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TRIM5� is an important host restriction factor that could
potently block retrovirus infection. The SPRY domain of
TRIM5� mediates post-entry restriction by recognition of and
binding to the retroviral capsid. Human TRIM5� also functions
as an innate immune sensor to activate AP-1 and NF-�B signal-
ing, which subsequently restrict virus replication. Previous
studies have shown that the AP-1 and NF-�B signaling activa-
tion relies on the RING motif of TRIM5�. In this study, we have
demonstrated that the SPRY domain is essential for rhesus
macaque TRIM5� to activate AP-1 but not NF-�B signaling.
The AP-1 activation mainly depends on all of the �-sheet barrel
on SPRY structure of TRIM5�. Furthermore, the SPRY-medi-
ated auto-ubiquitination of TRIM5� is required for AP-1 acti-
vation. This study reports that rhesus macaque TRIM5� mainly
undergoes Lys27-linked and Met1-linked auto-polyubiquitina-
tion. Finally, we found that the TRIM5� signaling function was
positively correlated with its retroviral restriction activity. This
study discovered an important role of the SPRY domain in
immune signaling and antiviral activity and further expanded
our knowledge of the antiviral mechanism of TRIM5�.

During the time that they have been exposed to retroviruses,
mammalian cells have evolved many intracellular proteins that
function as innate defenses against retroviral pathogens (1–6).
Among these proteins, the tripartite motif containing 5�
(TRIM5�) is particularly significant, as it expresses multi-
functional antiviral activity. First, rhesus macaque TRIM5�
(RhTRIM5�)2 inhibits retrovirus infection at the post-entry
step by recognizing the retroviral capsid and then accelerating
its premature uncoating, resulting in proteasomal degradation
of the viral reverse transcription complex (4, 7). Second,
RhTRIM5� decreases HIV-1 production through degrada-
tion of HIV-1 Gag proteins (8). Finally, human TRIM5�

(huTRIM5�) has been identified as a novel pattern recognition
receptor, sensing the retrovirus capsid lattice, and contributes
to innate immune signaling (9).

TRIM5� is a member of the tripartite motif (TRIM) protein
family, members of which are encoded by over 100 genes in
humans (10). TRIM proteins have a common structure named
RBCC that features three major motifs: N-terminal RING,
B-box, and coiled-coil domains. Over half of the TRIMs contain
a SPRY/B30.2 domain at the C terminus that mediates protein
interactions. In most cases, the RING domain has E3 ligase
activity (11, 12) and activates Ubc13-ubiquitin (Ub) conjugate
through its dimerization (13). The B-box and coiled-coil
domains promote its oligomerization, which is required for the
TRIM protein to form cytoplasmic or nuclear bodies (14 –18).
Furthermore, the RBCC motif was found to contribute to
TRIM assembly, which is critical for the TRIM protein’s
ubiquitination activity (19). The SPRY domain of TRIM5�
mediates post-entry restriction by recognizing and binding
to the retroviral capsid (20 –22). However, the SPRY domain
has recently been considered to serve some unknown func-
tions as well as binding to the capsid (23, 24). For instance,
four putative SUMO-interacting motifs were reported in the
SPRY domain, and SUMO-interacting motifs are responsible
for the antiviral activity of TRIM5� (25–27). The SPRY
domain may have additional functions that require further
investigation.

HuTRIM5� regulates immune signaling mainly by interact-
ing with mitogen-activated protein kinase kinase kinase 7
(TAK1) and then activates downstream pathways, including
activator protein-1 (AP-1) and nuclear factor-�B (NF-�B) sig-
naling (6, 9, 28). TAK1 is an important MAP3K activated by
unanchored polyubiquitin chains (29). Quite a few studies indi-
cate that TAK1 polyubiquitination is involved in signaling
pathways (30 –32). HuTRIM5� recruits E2 Ub-conjugating
enzymes UBC13-UEV1A by the RING domain to generate free
Lys63-linked polyubiquitination, resulting in TAK1 activation
(9). However, the roles of the C-terminal function of TRIM5�
in signaling activation and the mechanisms involved are still to
be investigated.

This study was planned to evaluate (i) whether and how the
SPRY domain of RhTRIM5� contributes to innate immune sig-
naling and (ii) whether this function is correlated to its antiviral
activity. In this study, it was demonstrated for the first time that
the SPRY domain of RhTRIM5� was vital for activating the
AP-1 signal, but not NF-�B. The molecular basis of SPRY for
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the activation of AP-1 by RhTRIM5� was mapped to the
�-sheet barrel on the SPRY structure. Moreover, AP-1 activa-
tion of RhTRIM5� was found to be positively correlated with its
auto-ubiquitination. A significant finding was that RhTRIM5�
mainly undergoes Lys27- and Met1-linked auto-ubiquitination.

Results

SPRY is indispensable for TRIM5� activating AP-1 signaling

HuTRIM5� has been identified to activate AP-1 and NF-�B.
RhTRIM5� and huTRIM5� were compared for their NF-�B
and AP-1 signaling activation capacity. We found that
RhTRIM5� stimulated both NF-�B and AP-1 transcriptional

reporters with magnitudes similar to those of human TRIM5�
(Fig. 1, A–C). We then tested RhTRIM5�C15/18A (C15/18A),
a RING E3 Ub-ligase domain mutation construct (24). It was
found that C15/18A had a reduced capacity to activate NF-�B
and AP-1 of around 5– 6-fold (Fig. 1, D and E), which is similar
to the findings of a previous study that used HuTRIM5� (9). C
terminus–truncated RhTRIM5 with a deletion of the SPRY
domain (RhTRIM5�S) was constructed to test and determine
the functionality of the SPRY domain of TRIM5� in signal
transduction, (Fig. 1A). Surprisingly, RhTRIM5�S did not alter
the capacity to activate NF-�B, indicating that the SPRY
domain may not be necessary for NF-�B signal activation
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Figure 1. SPRY is indispensable for TRIM5�-mediated activation of AP-1 signaling. A, schematic diagram of the indicated TRIM5 proteins and truncations
with deletion (�) of the C-terminal domain. The colored region indicates the RING, B-box 2, coiled-coil, and C-terminal SPRY domain. B–G, HEK293T cells were
transfected with the indicated pcDNA3.1-based expression plasmids and luciferase reporters for NF-�B (B, D, and F) or AP-1 (C, E, and G), followed by luciferase
assay after 24 h. Bars, mean luciferase activity levels � S.D. (error bars). All of these data were acquired from at least three independent experiments. Shown is
immunoblot analysis (bottom) of HEK293T cells transfected with the indicated TRIM proteins and deletion mutants (top). Relative luciferase activity was
measured and statistically analyzed by unpaired t test (*, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001; ns, no significant). p values of �0.05 were
considered statistically significant.
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(Fig. 1F). However, RhTRIM5�S dramatically lost the capacity
to activate AP-1 (Fig. 1G), suggesting that SPRY plays a critical
role in AP-1 signaling activation.

Macaca fascicularis TRIM5� is deficient in AP-1 activation

M. fascicularis, a closely related species of rhesus macaque,
also encodes TRIM5� loci. Interestingly, it was found that
M. fascicularis TRIM5� (FaTRIM5�) was deficient in activat-
ing AP-1 (Fig. 2A). By comparing the sequences of FaTRIM5�
and RhTRIM5�, 13 amino acid differences were identified,
including one located in the N terminus, three in the coiled-
coil domain, two in Linker-2, and the other seven in SPRY
(Fig. 2B). We further explored whether a single amino acid
substitution could alter the signaling activity of RhTRIM5�.
The results revealed that only the mutation of proline to
serine at the 453 site on the SPRY (RhTRIM5�-S453P)
aborted its ability to activate AP-1 (Fig. 2C). To confirm this
result, HuTRIM5�-S453P and FaTRIM5�-P453S were con-
structed. As expected, HuTRIM5�-S453P lost the capacity
to activate AP-1, whereas FaTRIM5�-P453S acquired this
function (Fig. 2D). These results demonstrated that the
mutation of serine at 453 of TRIM5� significantly influences
its AP-1 activation.

Whole �-sheet barrel of SPRY was significant for
TRIM5�-mediated AP-1 activation

To identify the critical motif of RhTRIM5� for AP-1 acti-
vation, we constructed and tested its truncated variants,
RhTRIM5�-365 and RhTRIM5�-433 (Fig. 3A). We found that
both of the molecules showed a dramatic loss in their capacity
to activate AP-1 (Fig. 3B). To confirm the key motif of
RhTRIM5�, other truncated variants were tested (Fig. 3C).
RhTRIM5�-484, RhTRIM5�-458, RhTRIM5�-433, RhTRIM5�-
470, and RhTRIM5�-445 had 70 –90% reductions in AP-1 acti-
vation compared with wild-type RhTRIM5� (Fig. 3D). These
results imply that intact SPRY is required for RhTRIM5� to
activate AP-1.

SPRY has a typical �-sheet barrel structure. To determine the
key amino acids of TRIM5� for AP-1 activation, the SPRY
structure was artificially marked into four parts: the biggest
�-helix (red), the �-sheets on the same side of Ser453 (orange),
the �-sheets on the opposite side of Ser453 (purple), and mar-
ginal small �-sheets (green) (Fig. 3E). Further, serial point mu-
tations were constructed, named 1–30 (Fig. 3F), where the
marked amino acids were mutated into arginine. Sites on the
�-helix (marked in red) and the small �-sheets (marked in
green) did not affect AP-1 activation (Fig. 3G). However, most
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Figure 2. FaTRIM5� failed to activate AP-1. A, HEK293T cells were transfected with the individual TRIM expression plasmids and AP-1 luciferase reporter and
TK. Reporter assays were performed at 24 h after transfection. Bars, mean luciferase activity levels � S.D. (error bars) (n � 4). IB analysis (bottom) of HEK293T cells
transfected with the indicated TRIM5� proteins (top). B, schematic diagram of the different amino acids between RhTRIM5� and FaTRIM5�. C, reporter assays
of a panel of RhTRIM5� mutations, for which amino acids were replaced by corresponding ones in FaTRIM5�, were performed similarly as in A. D, HEK293T cells
were transfected with the AP-1 promoter reporter plasmid and with the mutants of RhTRIM5�, FaTRIM5�, and HuTRIM5� (expression levels were detected by
IB) and were then subjected to a Dual-Luciferase assay. Bars, mean luciferase activity levels � S.D. (error bars). All of these data were acquired from at least three
independent experiments. Relative luciferase activity was measured and statistically analyzed by unpaired t test (*, p � 0.05; **, p � 0.01; ***, p � 0.001; ****,
p � 0.0001; ns, not significant). p values of �0.05 were considered statistically significant.
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variants on the �-sheet barrel lost this function, except for the
number 22 mutant (Fig. 3H), which is a smaller �-sheet. These
results indicated that the whole �-sheet barrel of SPRY was vital
for TRIM5�-mediated AP-1 activation.

Polyubiquitination of TAK1 was not sufficient for
TRIM5-mediated AP-1 signaling

TAK1-binding protein 2 (TAB2) is involved in the direct
interaction between the TAK1 complex and TRIM5� for
AP-1 signaling activation. To explore the molecular mecha-
nism of SPRY-mediated AP-1 activation, RhTRIM5� was
compared with two selected inactive mutations in two nearby

�-sheets of SPRY: RhTRIM5�S453P and RhTRIM5�VFVD
(number 14 mutant). We found that RhTRIM5�S453P and
RhTRIM5�VFVD degraded TAB2 to the same level as
RhTRIM5� (Fig. 4A), indicating that TAB2 degradation is inde-
pendent of TRIM5�-mediated AP-1 activation.

HuTRIM5� can recruit E2 Ub-conjugating enzymes to
generate free Lys63-linked polyubiquitin chains, which sub-
sequently activate TAK1 (9). We next tested whether
RhTRIM5�S453P and RhTRIM5�VFVD would bind to TAK1
and affect its ubiquitination. Both of the variants interacted well
with TAK1 (Fig. 4B). The ubiquitination assay showed that
RhTRIM5�S453P and RhTRIM5�VFVD could also catalyze

Figure 3. The entire �-sheet barrel of SPRY was significant for TRIM5�-mediated AP-1 activation. A and C, schematic diagram of the indicated WT
RhTRIM5� and truncations. The amino acid numbers are shown. B and D, the indicated plasmids were cotransfected with AP-1 reporter and TK into HEK293T
cells, followed by a luciferase assay after 24 h. HEK293T cells were used for IB analysis with anti-HA and anti-actin antibodies. E, schematic representation of the
RhTRIM5� SPRY domain crystal structure (Protein Data Bank code 2LM3) (38). The critical amino acid residue Ser453 is shown in blue and located on a larger
sheet of SPRY. The larger sheets of the same side of Ser453 are shown in orange, �-sheets on the opposite side of Ser453 are colored purple, the biggest �-helix
is colored red, and marginal small �-sheets are colored green. F, amino acid sequence of the RhTRIM5� SPRY domain. The colors indicate the same structures as
in A. The numbers indicate the mutants of RhTRIM5� where residues were substituted by Ala. G and H, HEK293T cells were transfected with the individual TRIM
expression plasmids and AP-1 luciferase reporter and TK. Reporter assays were performed at 24 h after transfection. Bars, mean luciferase activity levels � S.D.
(error bars). All of these data were acquired from at least three independent experiments. Relative luciferase activity was measured and statistically analyzed by
unpaired t test (*, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001; ns, not significant). p values of �0.05 were considered statistically significant. Shown
is IB analysis (bottom) of HEK293T cells transfected with the indicated TRIM5� (top).
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TAK1 polyubiquitination (Fig. 4C). These data indicate that
polyubiquitination of TAK1 was not sufficient for TRIM5-me-
diated AP-1 activation, suggesting that other unknown mecha-
nisms may exist.

Auto-ubiquitination of TRIM5� mediated by SPRY is correlated
with AP-1 signal activation

Auto-regulated polyubiquitination of many members of the
TRIM family has been reported to be involved in regulating
innate immune signaling (33, 34). In our study, the heavily
polyubiquitinated TRIM5� was also detected by both HA anti-
body (Fig. 5A) and TRIM5�-specific polyclonal antibody (Fig.
5B), as per previous studies (11, 35–37), whereas the enzymat-
ically inactive mutation, RhTRIM5�C15/18A, dramatically lost
its polyubiquitination (Fig. 5C). This result indicates that
TRIM5� ubiquitination is auto-regulated. It was further
investigated whether RhTRIM5�S453P and RhTRIM5�VFVD
also lost their auto-ubiquitination activities. As shown in
Fig. 5D, RhTRIM5� was well auto-ubiquitinated, contrary to
RhTRIM5�S453P and RhTRIM5�VFVD. This result indicates

that RhTRIM5� auto-ubiquitination may be responsible for
AP-1 activation. To confirm the role of TRIM5� auto-ubiquiti-
nation in AP-1 signaling, 29 variants of SPRY were tested for
auto-regulating polyubiquitination. We found that mutations
that activated AP-1 could auto-ubiquitinate (with the single
exception of variant 9), whereas mutations that did not acti-
vate AP-1 failed to auto-ubiquitinate sufficiently (Fig. 6,
A–D). These findings suggested that TRIM5� auto-ubiquiti-
nation was positively correlated with TRIM5�-mediated
AP-1 activation.

RhTRIM5� is modified with Met1-linked and Lys27-linked
poly-Ub chains in HEK293T cells

It is reported that HuTRIM5� is modified with Lys63-linked
poly-Ub by Ube2W and Ube2N/Ube2V2. To analyze the type of
ubiquitin modification of RhTRIM5� under conditions of its
overexpression, we utilized K63-Ub (Lys63 only), K48-Ub,
K63R (all residues except Arg63), and K48R mutant ubiquitin
plasmids and found that RhTRIM5� was modified by both
Lys63- and Lys48-linked ubiquitin chains (Fig. 7A). Ubiquitin
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has five lysine residues, which can be ubiquitinated to give rise
to isopeptide-linked polyubiquitin chains with the exception of
Lys48 and Lys63. To further identify other lysines’ contribution
to RhTRIM5� polyubiquitination, K6-, K11-, K27-, K29-, and
K33-Ub plasmids were used to characterize the polyubiquit-
in linkages within the Ubn-RhTIM5�. It was clear that
RhTRIM5� could be heavily polyubiquitinated in the presence
of all of these Ub plasmids (Fig. 7B). In addition, Fig. 7C indi-
cated that polyubiquitination of RhTIM5� was normal after
expression of K0-Ub (seven Lys residues mutated to Arg, Lys-
less). The results above indicated that RhTRIM5� undergoes
“atypical” Met1-linked polyubiquitination.

Intriguingly, formation of Ubn-RhTIM5� was efficiently
blocked by expression of M-R-K0-Ub (seven Lys residues and
Met1 mutated to Arg) (Fig. 7D). These results revealed that the
polyubiquitin linkages within Ubn-RhTIM5� contained Met1-
linked ubiquitin. Fig. 7E indicates that RhTIM5� undergoes
other Lys-linked ubiquitination. We designed the experiments
with a set of Ub plasmids containing only one Lys and no N-ter-
minal Met1, because the mutant ubiquitin plasmids used in

Fig. 7 (A and B) contained the N-terminal Met1 (the ORF of Ub),
which could also be ubiquitinated. Fig. 7F shows that RhTIM5�
undergoes Lys27-linked ubiquitination. Together, these results
indicate that RhTRIM5� is modified with “atypical” Met1-linked
and Lys27-linked poly-Ub chains in HEK293T cells.

AP-1 activity of RhTRIM5� was correlated with its antiviral
activity

TRIM5� proteins have species-specific activities to inhibit
retroviruses. RhTRIM5� does not inhibit the simian immuno-
deficiency virus of macaque strains, but it strongly inhibits
HIV-1, feline immunodeficiency virus, and equine infectious
anemia virus (39 –41). To identify whether RhTRIM5� signal
transduction activity was correlated with its antiviral activity,
we performed a post-entry inhibition assay against HIV-1 using
HeLa cells, which stably express all of the RhTRIM5� variants.
The results indicated that RhTRIM5� could significantly
inhibit HIV-1, whereas (with the exception of variant 30) the
corresponding variants that failed to activate AP-1 also lost
their antiviral activities (Fig. 8, A–C). To further understand the
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Figure 7. RhTRIM5� undergoes Met1-linked and Lys27-linked polyubiquitination in HEK293T cells. A–F, HEK293T cells were transfected with 2 �g of a
series of Ub-HA and 4 �g of FLAG-RhTRIM5� or pcDNA3.1 (negative control). Cell lysates were immunoprecipitated with anti-HA beads and were then used for
IB analysis. All results shown are representative of three independent experiments.
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correlation between the capability of AP-1 activation and re-
striction of HIV-1, we plotted -fold change of AP-1 activities as
a function of the restriction abilities of different RhTRIM5�
variants. As shown in Fig. 8D, RhTRIM5�-mediated AP-1 acti-
vation and its anti-HIV-1 activity were positively correlated,
R2 � 0.6369. These results demonstrated that the antiviral
activities of RhTRIM5� variants have a significant positive cor-
relation with their capacities to activate AP-1 when stably
expressed in HeLa cells. This finding is consistent with the fact
that AP-1– dependent gene up-regulation can result in antiviral
activity.

Discussion

Accumulating evidence suggests that the E3-ubiquitin ligase
activity of the TRIM family of proteins plays multiple roles in
innate antiviral immunity (42–44). Many TRIM proteins are
reported to affect the ubiquitination levels of several signaling
adaptors in the NF-�B and AP-1 signaling pathways that are

dependent on their RING domains (43, 45). For example,
TRIM21 negatively regulates DNA sensor signaling by enhanc-
ing Lys48-linked DDX41 ubiquitination (46), whereas TRIM4
promotes type I IFN production against virus infection by tar-
geting RIG-I for Lys63-linked ubiquitination (47). Both regula-
tions are dependent on their RING domains. TRIM5� has been
reported to activate AP-1 and NF-�B signaling pathways depen-
dent on the RING domain (9). In this study, we demonstrated
that AP-1, but not NF-�B, signal activation by TRIM5� is de-
pendent on the SPRY domain in addition to the RING domain.

It has been well documented that the SPRY domain is used by
RhTRIM5� to recognize and interact with HIV-1 CA. Previous
studies showed that the SPRY domain serves unknown func-
tions uncoupled from binding retroviral CA (23, 24). In this
study, we have demonstrated that the SPRY domain functions
to regulate RhTRIM5�-mediated AP-1 signaling. Moreover, we
mapped the key amino acids of SPRY for AP-1 signal and illus-
trated that the whole �-sheet barrel of the SPRY domain was
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required for this function. We conclude that the �-sheet barrel
of the SPRY domain influences the AP-1 pathway by regulating
the auto-ubiquitination of TRIM5�.

TRIM5� has been reported to activate the AP-1 and NF-�B
signaling pathways by recruiting the E2 Ub-conjugating
enzymes UBC13-UEV1A to synthesize free Lys63-linked poly-
ubiquitin chains, which could activate TAK1 in the presence of
TAB2 and TAB3. TAB2 and TAB3 are required for TAK1 acti-
vation as redundant receptors to preferentially bind to Lys63-
linked polyubiquitin chains (48, 49). Many signal transduction
molecules have been reported to negatively regulate TAB2-de-
pendent NF-�B and AP-1 signaling via degradation of TAB2,
including TRIM22 (50), mouse TRIM30� (51), and TRIM38.
TRIM38 inhibits IL-1�- and TNF�-triggered signaling by
mediating the degradation of TAB2/3, which depends on the
SPRY domain but not the RING domain (52). However, there
were two controversial findings for RhTRIM5� in 2011 (24, 53).
One study indicated the potential of RhTRIM5� to promote
TAB2 degradation, resulting in the repression of HIV-1 LTR
promoter activity by the negative regulation of NF-�B activa-
tion (53); another study demonstrated that the capacity of
TRIM5� to negatively regulate TAB2 levels is present in human
and mouse TRIM5� but not in rhesus TRIM5� (24). Our data
supported the former finding that RhTRIM5� intensely
degrades TAB2 (Fig. 4A). It also identified that this function is
independent of the SPRY domain when RhTRIM5� is overex-
pressed (data not shown). Interestingly, and similar to TRIM38,
RhTRIM5� overexpression activates NF-�B and AP-1 in
reporter assays regardless of the fact that it intensely degrades
TAB2 (44, 52). Therefore, NF-�B and AP-1 activation by
TRIM5� will increase when TAB2 is compensated (44, 52).
TRIM5� may also exhibit an unknown function in other path-
ways, as well as the pathway sensing the retrovirus CA lattice.
This result is similar to the action of TRIM21, which has been
reported to show differential regulation in different cells or
with different stimuli (54 –58). The role of TRIM5� in other
signaling pathways needs to be further investigated.

Several reports have suggested that TAK1 polyubiquitina-
tion is involved in TAK1-mediated activation of the NF-�B and
AP-1 signaling pathways (29, 32). Many molecules have been
reported to regulate innate immunity by ubiquitinating TAK1.
For instance, TRIM8 enhances TNF�- and IL-1�-triggered
NF-�B activation by targeting TAK1 for Lys63-linked polyubiq-
uitination (31). In addition, TRAF6-catalyzed Lys63-linked
polyubiquitination sufficiently activates NF-�B and AP-1 by
activating TAK1 (32). Likewise, Pertel et al. (9) provided evi-
dence for a model in which TRIM5� interacts with TAK1 to
activate NF-�B and AP-1 signaling by catalyzing unanchored
Lys63-linked polyubiquitination. In this study, we also found
that RhTRIM5� interacts with TAK1 for polyubiquitina-
tion. However, the inactive mutants RhTRIM5�S453P and
RhTRIM5�VFVD reserved their capacities to bind and
polyubiquitinate TAK1. These results revealed that TAK1
polyubiquitination is not sufficient for TRIM5�-mediated
AP-1 activation.

TRIM5� auto-ubiquitination has been reported previously.
There are many E2 ubiquitin ligases involved in TRIM5� auto-
ubiquitination, including UbcH5B, Ubc2W, Ube2N/Ube2V2,

and Ube2D3 (11, 35, 58). The RING and B-box 2 domains have
been reported to contribute to auto-ubiquitination of TRIM5�
(36, 59). Furthermore, previous studies have concluded that
auto-ubiquitination is a critical event in the TRIM5� restric-
tion mechanism (11, 36). Coincidentally, in our studies, we
revealed that auto-ubiquitination also plays an important role
in AP-1 activation. It was also found that AP-1 activity of
RhTRIM5� was correlated with its antiviral activity, which is
consistent with the work of the Luban laboratory on six murine
Trim5 homologues restricting retroviruses (60). Therefore, at
least a portion of the antiviral activity of RhTRIM5� is medi-
ated through AP-1 activation. We further detected that
RhTRIM5� auto-ubiquitination and AP-1 activation are both
affected by the SPRY domain and especially by the �-sheet bar-
rel of the SPRY structure. These results suggested that the SPRY
domain is vital for RhTRIM5� auto-polyubiquitination to fur-
ther activate AP-1.

It has been reported that HuTRIM5� employed Ube2W
and Ube2N/Ube2V2 to anchor and elongate the Lys63-linked
poly-Ub chains, respectively, in a process of HuTRIM5� auto-
polyubiquitination in cells and in vitro (38). Our studies, how-
ever, have revealed that RhTRIM5� was not modified with
Lys63-linked poly-Ub chains when overexpressed in 293T cells.
A surprising find was that RhTRIM5� undergoes “atypical”
Met1-linked and Lys27-linked auto-ubiquitination in HEK293T
cells. Although the reason for this difference has not been con-
firmed, it is now clear that the Lys63-linked and Met1-linked
ubiquitin chains can mediate signal transduction by non-deg-
radative mechanisms (61). Several key signal transduction mol-
ecules have so far been identified to be Met1-Ub substrates,
including NEMO (62), RIPK1 (63), RIPK2 (64) and others. Our
study is the first to state that RhTRIM5� is a new target in cells for
Met1-Ub linkage, although we have no in vitro experiments for
polyubiquitination of RhTRIM5�. However, few substrates are
known for chains linked through Lys27, and this area is poorly
understood and little investigated. Several studies suggest that
Lys27-linked chains may play roles in the DNA response and
recruitment of proteins (65–67), but to date, the role of Lys27-
linked chains of RhTRIM5� is unidentified.

It has been demonstrated that the auto-polyubiquitination of
TRIM protein functions as a platform that facilitates protein-
protein interactions in signal transduction (68, 69). TRIM14
recruits the NF-�B essential modulator (NEMO) to the MAVS
signalosome via Lys63-linked polyubiquitin chains (70); Lys63-
linked auto-polyubiquitination of TRIM9S (short splice vari-
ant) serves as a platform between GSK3� and TBK1, leading to
the activation of IRF3 signal, and auto-ubiquitination of
TRIM11 is required for its binding of p62, resulting in the sup-
pression of AIM2 inflammasome. However, the molecular
details about the role of anto-ubiquitination of RhTRIM5� in
the innate immunity require further study.

Overall, our results have revealed that the SPRY domain of
RhTRIM5� is critical for AP-1 signaling, and this function may
correlate with auto-ubiquitination of RhTRIM5�. We conclude
that RhTRIM5� was modified with Met1-linked and Lys27-
linked polyubiquitination in 293T cells. In addition, we discov-
ered that the RhTRIM5�-mediated signal activity was posi-
tively correlated with its antiviral activity.
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Experimental procedures

Cell culture and transfection

HEK293T and HeLa cell lines were maintained in high-glu-
cose DMEM (Hyclone) supplemented with L-glutamine (2 mM),
penicillin (100 units/ml), streptomycin (100 �g/ml; Gibco), and
FBS (10%; Gibco). Cells were plated 16 h before transfection on
6-well plates (Corning, Inc.) at a concentration of 2 � 106/5 �
105 cells per 2 ml of tissue culture medium per well. Cells were
transfected using poly Jet (SignaGen Laboratories)/calcium
phosphate according to the manufacturer’s instructions.

Protein extraction and Western blotting

After the cells were transfected for 24 –36 h, they were
washed once with ice-cold PBS and subsequently lysed in ice-
cold radioimmune precipitation assay (RIPA) lysis buffer (CST,
9086) containing a protease inhibitor mixture (Sigma, P8340).
The lysates were centrifuged at 12,000 � g for 10 min at 4 °C to
remove the cell debris. The proteins were separated on a 12%
Tris/glycine gel or 4 –12% BisTris gel (Genscript) and blotted
onto PVDF membranes (Millipore). The filters were blocked in
5% BSA in Tris-buffered saline (TBS) and were then probed
with the indicated primary antibodies followed by DyLight 680
or 800 –labeled secondary antibody (KPL). Signals were visual-
ized using a LI-COR Odyssey imaging system with both 700 and
800 channels.

Cloning and plasmids

RhTRIM5� and FaTRIM5� were cloned into pcDNA3.1(�)
at the EcoRI and XhoI sites and fused to an N-terminal HA tag
using PCR. All mutants, including the truncated variants, were
introduced by site-directed mutagenesis, and the mutations
were confirmed by sequencing. Human TRIM5�, AP-1-luc,
pRL-TK (Renilla luciferase internal control reporter plasmid),
and pCDNA-TAK1 were gifts from Dr. Jeremy Luban. NF-�B-
luc plasmid was from Beyotime. FLAG-TAB2 was cloned into
the pEF/V5-HisB vector from pCDNA-TAB2 (a gift from Dr.
Jeremy Luban) using BamHI and XhoI sites, including the
N-3�FLAG tag and the TAB2 ORF. Ub plasmids were con-
structed with an HA or FLAG tag at their N termini in-house.
For creation of TRIM5-expressing HeLa cell lines, pLPCX, the
MLV Gag polymerase expression vector pCGP, and pVSV-G
were purchased from Clontech. pFUGW is an HIV-1-based
transfer vector with enhanced green fluorescent protein
expression, and psPAX2 and pMD2.G encode HIV-1-gag-pol
and the vesicular stomatitis virus glycoprotein, respectively.

Antibodies

Rabbit anti-FLAG (F7425, Sigma; 1:1,000), mouse anti-FLAG
(TA50011, Origene; 1:2,000), mouse anti-HA (H9658, Sigma;
1:10,000), rabbit anti-HA (H6908, Sigma; 1:1,000), mouse
anti-�-actin (A5441, Sigma; 1:20,000), rabbit anti-TRIM5�
(ab59000, Abcam; 1:1,000), DyLight 800-labeled antibody to
mouse IgG (H�L) (072-07-18-06, KPL; 1:10,000), and DyLight
680-labeled antibody to rabbit IgG (H�L) (072-06-15-16, KPL;
1:5,000).

Luciferase assays

HEK293T cells were plated on 96-well culture plates (Corn-
ing) at a concentration of 5 � 104 cells/well 14 h before trans-
fection. Cells were transfected with poly Jet (SignaGen Labora-
tories), using 0.3 �l of poly Jet/well, with 1 ng of the internal
control reporter plasmid pRL-TK, 10 ng of firefly luciferase
experimental reporter plasmid AP-1-luc or NF-�B-luc, and 90
ng of individual TRIM plasmids or empty pcDNA3.1 as a con-
trol, following the manufacturer’s instructions. Each experi-
mental condition was performed in quadruplicate. After the
cells were transfected for 24 h, luciferase activity was measured
with a Dual-Glo luciferase assay system (Promega) using an
EIA/RIA plate (Corning, 3693). Firefly luciferase values were
normalized to Renilla luciferase values, and the data are
represented as -fold inductions compared with empty
pcDNA3.1(�). Three independent transfection experiments
were performed.

Immunoprecipitation

Thirty hours after transfection, cells were washed once with
ice-cold PBS and subsequently lysed in 300 �l of ice-cold RIPA
lysis buffer (CST, 9086) containing a protease inhibitor mixture
(Sigma, P8340) and PMSF. Cell lysates were scraped off the
surface of the plate and transferred to prechilled 2-ml micro-
centrifuge tubes. The lysates were centrifuged at 12,000 � g for
10 min to remove cell debris. Then 50 �l of the clarified lysate
was diluted in 5� loading buffer, boiled at 100 °C for 5 min, and
stored at �80 °C, and the remaining 250 �l of cell lysate
was incubated with monoclonal anti-HA/anti-FLAG-aga-
rose (A2095/A2220, Sigma) at 4 °C overnight. The beads were
then washed four times with prechilled PBS and resuspended in
50 �l of 2� loading buffer. The immunoprecipitated proteins
and input lysates were detected by Western blotting.

In vivo TAK1 polyubiquitination

HEK293T cells were co-transfected with the HA-tagged
TRIM expression vector, FLAG-tagged TAK1, and HA-tagged
Ub expression vector at a 1:1:1 ratio using a normal calcium
phosphate method. Protein was extracted in 300 �l of ice-cold
RIPA lysis buffer 30 h post-transfection. The TAK1-ubiquitin
complexes were immunoprecipitated using anti-FLAG anti-
body M2-conjugated beads (A2220, Sigma) and immuno-
blotted with anti-HA antibody to detect ubiquitinated proteins.

In vivo TRIM5 auto-ubiquitination

HEK293T cells were co-transfected with plasmids encoding
HA/FLAG-tagged WT or mutant TRIM5 together with a plas-
mid expressing FLAG/HA-tagged ubiquitin at a 1:1 ratio using
a normal calcium phosphate method. Thirty-six hours later,
cells were harvested and lysed in RIPA buffer. Extracts were
immunoprecipitated using anti-HA-agarose or anti-FLAG-
agarose (the tag of ubiquitin). Immunoprecipitated proteins
were Western blotted and separately probed with an anti-
FLAG or anti-HA antibody to detect polyubiquitinated TRIM5.

Infection with HIV-1 expressing GFP

Pseudotyped HIV-1 expressing GFP was prepared as shown
before (71). For infections, HeLa cells stably transduced with
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TRIM5 genes of interest or empty vector were seeded at a den-
sity of 1.5 � 105 cells/well in a 24-well plate, incubated with this
pseudotyped virus (described above) for 48 h. The cells were
collected and then analyzed using flow cytometry (Beckman,
FC500MCL/MPL).
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