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Mammalian Nod-like receptor (NLR) proteins contribute to
the regulation and induction of innate and adaptive immunity in
mammals, although the function of about half of the currently
identified NLR proteins remains poorly characterized. Here we
analyzed the function of the primate-specific NLRP11 gene
product. We show that NLRP11 is highly expressed in immune
cells, including myeloid cells, B cells, and some B cell lymphoma
lines. Overexpression of NLRP11 in human cells did not trigger
key innate immune signaling pathways, including NF-�B and
type I interferon responses. NLRP11 harbors a pyrin domain,
which is responsible for inflammasome formation in related
NLR proteins. However, NLRP11 did not interact with the
inflammasome adaptor protein ASC, and it did not trigger
caspase-1 activation. By contrast, expression of NLRP11 specif-
ically repressed NF-�B and type I interferon responses, two key
innate immune pathways involved in inflammation. This effect
was independent of the pyrin domain and ATPase activity of
NLRP11. siRNA-mediated knockdown of NLRP11 in human
myeloid THP1 cells validated these findings and revealed
enhanced lipopolysaccharide and Sendai virus–induced cyto-
kine and interferon responses, respectively, in cells with
reduced NLRP11 expression. In summary, our work identifies
a novel role of NLRP11 in the regulation of inflammatory
responses in human cells.

An inflammatory response is triggered upon cell damage and
to defend against invading pathogens. In mammals, this is
mediated by the activation of cellular pathways cumulating into
the release of cytokines, chemokines, and interferons. Down-
stream, this orchestrates recruitment of effector cells, alerts a
systemic response, and restores tissue homeostasis (1). Activa-
tion of pattern recognition receptors (PRRs),3 expressed in and

on host cells, that respond to pathogen-derived substances, cell
damage, and stress initiates this response. On the cellular level,
inflammation is mediated by the activation of pro-inflamma-
tory signaling cascades such as the activation of caspase-1,
NF-�B, and interferon regulatory factors (IRFs), among others.
Chronic or dysfunctional activation of inflammatory signaling
can lead to tissue disruption and disease states but also can
contribute to malignant transformation, as in the activation of
NF-�B in B lymphocytes (2). To control such potential harmful
effects of inflammation, inflammatory pathways and their acti-
vators are tightly controlled by a network of regulators and
feedback loops (3).

In humans, the Toll-like receptor (TLR), NLR, and C-type
lectin family members are the most relevant PRRs. Many
mammalian NLR proteins have been associated with multiple
functions in inflammation and innate and adaptive immune
responses (4), and dysfunctions in NLRs are associated with a
range of diseases, including Crohn’s disease, periodic fever syn-
dromes, and Blau syndrome (5), highlighting their physiologic
relevance. NLR proteins have a typical tripartite domain archi-
tecture and can be classified functionally according to their
N-terminal domain, which is, in most cases, a CARD or PYD
(6). Most but not all PYD-containing NLRs can interact with
the adaptor molecule ASC to form high-molecular-weight
complexes in cells, referred to as inflammasomes, that function
as a platform for the activation of caspase-1 and subsequent
IL-1� and IL-18 processing. The NLR family member pyrin
domain– containing protein 11 (NLRP11, NALP11, NOD17,
PYPAF6, PAN10) has the typical tripartite structure of NLRs
and contains a PYD effector domain on the amino terminus (6).
Many members of the NLR family have been extensively stud-
ied in recent years. However, the function of NLRP11 still
remains largely elusive. NLRP11 is a primate-specific gene (7)
and is highly expressed in oocytes with decreasing expression
during oocyte maturation both in humans and in monkeys (8,
9). SNPs in NLRP11 were associated with age at natural meno-
pause (10, 11). NLRP11 might thus have reproduction-related
functions such as those reported for the NLRP proteins NLRP2,
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NLRP5, and NLRP7 (7, 12). Also, a SNP located in the NLRP11
gene is associated with susceptibility to Crohn’s disease, an
inflammatory bowel disease (13), and a duplication encompass-
ing the NLRP11 gene was identified in patients with juvenile
idiopathic arthritis, a rare inflammatory disease in children
(14), suggesting further functionalities of NLRP11 in the regu-
lation of inflammatory pathways in humans. These activities
might be unrelated to inflammasome functions, as initial
molecular analysis showed that NLRP11, besides having a PYD,
does not co-localize with the inflammasome adaptor protein
ASC and does not induce pro-inflammatory NF-�B signaling
upon overexpression in human cells (15). Accordingly, knock-
down of NLRP11 in THP1 cells does not affect IL-1� responses
induced by heat-killed Acholeplasma laidlawii (16). Overall,
the available experimental and genomic data suggest that
NLRP11 plays a role in both development and immune regula-
tion, but the molecular details and functions of NLRP11 remain
elusive. Here we provide a functional characterization of
NLRP11 in human cells, revealing a potential negative regula-
tory role in NF-�B and IFN pathways and show that NLRP11 is
highly expressed in B cell malignancies.

Results

NLRP11 expression analysis

First, we experimentally determined the expression pattern
of NLRP11. Quantitative RT-PCR from human tissues revealed
high expression of NLRP11 mRNA in the testis, ovary, and liver
(Fig. 1A, left panel), in line with expression data deposited at the
GTex portal (Fig. S1A). Among the cells of the immune com-
partment, NLRP11 was highest expressed in B cells (CD19�)
(Fig. 1A, right panel). Accordingly, the Burkitt’s B cell lym-
phoma line Daudi expressed the highest levels of NLRP11
mRNA, and robust expression was also seen in myeloid THP1
cells, whereas epithelial cell lines expressed low levels of
NLRP11 (Fig. 1B).

Analysis of gene chip data showed that, among different
tumor entities, NLRP11 was highest expressed in diffuse large B
cell lymphoma, hepatocellular carcinoma, and Burkitt’s lym-
phoma (Fig. S1B). The most significant differences in NLRP11
expression were obtained for germinal center B cell lymphomas
versus activated B cell lymphoma, glioma versus normal brain
astrocytes, and hepatitis B virus-associated hepatocellular car-
cinoma versus non-diseased liver tissue (Fig. S2A). Analyzing a
set of human B cell lymphoma lines revealed a strong hetero-
geneity in the expression level of NLRP11. Notably, analysis of
2414 gene chip expression sets showed a significant correlation
of NLRP11 and NLRP4 expression (Fig. S2B). As NLRP4 and
NLRP11 are located next to each other on chromosome
19q13.42 in a bidirectional orientation, this suggests that these
two NLRs might share the same promotor.

Next, to analyze whether NLRP11 expression was affected by
microbe-associated molecular pattern (MAMP) stimulation,
we treated monocytic THP1 cells with the TLR agonists LPS,
poly(I:C), and Pam3CSK4. 3 h after treatment, we observed
robust induction of NLRP11 expression by TLR3 (poly(I:C))
and TLR1/2 (Pam3CSK4) ligation but not by TLR4 activation
by LPS (Fig. 1C). By contrast, activation of PMA macrophage-

like differentiated THP1 cells with the TLR4 agonist LPS or
with Sendai virus (SeV) provoked a reduction of NLRP11
expression at later time points, with a slight recovery 6 h after
activation (Fig. 1C). At later time points, NLRP11 mRNA was
consistently less abundant in these cells compared with con-
trols, also upon stimulation with the TLR1/2 ligand Pam3CSK4
(data not shown).

To substantiate the finding that NLRP11 mRNA expression
can be induced by MAMPs in monocytes, we used human
peripheral blood mononuclear cells (PBMCs) isolated from
four different donors and treated these for 16 h with LPS or
poly(I:C). Cells from all donors strongly induced NLRP11
expression upon TLR3 ligation, whereas only two donors
induced NLRP11 upon TLR4 activation (Fig. 1D). Given the
endogenous basal expression of NLRP11 in myeloid cell lines,
we used THP1 cells as a model for subsequent analysis of
endogenous NLRP11.

We and others recently showed that certain NLRs exhibit
pronounced differences in their subcellular localization, with
Nod1 and Nod2 residing at cortical F-actin (17, 18) and NLRC5
shuttling into the nucleus (19). To evaluate the subcellular
localization pattern of NLRP11, we transiently transfected
HeLa cells with NLRP11, revealing a cytosolic localization pat-
tern with a slight enrichment in endoplasmic reticulum–like
structures around the nucleus and some signal at membrane
ruffles (Fig. 2A).

NLRP11 does not induce ASC-mediated NF-�B or IL-1�
responses in reconstituted HEK293T cells (15). On the other
hand, NLRP11 was recently identified in a short hairpin RNA
screen as a candidate that contributes to Mycobacterium
tuberculosis–induced IL-1� release (20). Because of these con-
troversial data, we validated a potential role of NLRP11 in form-
ing inflammasomes. To this end, we compared the localization
of ectopically expressed NLRP3 and NLRP11 with ASC in HeLa
cells. Although NLRP3 was recruited to the single ASC speck
per cell, as described before, NLRP11 was not recruited to ASC
foci in the cells (Fig. 2A), suggesting that NLRP11 is not
involved in inflammasome formation. To corroborate this find-
ing, we tested whether NLRP11 was able to activate caspase-1
using the pro-interleukin (IL)-1�-Gaussia luciferase fusion con-
struct caspase-1 reporter (iGLuc), which measures caspase-1
cleavage (21). Although overexpression of Aim2 resulted in
dose-dependent reporter activation, expression of NLRP11
failed to activate caspase-1 in this assay (Fig. 2B). The same
results were obtained for an untagged version of NLRP11, rul-
ing out that tagging of the PYD inhibited its function (Fig. 2B).

Taken together, our results revealed that, besides the testis
and ovary, NLRP11 is expressed in myeloid cells and to the
highest levels in B cells. Different B cell lymphoma lines there-
fore showed heterogeneous expression of NLRP11. Confirming
previous data (15), our data support that NLRP11 is a cytosolic
protein that seems not to be involved in inflammasome
formation.

NLRP11 overexpression inhibits TBK1- and MyD88-mediated
signaling

NLRP4 was described to affect type I interferon and NF-�B
inflammatory responses (22–24). Given the genomic proximity
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of NLRP11 and NLRP4 and their co-expression, we speculated
that NLRP11 might also be involved in inflammatory signaling.
To analyze such a potential role of NLRP11, luciferase reporter
assays for pathways involved in innate and adaptive immunity
were conducted in HEK293T cells. In contrast to other NLRs,
such as NLRC5, CIITA, Nod1, and Nod2, which trigger specific
cellular signaling pathways upon their overexpression in this
system, ectopic expression of NLRP11 did not significantly acti-
vate promoters responsive to major histocompatibility com-
plex class I and II, NF-AT, SMAD, IFN�, or NF-�B (Fig. 3A). By

contrast, the corresponding reporter constructs were signifi-
cantly activated by controls used side by side in each assay
(Fig. 3A). Cell viability, as measured by 2,3-Bis-(2-methoxy-4-
nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)
assay, was slightly increased by overexpression of NLRP11 (Fig.
3B). Overexpression was validated by immunoblot analysis
(Fig. 3C).

Next, we asked whether NLRP11 might have negative effects
on inflammatory signals, as does NLRP4 (23, 25). Using gene
reporter assays in HEK293T cells, we found that NLRP11 sig-
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Figure 1. Expression pattern of human NLRP11. A–D, qPCR analysis of NLRP11 expression in the indicated human cells and tissue. Data are shown as mean �
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nificantly reduced NF-�B activation downstream of TLRs,
induced by MyD88 overexpression already at very low levels (5
ng), where it did not significantly affect TNF-induced NF-�B
activation (Fig. 4A). Moreover, NLRP11 overexpression signif-
icantly reduced type I interferon reporter (interferon-� promo-
tor) activation induced by TBK1 overexpression (Fig. 4B) in a
dose-dependent manner. In contrast, TGF�-induced SMAD-
binding element activation was not affected by NLRP11 over-
expression (Fig. 4C), showing specificity of the observed effects.
Notably, untagged NLRP11 exhibited comparable activity in
repressing both TBK1- and MyD88-induced gene activation,
suggesting that the N-terminal myc tag used did not interfere
with the functionality of the protein (Fig. S3, A and B).

Our data above suggest that NLRP11 specifically targets
effectors involved in pathways downstream of TLR4 and TBK1.

To define these factors, we tested the effect of NLRP11 overex-
pression on NF-�B responses induced by overexpression of
TNF receptor–associated factors (TRAFs), which differentially
contribute to both pathways, with TRAF6 mainly contributing
to MyD88-dependent responses and TRAF2 mediating TNF-
induced responses (26). Surprisingly, NLRP11 inhibited, to vir-
tually the same extent, NF-�B activation induced both by over-
expression of TRAF2 and TRAF6 (Fig. 4D), indicating that
other, still to be identified proteins downstream of these pro-
teins are the target of NLRP11.

To address which domains of NLRP11 mediate these effects,
constructs encoding NLRP11 without the PYD (�PYD) and one
encoding the PYD (PYD), the NACHT domain (NACHT), and
the leucine-rich repeats (LRRs) (LRR) were expressed in
HEK293T cells (Fig. 4H), and their effect on MyD88 and TBK1-
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induced NF-�B and IFN promotor activity was assessed. This
revealed that the �PYD construct (aa 125–1033) was able to
reduce both MyD88-induced NF-�B responses as well as
TBK1-induced IFN� responses to a similar extend as the full-
length NLRP11. In contrast, both the PYD construct (aa 1–128)
and the NACHT domain (aa 125–523) did not significantly
reduce MyD88-induced NF-�B activation and affected TBK1-
induced IFN� promoter activity significantly less than the full-
length NLRP11 (Fig. 4, E and F). By contrast, we found that the
LRR domain (aa 518 –1033) was sufficient for the reduction of
both pathways to levels similar to that observed with the full-
length protein (Fig. 4, E and F). Expression of the proteins was
validated by immunoblotting (Fig. 4H). None of the constructs
induced NF-�B or IFN� promotor activity on its own (data not
shown).

Finally, to test whether these effects of NLRP11 expression
were dependent on NLRP11 ATPase activity, which affects the
function of other NLR proteins, we generated a Walker A
mutant of NLRP11 (K159A) (Fig. 4H). Overexpression of
NLRP11 K159A protein did affect MyD88- or TBK1-induced
responses similar to the wild-type protein (Fig. 4G), suggesting
that, for these effects, ATPase functionality is not needed.

Taken together, these experiments showed that NLRP11
expression is able to inhibit NF-�B activation downstream of
MyD88 but not TNF and strongly suppressed type I IFN acti-
vation induced by TBK1. These effects were mediated by the
LRR domain of NLRP11 and did not dependent on the PYD or
ATPase activity of NLRP11.

Depletion of NLRP11 augments NF-�B and IFN signaling in
myeloid cells

To address the function of endogenous NLRP11, we used
differentiated THP1 cells, which express high levels of endoge-
nous NLRP11 (Fig. 1B), and established silencing of NLRP11
expression by siRNA transfection. To this end, macrophage-
like differentiated THP1 cells were treated with siRNA, and,
after 72 h of silencing with continuous medium exchange, cells
were stimulated with LPS, TNF, or SeV. Measurement of
released IL-8 and IFN� by ELISA after 16 h of treatment
showed that cells with reduced NLRP11 expression showed
significantly augmented IL-8 production upon both TNF
and LPS stimulation compared with cells treated under
identical conditions with a non-targeting siRNA duplex (Fig.
5A). Similarly, reduced NLRP11 expression correlated with
increased type I interferon production upon SeV infection
(Fig. 5B). Knockdown of NLRP11 mRNA was validated on
the mRNA level by semiquantitative RT-PCR (Fig. 5C). Sim-
ilar results were obtained using a THP1 reporter line that
harbors a secretable alkaline phosphatase (SEAP) under the
control of an NF-�B response promotor. Using this line,
transfection of the NLRP11-specific siRNA led to increased
SEAP secretion compared with cells treated with a non-tar-
geting control siRNA (Fig. 5D). p38 activation in these cells
after LPS treatment showed no obvious differences between
NLRP11 siRNA and control siRNA treatment (Fig. 5E). Den-
sitometric quantification confirmed no significant change
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(data not shown). Taken together, these data corroborate the
results from the overexpression experiments in HEK293T
cells and suggest that NLRP11 acts as a negative regulator of
pro-inflammatory signaling in human cells and that NLRP11
attenuates specific signal transduction pathways down-
stream of TNF-receptor (TNFR) and PRRs.

Discussion

Here we provide the first functional characterization of the
human NLRP11 protein, a primate-specific member of the NLR
family. Our experimental data and database mining showed

that NLRP11 is highly expressed in the testis, ovary, and liver;
however, immune cells, predominantly B cells, also express
high levels of NLRP11. NLRP11 showed an interesting expres-
sion pattern with high expression in some B cell lymphoma
lines. However, we were not able to elucidate differences
between activated B cell lymphomas and germinal center B cell
lines, which both showed remarkably differences between dif-
ferent lines in basal expression. We found that NLRP11 is also
expressed in myeloid THP1 cells, as reported by others (16),
and we therefore adopted THP1 cells as a model system to
evaluate the function of endogenous NLRP11 by siRNA.
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Interestingly, the NLRP11 gene is located in the opposite
direction, in direct proximity to NLRP4, and co-expression
analysis of a curated database showed that the two genes show
significant co-expression. NLRP4 was recently identified
as a negative regulator of TBK1-mediated type I interferon
responses in human cells (23, 25). We observed a similar phe-
notype for NLRP11 overexpression in identical assays settings,
suggesting that the two NLR proteins might have overlapping
functions as negative regulators of the interferon pathway. In
contrast to our data, a recent report found that overexpression
of NLRP11 did not reduce TBK1-driven IFN responses in gene
reporter assays in HEK293T cells. However, in that study, the
expression of NLRP11 and functionality were not evaluated (9).
The nature of this discrepancy awaits independent evaluation.

Overexpression of NLRP11 negatively and specifically
affected NF-�B induction downstream of the TLR adaptor pro-
tein MyD88 and of TNFR1. Both pathways use a different set of
TRAF proteins that appeared to us to be interesting candidates
for targets of NLRP11: TLR4/MyD88-triggered NF-�B activa-
tion relies on TRAF6, whereas TNFR1-induced responses relies

on TRAF2 (for an overview see, Ref. 26). Beside the differential
contribution of NLRP11 overexpression on MyD88 versus
TNF-induced NF-�B activation, we were surprised that
NLRP11 reduced both TRAF2- as well as TRAF6-mediated
NF-�B activation to virtually the same extent. The underlying
mechanism of the specificity in HEK293T cells thus needs fur-
ther investigation.

Initial characterization of NLRP11 revealed that NLRP11
does not induce ASC-mediated NF-�B or IL-1� responses in
reconstituted HEK293T cells, nor did NLRP11 co-localize with
ASC (15). By contrast, NLRP11 was identified in a short hairpin
RNA screen as a candidate that contributes to M. tuberculosis–
induced IL-1� release. However, no validation was performed
(20). Our data are in line with the work by Bertin and co-work-
ers (15), showing that NLRP11 does not associate with ASC in
living cells. The function of the PYD of NLRP11 thus remains
elusive at present, as it was also dispensable for the observed
negative regulatory effect on IFN and NF-�B activation. Nota-
bly, the LRR domain of NLRP11 was sufficient for repression of
the NF-�B and IFN pathways. Given that LRRs are protein–
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protein interaction motifs, this raises the possibility that the
LRR of NLRP11 acts as an interaction platform for signaling
rather than being involved in MAMP sensing.

Finally, we provide experimental evidence for the function of
endogenous NLRP11 in myeloid cells. siRNA-mediated knock-
down of endogenous NLRP11 in macrophage-like THP1 cells
confirmed our results obtained upon overexpression of
NLRP11 in HEK293T cells, as reduced NLRP11 levels increased
both LPS/TLR4- and TNF/TNFR1-mediated IL-8 secretion
and NF-�B activation in macrophage-like THP1 cells. More-
over, we observed augmented SeV-induced type I interferon
production in THP1 cells upon reduction of NLRP11 expres-
sion. Of note, p38 activation downstream of TLR4 was not
strongly affected by NLRP11 knockdown.

Similar to what we propose for NLRP11, NLRP4 (23) and
NLRP14 (27) have also both been described as negative regula-
tors of IFN responses. Interestingly, NLRP4 and NLRP11 are
organized in an antiparallel manner in the genome, and their
co-expression suggests the use of a common promotor or
shared promotor elements. This implies that these two NLRs
might have overlapping functions. Given that NLRP11 evolved
later and is a primate-specific NLR might indicate that NLRP11
has additional functions compared with NLRP4. Notably, data-
base mining revealed significant co-expression of the two pro-
teins in several cells and tissue. Moreover, NLRP11 expression
was profoundly altered in diffuse large B-cell lymphoma
(DLBCL), glioma, and hepatocellular carcinoma cohorts,
although this does not show causality. Still, inflammatory
signaling pathways contribute to B cell lymphoma transfor-
mation, and thus it is tempting to speculate that NLRP11 and
NLRP4 might contribute to cancer. Unfortunately, technical
issues prevented us from studying depletion of NLRP11 in
B cells. Further development of suitable knockdown ap-
proaches in B cells will facilitate analysis of the function of
NLRP11 in B cells.

Another interesting aspect is the high basal expression of
NLRP11 in the reproductive system. This is shared with other
NLR proteins, notably NLRP14. For NLRP14, it was shown that
it acts as a repressor for intercellular DNA sensing during
oocyte fertilization (27). These NLRPs and others might act at
the interface of immunity and reproduction (12) but also have
additional roles in immunity in the adult animal.

In summary, we show here that NLRP11 is expressed in a
panel of immune cells, notably myeloid cells and B cells, and
functions as a negative regulator of inflammatory responses.
The differential expression of NLRP11 in B cell lymphoma lines
and cancer entities is an interesting point that warrants future
research to elucidate whether NLRP11 might be involved in the
malignant transformation process.

Experimental procedures

Cells and cell culture

HEK293T and HeLa cells were grown at 37 °C with 5%
CO2 in Dulbecco’s modified Eagle’s medium containing 10%
heat-inactivated fetal calf serum and penicillin–streptomycin.
THP-1 cells were maintained in RPMI 1640 (Thermo Fisher)
containing 10% heat-inactivated fetal calf serum and pen-

icillin–streptomycin. THP-1blue cells (thp-sp, InvivoGen)
were maintained in RPMI 1640 (Thermo Fisher) containing
10% heat-inactivated fetal calf serum, penicillin–streptomycin,
and zeocin. Cells were continuously tested for mycoplasma
contamination by PCR. PBMCs were isolated from whole blood
obtained from two different donors by using Ficoll density gra-
dient centrifugation.

Plasmids and reagents

The coding sequence of human NLRP11, corresponding to
NM_145007.3, was cloned into a pCDNA3.1 backbone fused to
a 5� located myc tag. Plasmids encoding truncations NLRP10
were generated by PCR cloning in the same vector. The
NLRP11 Walker A mutation (K159A) was generated by
QuikChange site-directed mutagenesis and cloned into the
backbone vector described above. The iGluc plasmid was a kind
gift from Veit Hornung (Ludwig Maximilians University of
Munich). All plasmids were validated by DNA sequencing.

Plasmids encoding human MyD88 and TBK1 were a kind gift
from Alexander Weber and Kate Fitzgerald, respectively. The
gene reporter plasmids used are described in Ref. 28. The
expression plasmids encoding NLRC5 and CIITA are described
in Ref. 29. High molecular weight (HMW) poly(I:C), LPS (ultra-
pure lipopolysaccharide, Escherichia coli 0111:B4), PMA (phor-
bol 12-myristate 13-acetate), Pam3CSK4, and recombinantly
expressed TNF were obtained from InvivoGen. TGF� was pur-
chased from eBioscience.

Gene reporter assays in HEK293T cells

HEK293T cells were plated at a density of 30.000 cells/well of
a 96-well plate and transiently transfected using X-tremeGENE
9 DNA transfection reagent (Roche) with 8.6 ng of �-galacto-
sidase, 13 ng of the respective luciferase reporter constructs,
and the indicated amounts of plasmids encoding NLRP11,
TRAF2, TRAF6, MyD88, TBK1, and pcDNA was added up to
constant total DNA levels. 24 h after transfection, cells were
lysed in 100 �l of lysis buffer containing 25 mM Tris (pH 8.0), 8
mM MgCl2, 1% Triton X-100, and 15% glycerol per well. 50 �l of
the cell lysates was transferred to a white, non-transparent
96-well plate, and luciferase activity was measured as lumines-
cence in a multiplate reader (Enspire, PerkinElmer Life Sci-
ences) upon automatic dispension of 100 �l of luciferase
substrate solution containing 1.3 �M ATP and 770 ng/ml D-lu-
ciferin (Sigma).The residual 50 �l of cell lysate was supple-
mented with 100 �l of 1 mg/ml O-nitrophenyl-�-D-galactopy-
ranoside in 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, and
1 mM MgSO4 (pH 7.0) per well and incubated at 37 °C for 30
min, and absorption was measured at 405 nm (620 nm refer-
ence) as �-galactosidase activity. Luciferase activity was nor-
malized to �-galactosidase activity. The iGluc assay for
caspase-1 activation was performed as described recently, after
optimization of plasmids concentration for optimal readout
(21).

siRNA treatment of THP1 cells

Knockdown of NLRP11 was performed using Hiperfect
transfection of PMA-differentiated THP1 or THP1blue cells
with the siRNA NLRP11_6 (Qiagen, CACGACCTTGCAGCT-
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GTCGAA) and a non-targeting control siRNA (All-Star nega-
tive control, Qiagen) as described in Ref. 28.

RNA extraction and PCR

RNA was extracted from the cells using the RNeasy Plus Mini
Kit from Qiagen according to the protocol of the manufacturer.
Concentration and purity of the total RNA was measured opti-
cally (NanoPhotometer P360, Implen). cDNA synthesis was
performed using the iScript cDNA synthesis kit (Bio-Rad). For
screening NLRP11 expression in different human tissues and
immune cells, cDNA from the Multiple Tissue cDNA Panels
(Clontech) was used.

To quantify NLRP11 mRNA expression in B cell lymphoma,
cDNA from different diffuse large B cell lymphoma cell lines,
including both active B cell and germinal center types, was
obtained upon RNA isolation with the RNeasy kit (Qiagen),
DNA digestion using the Turbo DNA-free kit (Thermo Fisher),
and reverse transcription using the high-capacity RNA-to-
cDNA kit (Thermo Fisher).

qPCR was performed using iQ SYBR Green Supermix
(Bio-Rad) in a CFX cycler and the following primers: NLRP11,
ACGAGCCCACATGCCAAATA (forward) and GTTTTCTC-
AGACTCCCGCCA (reverse); GAPDH, ATG CCA GTG AGC
TTC CCG TTC AG and GGT ATC GTG GAA GGA CTC ATG
AC (reverse). For end-point PCR the following primes were
used: NLRP11 GTTCACCTCACTGCTCACGA (forward) and
NLRP11CGCTTCAGGACAGTACACGT (reverse). The spec-
ificity of the amplification was assured by sequencing of the
qPCR amplification products (GATC) and validating that they
corresponded to the NLRP11 sequence NM_145007.3. Semi-
quantitative RT-PCR was performed using Taq polymerase
(Promega) on cDNA.

Indirect immunofluorescence

HeLa cells were transfected with the indicated plasmids
using Lipofectamine 2000, fixed in 4% paraformaldehyde in
phosphate-buffered saline, and permeabilized with 0.5% Triton
X-100 for 5 min. The cells were incubated in 5% fetal calf serum
in phosphate-buffered saline. The primary antibodies were
rabbit anti-HA (Y11, Santa Cruz Biotechnology, sc-805) and
mouse anti-myc (9E10, Santa Cruz Biotechnology). The sec-
ondary antibodies were Alexa 488 – conjugated goat anti-
mouse IgG and Alexa 546 – conjugated goat anti-rabbit IgG
(Molecular Probes). DNA was stained with Hoechst 33258
(Sigma). The images were acquired on a Leica DMi8 micro-
scope using the HC PL APO 	63/1.40 oil objective and pro-
cessed using ImageJ and the Leica LasX software.

Cell viability assay and immunoblotting

Cell viability was assessed in cells 16 h after transfection by
the XTT kit from Roche according to the instructions of the
manufacturer. Western blotting was performed as described in
Ref. 28. Antibodies used were as follows: anti-myc (Santa Cruz
Biotechnology, 9E10), anti-GAPDH (Santa Cruz Biotechnol-
ogy, FL-335), anti-p-p38 (Cell Signaling Technology, 9216), and
anti-p38 (Cell Signaling Technology, 9212).

Detection of cytokines and QUANTI-Blue assay

IL-8 (CXCL8) and IFN� were quantified by ELISA (Duoset
DY208 and DY814 – 05, Bio-techne) according to the instruc-
tions of the manufacturer. To measure SEAP activity in the
supernatants of THP1blue cells, 20 �l of supernatant was incu-
bated with 200 �l of QUANTI-Blue (InvivoGen, rep-qb) and
A620 was detected after 2 h.

Data analysis and graphics

Data were analyzed and graphed using Excel and GraphPad
Prism 7.0. The figures were generated using Adobe Illustrator
CS6. Statistical differences were calculated by two-way analysis
of variance using Dunnett’s multiple comparisons test.
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