GigaScience, 7, 2018, 1-13

GlgA)” A

C[EN{ o E Advance Access Publication Date: 16 January 2018
AN Research

RESEARCH

Dijun Chen!>*, Rongli Shi!, Jean-Michel Papel, Kerstin Neumann?,
Daniel Arend?, Andreas Graner!, Ming Chen? and Christian Klukas®*

1Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben,
Germany, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058,
China, 3Present address: Department for Plant Cell and Molecular Biology, Institute for Biology,
Humboldt-Universitit zu Berlin, 10115 Berlin, Germany and *Present address: Digitalization in Research and
Development (ROM), BASF SE, 67056 Ludwigshafen am Rhein, Germany

*Correspondence address. Dijun Chen, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
Tel: +49-39482-5838; Fax: +49-39482-5407; E-mail: chendijun2012@gmail.com

Background: Image-based high-throughput phenotyping technologies have been rapidly developed in plant science
recently, and they provide a great potential to gain more valuable information than traditionally destructive methods.
Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to
find a predictive biomass model across experiments. Results: In the present study, we constructed 4 predictive models to
examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology
has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results
proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The
high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass
measurement in breeding applications. The prediction performance is still relatively high across experiments under similar
conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new
insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to
determine the most important image-based features related to plant biomass accumulation, which would be promising for
subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions: We have developed quantitative models
to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to
advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly
used for other plant species.
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Biomass accumulation is an important indicator of crop final
product and plant performance. It is thus considered a key
trait in plant breeding, agriculture improvement, and ecologi-
cal applications. The conventional approach of measuring plant
biomass is very time-consuming and labor-intensive as plants
need to be harvested destructively to obtain the fresh or dry
weight [1]. Moreover, the destructive method makes multiple
measurements of the same plant over time impossible. With the
development of new technology, digital image analysis has been
used more broadly in many fields, as well as in plant research
[2-4]. It allows faster and more accurate plant phenotyping and
has been proposed as an alternative way to infer plant biomass
[2,3,5].

In recent years, plant biomass has been subject to intensive
investigation by using high-throughput phenotyping (HTP) ap-
proaches in both controlled growth chambers [2, 3, 6-11] and
field environments [5, 12-17], demonstrating that the ability of
imaging-based methods to infer plant biomass accumulation.
For example, significant genotypic and environmental effects
on plant biomass in Setaria were revealed by the Bellwether
Phenotyping Platform in a controlled environmental condi-
tion [10]. Yang et al. [11] showed that predicted rice biomass
(including shoot fresh and dry weight) based on image-derived
morphological and texture features provided a relatively more
complete representation than manual measurements in dis-
secting its genetic architecture. In this regard, optimized mod-
els plus image-derived features from HTP systems will improve
the power of dissecting genetic architecture of complex traits.
Although there are some developed models for predicting plant
biomass, most of them have certain limitations. For example,
Golzarian et al. (2011) modeled the plant biomass (dry weight) in
wheat (Triticum aestivum L.) as a linear function of projected area,
assuming plant density was constant. However, this method un-
derestimated the dry weight of salt-stressed plants and over-
estimated that of control plants. Even though the authors ar-
gued that the bias was largely related to plant age and the model
might be improved by including the factor of plant age [3], the
differences in plant density between stressed and control plants
may have been caused by different physiological properties of
plants rather than plant age. In another study, Busemeyer et
al. (2013) developed a calibrated biomass determination model
for triticale (x Triticosecale Wittmack L.) under field conditions
based on multiple linear regression analysis of a diverse set
of parameters, considering both the volume of the plants and
their density. Indeed, this model largely improved the predic-
tion accuracy of the calibration models based on a single type
of parameters and can precisely predict biomass accumulation
across environments [15]. However, Buesmeyer et al. (2013) used
very limited traits for the model and question whether it could
be applied broadly in other cases. As mentioned by Yang et al.
(2014), noticeable improvement was achieved by adding mor-
phological features or texture features to the biomass-predicting
model [11]. This suggests that adding more information/traits
could improve the predictive performance of models. Therefore,
a more effective and powerful model is needed to overcome
these limitations and to allow better utilization of the image-
based plant features, which are obtained from noninvasive phe-
notyping approaches.

Individual studies have recently shown that the predic-
tion accuracy of plant biomass based on image-derived fea-
tures is relatively high even using the simplest linear regres-
sion models [3, 10, 18]. However, the performance of nonlinear

predictive models has not been well evaluated. Further, it is still
challenging to apply these models across experiments that are
performed in different environmental conditions or with differ-
ent treatments due to a lack of datasets for assessment. In this
study, we present a general framework for investigating the rela-
tionships between plant biomass (referred to as shoot biomass
hereafter) and image-derived parameters. We applied a multi-
tude of supervised and unsupervised statistical methods to in-
vestigate different aspects of biomass determinants by a list of
representative phenotypic traits in 3 consecutive experiments in
barley. The results showed that image-based features can accu-
rately predict plant biomass output and collectively reflect large
proportions of the variation in biomass accumulation. We elu-
cidated the relative importance of different feature categories
and of individual features in the prediction of biomass accumu-
lation. The differences in the contribution of the image-based
features for the prediction of the 2 types of biomass measure-
ments, fresh weight and dry weight, were compared as well. Fur-
thermore, our models were tested for the possibility of predict-
ing plant biomass in different experiments with different treat-
ments.

In the previous studies [19, 20], we have shown that a single
phenotypic trait—3-dimensional digital volume, which is a de-
rived feature from projected side and top areas—can be reason-
ably predictive to estimate plant biomass accumulation. We ex-
pect that the predictive power could be improved when mul-
tiple phenotypic traits are combined in a prediction model as
plant biomass is determined not only by structural features
but also by density (physiological properties). To further inves-
tigate the relationship between image-derived parameters and
plant biomass accumulation, deep phenotyping data that con-
tain both structural (e.g., geometric traits) and physiological
traits (e.g., plant moisture content as reflected by near-infrared
[NIR]-related traits) were analyzed (Fig. 1A and B). Pot weights of
the plants were notincluded for the analysis, although they were
weighed regularly. It might reflect the growth tendency of the
whole plant (shoots and roots), where herein we focused mainly
on shoots.

Models were constructed to quantify the ability of imaging-
based features to statistically predict the biomass accumulation.
The models were developed by using 4 widely used machine-
learning methods (Fig. 1C): multivariate linear regression (MLR),
multivariate adaptive regression splines (MARS), random for-
est (RF), and support vector regression (SVR), which have ex-
tensively been used in accurate prediction of gene expression
[21-25] and DNA methylation levels [26-29]. We combined the
biomass measurements (fresh weight [FW] and/or dry weight
[DW]) with image-based features and then divided them into a
training dataset and a test dataset. A model was trained on the
training dataset and has then been applied to the test dataset
to predict the plant biomass. The relationship between plant
biomass accumulation and image-based features was assessed
based on the criterion of the Pearson correlation coefficient (r)
between the predicted values and the actual values, or the co-
efficient of determination (R? ; the percentage of variance of
biomass explained by the model) (Fig. 1D).

Our methodology was applied to 3 consecutive experiments
(Fig. 2A; Supplemental Table S1 and Data S1), which were
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Figure 1: Modeling pipeline for predicting plant biomass accumulation based on image-derived parameters. A, Input data, including high-throughput image data and
manually measured biomass data. Plants were phenotyped using various cameras such as visible (or color), fluorescence, and near-infrared sensors. Image analysis
was performed with IAP software [10] for feature extraction. The same plants were harvested and measured at the end of growth. Generally, 2 types of biomass were
measured: fresh weight and dry weight. B, Trait processing. All the phenotypic traits were grouped into 4 categories: geometric, color-related, FLUO-related, and NIR-
related traits. Phenotypic data were subjected to quality check to remove low-quality data. C, Each plant was described by a list of traits, resulting in a predictor matrix
whose rows represent plants and columns represent image-based traits. This matrix was used to predict plant biomass accumulation by MLR, MARS, RF, and SVR
models. The right panel represents the schema of model validation. In the first schema, a dataset (Dataset 1) was divided into training set and testing set in a 10-fold
cross-validation manner. In the second schema, the whole of 1 dataset (Dataset 1) was used for training and another dataset (Dataset 2) was used for testing. D, Model
selection, evaluation, and result interpretation. The correlation of the predicted values and measured values was used to assess the overall performance of the model.

designed to investigate vegetative biomass accumulation in re-
sponse to 2 different watering regimes under semicontrolled
greenhouse conditions in a core set of barley cultivars by nonin-
vasive phenotyping [20, 30]. There were 312 plants with 18 geno-
types for each experiment. Plants were monitored using 3 types
of sensors (visible, fluorescence [FLUO], and NIR) in a LemnaTec-
Scanalyzer 3D imaging system. An extensive list of phenotypic
traits ranging from geometric (shape descriptors) to physiologi-
cal properties (i.e., color-, FLUO-, and NIR-related traits) could be
extracted from the image data (Supplemental Data S1) using our

image processing pipeline IAP [19]. A representative list of traits
for each plant in the last growth day were selected to test their
ability to predict plant biomass.

Coordinated patterns of plant image-based profiles and
their relation to plant biomass

We extracted a list of representative and nonredundant pheno-
typic traits for each plant from image datasets for each experi-
ment (see Materials and Methods) (Fig. 1B). In common for these
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Figure 2: Predictability of image-based traits to plant biomass. A, Schema depicting 3 consecutive high-throughput phenotyping experiments in barley. Plants in each
experiment were harvested for biomass measurements: fresh weight (for all experiments) and dry weight (only for experiment 1). B, Scatter plots showing projections
of the top 4 PCs based on PCA of image-based data. The component scores (shown in points) are colored and shaped according to the experiments (as legend listed
in the box). The component loading vectors (represented in lines) of all traits (as colored according to their categories) were superimposed proportionally to their
contribution. C, Boxplot showing the distribution of FW across different experiments. D, A dendrogram from cluster analysis based on the means of FW data over
genotypes. E, Pearson’s correlation (mean values in the 3 datasets) between image-based traits and FW. Traits with the largest mean correlations values are labeled: 1:
sum of leaf length (side view); 2: sum of FLUO intensity (side); 3: plant area border length (side); 4: sum of NIR intensity (top); 5: sum of FLUO intensity (top); 6: projected

area (top); 7: projected area (side); and 8: digital volume.

experiments, overall 36 high-quality traits that describe plant
growth status in the last growth day were obtained. As a result,
each dataset was assigned a matrix whose elements were the
signals of different features in different plants (Fig. 1C). Prin-
cipal component analysis (PCA) (Fig. 2B) was applied to these
datasets. We found that plants from different experiments with
different treatments showed clearly distinct patterns of pheno-
typic profiles. For instance, stressed plants and control plants
were separated using PCA by their first principal component
(PC1) and also by the top clusters obtained in hierarchical clus-
tering analysis (HCA), while plants from different experiments
were distinguished by PC2 and PC3 in PCA or subordinate clus-
ters in HCA. Accordingly, it could be observed that the biomass

(e.g., FW) of plants from different experiments with different
treatments was significantly different (2-way ANOVA, P < 2e-
16) (Fig. 2C). The relationship was reflected by a dendrogram
from cluster analysis based on the means of FW over genotypes
(Fig. 2D). Furthermore, the overall phenotypic patterns of these
plants were similar to their biomass output (Fig. 2B-D), revealing
that these image-based features were potential factors reflect-
ing the accumulation of plant biomass. We thus explored the
relationship between the signals of these image-based features
and the level of plant biomass output. We calculated the cor-
relation coefficients for each dataset. The correlation patterns
were consistent for different datasets, and more than half of the
features revealed high correlation coefficients (r > 0.5) (Fig. 2E).



Interestingly, both structural features (such as digital volume,
projected area, and the length of the projected plant area border)
and density-related features (such as NIR and FLUO intensities)
were involved in the top ranked features.

The above analyses suggest that plant biomass can be at least
partially inferred from image-based features. To examine which
model has the best performance and to select an appropriate
model for biomass prediction, we then applied our regression
models (Fig. 1C) to predict plant biomass using image-based fea-
tures. Our analyses were focused on the first experiment (i.e.,
Exp 1), as the phenotypic traits of the corresponding dataset
have been intensively investigated in our previous study [20]. In
this experiment, plant biomass was quantified in 2 forms: FW
and DW. We selected a collection of 45 image-derived parame-
ters from this dataset that were nonredundant and highly rep-
resentative.

We next tried to predict FW and DW based on this set
of image-derived features using 4 different regression models
(MLR, RF, SVR, and MARS) (Fig. 3). The models were tested on
control plants, stressed plants, and the whole set of plants, re-
spectively (Fig. 3A and C). The prediction accuracy of our models
(the correlation coefficients between the predicted biomass and
the actual biomass) was first compared with the ability of indi-
vidual features to predict biomass. It was found that our models
generally showed better prediction power than the single digital
volume-based prediction (Fig. 3B and D), indicating that addi-
tional features improved the predictive power. Then the perfor-
mance of these models was compared and evaluated. Overall,
the performance of all the tested models was roughly similar
for the prediction of both FW (Fig. 3B) and DW (Fig. 3D) under
stressed conditions. The prediction accuracy of our models is
still comparable to the results from previous studies [3, 6, 18]
based on MLR models, even though many more features were
considered in our study. The RF model slightly outperformed
other models in predicting biomass of control plants, account-
ing for the most variance ( R? = 0.85 for FW and R? = 0.62 for
DW) (Fig. 3B and D, left panels) and showed the best prediction
accuracy (Pearson’s correlation r = 0.93 for FW and r = 0.80 for
DW) (Fig. 3B and D, middle panels). Of note, RF is the only model
showing better performance than single digital volume-based
prediction (Fig. 3D). In this study, we focused on the results from
the RF method in the rest of analysis, although results from dif-
ferent methods were highly consistent and led to the same con-
clusions.

As mentioned above, the image-based features could be classi-
fied broadly into 4 categories: plant structure properties, color-
related features, NIR signals, and FLUO-based traits (Fig. 1B).
The last 3 types of features reflect plant physiological properties
and can be considered plant density-related traits and are thus
related to their fresh or dry matter content. For each individual
feature or each type of features, we constructed a degenerate
model for biomass prediction using the corresponding feature(s)
as the predictor(s). We compared the capability of each individ-
ual or type of feature for predicting biomass accumulation in the
first experiment (i.e., experiment 1). Geometric features showed
the most predictive power among the 4 categories for prediction
of both FW and DW, but were slightly less predictive than all

features in a full model (Fig. 4A and B). Strikingly, the pre-
dictability of other types of features (such as color-related and
FLUO-based traits) was substantial, indicating that these traits
may act as unforeseen factors in biomass prediction. In addi-
tion, the NIR-based features showed higher predictive capability
for FW than for DW in control and stressed plants, revealing
that NIR signals were important factors in determining FW
accumulation.

Next, we investigated the relative importance (RI) of each fea-
ture for predicting biomass using a full model in the whole set
of plants (i.e., “control + stressed plants”) (Fig. 4C and D, upper
panels). In an RF model, the RI of a feature is calculated as the
increase of prediction error (%IncMSE) when phenotypic data for
this feature are permuted [31], and thus indicates the contri-
bution of the feature after considering its intercorrelation in a
model. We found that the top 10 most important features in the
full model for predicting FW and DW included both structure-
and density-related traits. As expected, projected area (from
side or top view) and digital volume were the top ranked fea-
tures, which have individually been considered proxies of shoot
biomass in previous studies [3, 20, 18, 32-37]. However, several
geometric and color-related features that are top ranked in the
prediction have not been used in biomass predictions in previ-
ous analysis, although they are widely available among pheno-
typing platforms.

In principle, we would expect that highly important features
in the full model would be related to a high predictive power
in a degenerate model. Surprisingly, there was no clear corre-
lation observed between the feature importance and its predic-
tive power (Fig. 4C and D). For example, several color-related and
NIR-based features that were in the top 10 list of the most im-
portant features revealed insubstantial predictive power in indi-
vidual models. This observation implies that the relation of the
underlying biomass determinants is extremely complex and not
a linear combination of the investigated features.

Furthermore, we compared the relative importance of each
feature in predicting FW and DW (Fig. 4E). Although a positive
correlation (r = 0.88) between the feature importance for FW and
DW could be observed, several features showed large differences
in their ability to interpret FW or DW, including “nir.intensity”
(derived from side view images), “compactness.01” (top),
“hull.pc1” (top), “leaf.count” (side), “hsv.h.average” (top), and
“lab.a.mean” (top). For instance, NIR intensity and plant com-
pactness (top view) may be important for predicting FW but not
for DW. We also performed the above analyses by using only
control (Supplemental Fig. S1) or stressed plants (Supplemental
Fig. S2), respectively. We found that the patterns of feature im-
portance were distinct between these 2 groups of plants. For ex-
ample, NIR intensity was ranked as a top 5 feature for predict-
ing FW for stressed plants but was not substantially important
for control plants. These findings suggest that there are differ-
ences in underlying plant biomass determinants in these kinds
of treatment situations that are also reflected by their image-
based phenotypic traits.

In order to explore whether our models were generalizable
across different experiments, we applied our models trained in
1 experiment to predict biomass (herein FW) in other experi-
ments using a common set of features. Examples of such cross-
experiment predictions are shown in Fig. SA. We tested and il-
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Figure 3: Quantitative relationship between image-based features and plant biomass. A and C, Scatter plots of manually measured plant biomass (fresh weight and
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relationship between image-based features and biomass was evaluated by Pearson’s correlation coefficient (PCC r and its corresponding P-value), RMSRE , and the
percentage of variance explained by the models (the coefficient of determination R?). B and D, Summary of the predictive power of each regression model. The results
were based on 10-fold cross-validation with 10 trials. Models were evaluated based on control plants, stressed plants, and the whole set of plants. The solid lines
represent the predictive performance based on the single “digital volume” feature.
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top 6 most different features are highlighted and labeled.

lustrated all possibilities for cross-prediction using the whole set
of plants in the corresponding experiment. In general, the pre-
diction accuracy within individual experiments remained high
(r > 0.97 and R? > 0.93 for all 3 experiments) (Fig. 5B), revealing
that our models were effectively predicting plant biomass based
on image-derived feature signals among different experiments.
Moreover, the prediction accuracy for cross-experiment predic-
tion, especially between the first 2 experiments (r > 0.97 and
R? > 0.94 ), was still relatively high, implying that our models

generally captured the relationships among the various image-
based features. However, the third experiment had relatively
weaker correlations than the other 2 experiments for predict-
ing biomass (with r > 0.81 and R? > 0.65) (Fig. 5A). This might
be mainly due to seasonal (temperature and illumination) dif-
ferences that caused different plants behaviors, namely lower
biomass for both control and stressed plants in experiment 3
[30]. This suggests that different plant growth conditions might
cause some variation for cross-experiment prediction.
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Figure 6: Comparison of prediction accuracy across different treatments. Refer to Fig. SA for legend. The analysis was performed for control and stressed plants

separately.

At the same time, we tested cross-predictability of our mod-
els using treatment-specific data in the experiments (Fig. 6).
Similar results were obtained as above using the whole dataset
(Fig. 5B). The weak predictive power for cross-prediction involv-
ing control plants from the third experiment was most clearly
observable in the low accuracy in the biomass prediction of
this particular subset of plants. Generally, control and stressed
plants were found to have very weak predictive power when
related to each other (Fig. 6), as also supported by the distinct
patterns of relative feature importance between these 2 plant
groups (Supplemental Figs S1 and S2). For each experiment, the
prediction accuracy was higher for stressed plants compared
with control plants. This might have resulted from the imaging
analysis process. Relatively small plants, stressed plants in this
case, would gain more clear images due to less overlapping or

less area out of range. Therefore, image quality would be an im-
portant variation source for our modeling and should be taken
into consideration for any application.

Discussion

Biomass is a complex but important trait in functional ecol-
ogy and agronomy for studying plant growth, crop produc-
ing potential, and plant regeneration capabilities. Many differ-
ent techniques, either destructive or nondestructive, have been
used to estimate biomass [1-3, 5-17]. Compared with the tra-
ditional destructive methods for measuring biomass, nonde-
structive imaging methods provide a faster, more accurate ap-
proach for plant phenotyping. In recent years, more and more
high-throughput plant phenotyping platforms have been set



up and applied worldwide. Accordingly, it becomes a current
challenge to establish models utilizing the big datasets gained
from high-throughput imaging systems. Accurately predicting
biomass from image data requires efficient mathematical mod-
els as well as representative image-derived features.

In this study, we have presented a systematic analysis of re-
lationships between plant biomass accumulation and image-
derived signals to confirm the assumption that biomass can be
accurately predicted from image-based parameters. We built a
random forest model of biomass accumulation using a com-
prehensive list of representative image-based features. The
comparison between a random forest model and alternative
regression models indicated that the RF model outperforms
other models in terms of (1) better predictive power—especially
in comparison with the linear model, confirming the com-
plex phenotypic architecture of biomass, (2) better outperfor-
mance than a single feature prediction model—arguing the
complex phenotypic makeup of biomass, and (3) feasible bio-
logical interpretability—the ability to readily extract informa-
tion about the importance of each feature in prediction. The
high prediction accuracy based on this model, in particular the
cross-experiment performance, is promising to relieve the phe-
notyping bottleneck in biomass measurement in breeding appli-
cations. For example, based on the established small reference
dataset that is used to train an RF model, it is possible to pre-
dict biomass in several large plant populations within 1 experi-
ment or across several experiments using image data by taking
advantage of high-throughput phenotyping technologies. Alter-
natively, the model can be trained from a much larger reference
panel of plants that are grown in diverse environmental condi-
tions, which is then applied to a diverse set of experiments. The
first evidence for this notion is the observation that our model
showed more predictive power in plants with 2 treatments than
with a single treatment (Fig. 3, B and D). Indeed, when applying
our model to the combined dataset from all 3 experiments, we
found that the prediction accuracy remains very high (R? = 0.96
and r = 0.98, average values from 10 times the 10-fold cross-
validation). To keep the high prediction accuracy in other ap-
plications, there are some points that should be taken into con-
sideration. Considering the environmental effects on biomass
accumulation, the application of our model will require the test-
ing experiments to show similar conducted conditions as those
of the reference experiments. This means that the plant cul-
tivation conditions should be standardized and any noise that
might lower image quality should be avoided. Another approach
to improve applicability of models, which could not be tested in
this study, would be to improve the database for the training by
acquiring data from additional environmental sensors. Temper-
ature, humidity, and illumination data would certainly help to
explain differences in the growth patterns among experiments,
performed in different growth seasons. To this end, we expect
that our approach is extensible by incorporating such sensor
data in the data matrices. Furthermore, our results can provide
suggestive hints for biologists to set up phenotyping infrastruc-
tures for investigation of plant biomass. For instance, a visible
light imaging system would be sufficient to accurately predict
fresh weight based on the observation that geometric features
alone show high prediction accuracy (Fig. 4A). However, to in-
vestigate dry weight, it would be helpful to include an additional
near-infrared camera system under normal growth conditions
and an additional fluorescence camera system under drought
stress conditions (Fig. 4B).

In contrast to previous studies [2, 3, 6, 7, 18, 32-37], in which
biomass was investigated using only a single image-derived

parameter (such as projected area) or several geometric pa-
rameters, our analyses extended these studies by incorporat-
ing more representative features that cover both structural
and physiological-related properties into a more sophisticated
model. Although the predictive power of our model is roughly
higher than that of single feature-based prediction, such as dig-
ital volume (Fig. 3) [20], our model also reveals the relative con-
tribution of individual features in the prediction of biomass. The
information regarding the importance of each feature will offer
new insights into the phenotypic determinants of plant biomass
outcome. Interestingly, we found that several top ranked fea-
tures, such as digital volume and NIR intensity, showed genetic
correlations with biomass of fresh weight (Fig. 4C) [20], implying
that these top-ranked features may represent the main “phe-
notypic components” of biomass outcome and that they can be
further used to dissect genetic components underlying biomass
accumulation. As image-based high-throughput phenotyping in
plants developed mainly in recent years, and therefore few cor-
responding modeling studies have been performed, we believe
that our model could be further improved when new types of
cameras and/or newly defined features become available.

In summary, we have developed a quantitative model for
dissecting the phenotypic components of biomass accumula-
tion based on image data. Apart from predicting biomass out-
come, the methods can be used to determine the most impor-
tant image-based features related to plant biomass accumula-
tion, which are promising for subsequent genetic mapping to
uncover the genetic basis of biomass.

As high-throughput plant phenotyping is a technique that is be-
coming more and more widely used for automated phenotype in
plant research, especially in plant breeding, we anticipate that
the methodologies proposed in this work will have various po-
tential applications. We anticipate that the analysis results will
be useful to advance our views of the phenotypic determinants
of plant biomass outcome, and the statistical methods can be
broadly used for other plant species and therefore assist plant
breeding in the context of phenomics.

Barley plant image data were obtained as described previously
[20, 30]. Briefly, a core set of 16 2-rowed spring barley culti-
vars (Hordeum vulgare L.) and 2 parental cultivars of a double
haploid (DH) were monitored for vegetative biomass accumula-
tion. Three independent experiments with identical setup were
performed in a (semi-)controlled greenhouse at IPK by using
the automated phenotyping and imaging platform LemnaTec-
Scanalyzer 3D. Experiments were performed consecutively from
May to November 2011 over a period of 58 days each (Supple-
mental Table S1). The greenhouse setup enabled sowing for the
next experiment 2 days before the old experiment ended. For
this, new pots were placed in the middle of the greenhouse,
while the old experiment was still on the conveyer belts.

Each experiment consisted of 2 treatments: well-watered
(control treatment) and water-limited (drought stress treat-
ment). In each treatment, 9 plants per core set cultivar as well as
6 plants per DH parent were tested. This resulted in a total of 312
plants per experiment, corresponding to the maximal capacity
of the phenotyping platform. Watering and imaging were per-



formed daily. Drought stress was imposed by intercepting water
supply from 27 days after sowing (DAS 27) to DAS 44. Stressed
plants were rewatered at DAS 45. In total, for each experiment,
about 100 GB of raw (image) data was accumulated. At the end of
experiments (DAS 58), plants were harvested to measure above-
ground biomass in the form of plant fresh weight (for all exper-
iments) and/or dry weight (for experiment 1).

Image datasets were processed by the barley analysis pipelines
in the IAP software (version 1.1.2) [19]. Analyzed results were ex-
ported in the csv file format via IAP functionalities, which can
be used for further data inspection. The result table includes
columns for different phenotypic traits and rows as plants are
imaged over time. The corresponding metadata are included in
the resulting table as well.

Each plant was characterized by a set of phenotypic traits
also referred to as features, which were grouped into 4 cate-
gories: geometric features, fluorescence-related features, color-
related features, and near-infrared-related features. These traits
were defined by considering image information from differ-
ent cameras (visible light, fluorescence, and near infrared) and
imaging views (side and top views). See the IAP online documen-
tation [38] for details about trait definition.

Feature selection was performed with the same procedure as
described in Chen et al. [20]. We applied the feature selection
technique to each dataset. Generally, we captured almost identi-
cal subset features from different datasets. We manually added
several representative traits due to removal by variance infla-
tion factors. For example, the digital volume and projected area
are highly correlated with each other, but we kept both of them,
because we would investigate the predictive power of both fea-
tures. Moreover, the regression models we used are insensitive
to collinear features. We thus kept as much of the representative
features as possible. To apply the prediction models among dif-
ferent datasets, a common set of features supported by all the
datasets was used.

Each plant can be presented by a representative list of pheno-
typic traits, resulting in a matrix X,.m for each experiment,
where n is the number of plants and m is the number of pheno-
typic traits. Missing values were filled by mean values of other
replicated plants. To make the image-derived parameters from
diverse sources comparable, we normalized the columns of X
by dividing the values with the maximum value of each column
across all plants. Plants with empty values of manual measure-
ments (FW and DW) were discarded for analysis. These trans-
formed datasets were subjected to regression models.

Hierarchical clustering analysis and principle component analy-
sis were performed on the transformed data matrix X,.m in the
same way as described in Chen et al. [20]. We also performed
HCA using the genotype-level mean value of FW data to check
the similarity of overall plant growth patterns in different exper-
iments.

(1)

To understand the underlying relationship between image-
derived parameters and the accumulated biomass (such as FW
and DW), we constructed predictive models based on 4 different
machine-learning methods: MLR, MARS, RF, and SVR. In these
models, the normalized phenotypic profile matrices X,.m for
a representative list of phenotypic traits were used as predic-
tors (explanatory variables) and the measured DW/FW as the re-
sponse variable Y .

All these models were implemented in R (release 2.15.2) [39].
To assess the relative contribution of each phenotypic trait to
predicting the biomass, we also calculated the relative feature
importance for each model. Specifically, for the MLR model, we
used the “Im” function in the base installation packages. The
relative importance of predictor variables in the MLR model was
estimated by a heuristic method [40], which decomposes the
proportionate contribution of each predictor variable to R? . For
MARS, we used the “earth” function in the earth R package. The
“number of subsets (nsubsets)” criterion (counting the number
of model subsets that include the variable) was used to calculate
the variables’ feature importance, which is implemented in the
“evimp” function. For the RF model, we used the randomForest R
package, which implements Breiman’s random forest algorithm
[31]. We chose the “%IncMSE” (increase of mean squared error) to
represent the criteria of relative importance measure. For SVR,
we utilized the e1071 R package, which provides functionalities
to use the libsum library [41]. The absolute values of the coef-
ficients of the normal vector to the “optimal” hyperplane can
be considered the relative importance of each predictor variable
contributing to regression [42, 43].

To evaluate the performance of the predictive models, we
adopted a 10-fold cross-validation strategy to check the predic-
tion power of each regression model. Specifically, each dataset
was randomly divided into a training set (90% of plants) and a
testing set (10% of plants). We trained a model on the training
data and then applied it to predict biomass for the testing data.
Afterwards, the predicted biomass in the testing set was com-
pared with the manually measured biomass. The predictive ac-
curacy of the model can be measured by

the Pearson correlation coefficient (r) between the predicted
values and the observed values;

the coefficient of determination (R? ), which equals the fraction
of variance of biomass explained by the model, defined as

SSres 1- Zin: 1 (% —)A’i)2

RZ=1- = ,
SStot Y- )-’)2

where SS,s and SSi: are the sum of squares for residuals
and the total sum of squares, respectively, ¥ is the predicted
biomass of the i th plant, y; is the observed biomass of the i
th plant, y is the mean value of the observed biomass, and

the root mean squared relative error of cross-validation is de-
fined as




where s denotes the sample size of the testing dataset.

We repeated the cross-validation procedure 10 times. The
mean and standard deviation of the resulting R? and RMSRE
values were calculated across runs.

To evaluate the applicability of our methods across seasons
(thus different growth environments) and treatments (e.g., con-
trol vs drought stress) in the same season, we applied the mod-
els in different contexts with cohort validation. Specifically, we
trained the biomass prediction models under 1 specific context
and predicted biomass in another different context and vice
versa. The predictive accuracy of the model was evaluated based
on the measures R? and RMSRE, as described above. Further-
more, the predictive power was reflected by the bias  between
the predicted and observed values, defined as

noYi—y
R D

Yi

where n denotes the sample size of the dataset. This bias indi-
cates over- (1 > 0) or underestimation (1« < 0) of biomass.

* Project name: Modeling of plant biomass accumulation with
HTP data

* Project home page: https://github.com/htpmod/HTPmod

® Operating system(s): Windows, Linux, and Mac OS

* Programming language: R

¢ License: open source under GNU GPL v3.0

The raw image datasets, as well as analyzed data sup-
porting the results of this article, are available in the
PGP repository [44] under https://dx.doi.org/10.5447/IPK/2017/24,
https://dx.doi.org/10.5447/IPK/2017/25, and https://dx.doi.org/
10.5447/1PK/2017/26, according to the ISA-Tab format and the
recommendations of the Minimum Information About a Plant
Phenotyping Experiment (MIAPPE) standard [45]. The selected
data for modeling are available in Supplemental Data S1. Sup-
porting data, including metadata tables, raw image files, and an
archival copy of HTPmod are also available via the GigaScience
repository, GigaDB [46].

Supplemental Figure S1. The relative importance of image-based
features in the prediction of biomass in control plants. Refer to
Fig. 4 for legend. The calculation was based on control plants.

Supplemental Figure S2. The relative importance of image-
based features in the prediction of biomass in stressed plants.
Refer to Fig. 4 for legend. The calculation was based on stressed
plants.

Supplemental Table S1. Overview of 3 high-throughput phe-
notyping experiments in barley.

Supplemental Data S1. Manual data and image-derived data
in the 3 experiments.

DAS: days after sowing; DW: dry weight; FLUO: fluorescence;
FW: fresh weight; HCA: hierarchical clustering analysis; HTP:
high-throughput phenotyping; MARS: multivariate adaptive re-
gression splines; MLR: multivariate linear regression; NIR: near-

infrared; PCA: principal component analysis; PCC: Pearson
correlation coefficient; RF: random forest; RMSRE: root mean
squared relative error; SVR: support vector regression.
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