
values are both presented with 95% confidence limits. The predictive accuracy of the models was assessed by 
comparing the observed and expected mortality for equal-sized quantiles of risk by using the Hosmer–Lemeshow 
goodness-of-fit test23.

The IMPACT model.  IMPACT was created with a data set of heart transplant patients between 1997 to 2008 
that were collected from the UNOS database. IMPACT only utilises recipient variables. Creatinine clearance was 
not directly available from the data set and had to be calculated using the Cockcroft-Gault equation24. By appor-
tioning points according to the relative importance of the variables for the one-year mortality, a risk index was 
created. The minimum number of scoring points a patient can have is 0 and the maximum is 50. The points are 
after that converted to a predicted probability of one-year mortality by a formula derived from logistic regression5.

The IHTSA model.  The data set used in developing IHTSA was extracted from the ISHLT containing HT 
patients who were transplanted between 1994 and 2010. IHTSA utilises both recipient and donor variables. The 
survival model consists of a flexible nonlinear generalisation of the standard Cox proportional hazard model. 
Instead of using a single prediction model, this model integrates ensembles of artificial neural networks (ANNs). 
In addition, its prediction capability is not limited to one year6.

However, the variables hypertension and antiarrhythmic drugs are not recorded in the UNOS database from 
2007 and onward. To handle this problem, we first imputed them with random values taken from the earlier 
time era. Secondly, we excluded these two variables, and retrained (calibrated) the neural network, utilizing a 
5-fold cross validation of the patients between 1997 and 2008 in UNOS. The same training procedure was used as 
described in the original IHTSA article, but we did not carry out any new variable selection6. We called this model 
the recalibrated IHTSA model.

Web-Based IHTSA Calculator.  The IHTSA model is available via a web application (ihtsa.cs.lth.se), where 
a user can either input a single patient’s data or submit a file of multiple patients in a batch calculator. To com-
pute the results, the user then selects one of the two prediction models developed either on UNOS or IHSLT 
data, corresponding to American or international patients respectively. The submitted file should consist of 
comma-separated values (CSV) reflecting the patient data in a table format. The batch calculator uses this data 
to predict one-, five-, and ten-year survival respectively and median survival time. Once processed, the result 
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consisting of relevant survival and mortality numbers is either emailed back to the user in a CSV format, in the 
case of the batch calculator, or presented directly in the web interface.

The applications were implemented as a Java program, for the graphical user interface part and a Matlab (ver-
sion 2010A and 2015b) application for running the survival models.

Data availability.  The data that support the findings of this study are available from UNOS but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available.
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