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An olfactory virtual reality system for mice
Brad A. Radvansky1 & Daniel A. Dombeck1

All motile organisms use spatially distributed chemical features of their surroundings to guide

their behaviors, but the neural mechanisms underlying such behaviors in mammals have been

difficult to study, largely due to the technical challenges of controlling chemical concentra-

tions in space and time during behavioral experiments. To overcome these challenges, we

introduce a system to control and maintain an olfactory virtual landscape. This system uses

rapid flow controllers and an online predictive algorithm to deliver precise odorant

distributions to head-fixed mice as they explore a virtual environment. We establish an

odor-guided virtual navigation behavior that engages hippocampal CA1 “place cells”

that exhibit similar properties to those previously reported for real and visual virtual

environments, demonstrating that navigation based on different sensory modalities recruits

a similar cognitive map. This method opens new possibilities for studying the neural

mechanisms of olfactory-driven behaviors, multisensory integration, innate valence, and

low-dimensional sensory-spatial processing.
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V irtual reality (VR) offers unique experimental capabilities
for studying the neural basis of animal behavior1,2. This
technology provides precise control over the animal’s

sensory environment, and therefore can be used to establish
relationships between sensory features of an environment and the
tuning properties of individual neurons that can be difficult to
discern in real-world conditions3,4. It enables experiments that
are either not possible or difficult to realize in real environments,
such as generating cue conflict stimuli, delivering non-natural
sudden changes in stimuli at particular locations, and observing
sensory-driven behavior in isolation from other sensory
information, such as walls/borders, textures, self-generated odors,
and vestibular cues. Importantly, behaving animals can be
head-restrained in VR, allowing for the application of advanced
brain recording and stimulating techniques, such as whole-cell
patch clamping5–7, two-photon imaging8–14, and two-photon
stimulation15,16 that can reveal circuit15–17, cellular5–7, and sub-
cellular11 mechanisms underlying behavior.

The vast majority of VR studies to date have used visually
defined environments3–9,11,14–20. Tactile21 and auditory22 VR
systems have also been established. Yet, despite the importance of
odor-driven behaviors for mammals, few attempts have been
made to fully incorporate odor into VR. Olfactory cues have been
delivered to a mouse via airflow in an on/off manner during
experience in different visual23 or multisensory10,12 VR envir-
onments in order to create a contextual association with other
stimuli. Additionally, creative use of odor trails drawn on a
treadmill has been validated for studying odor tracking in rats24.

Yet, a method to control odorant concentration as a con-
tinuous function of virtual space does not currently exist. State-
of-the-art VR olfactometers (PhenoSys) operate with a delay of
0.5–1 s, which is too slow to provide a reproducible and high-
resolution odorant spatial distribution for rodents that run at
variable speeds on the order of ~0.5 m s[−15,]19, sniff at rates of
3–12 Hz25 and can perform odor-driven behaviors on the order
of ~100 ms25,26. Millisecond-timescale olfactometers have been
designed for delivering odorant puffs26–28, but have not been
validated for controlling concentration as a continuous variable
for long durations, and have not been incorporated into VR.
Because of these limitations, mammalian VR experiments have
been restricted to using odor as a categorical variable. While this
approach has allowed for studying high-level cognitive processes,
such as associational memory, it is insufficient for addressing
more elementary questions of how the brain can represent and
generate behaviors within a continuous olfactory world. To
address such questions, here we establish an olfactory VR system
capable of controlling odors as continuous spatial variables. To
validate this system for behavioral and neural applications for
head-fixed mice, we establish an olfactory virtual navigation
behavior that engages hippocampal “place cells.” This demon-
strates that an environment comprised of only olfactory features,
combined with self-motion cues, can engage hippocampal cog-
nitive mapping mechanisms.

Results
Rapid, consistent odorant delivery in VR. To control a con-
tinuous odorant distribution across virtual space requires rapid
odorant delivery/clearance relative to the timescale of the sub-
ject’s movement5 (~0.5 m s−1) and sniff cycle25 (3–12 Hz). Fur-
ther, to maintain this distribution for the duration of a behavioral
session requires consistent odorant delivery with minimal
depletion over time (~30min). To achieve these criteria, we
developed an olfactometer comprised of the fastest available mass
flow controllers (MFCs), the smallest tube/bottle volumes possi-
ble without compromising airflow, and a novel rapid odorant

saturation chamber (Fig. 1a) (Methods section). This olfactometer
controlled two independent odorant streams (flow rate 0.001–0.1
Lmin−1 passed through rapid odorant saturation chambers) that
met a third carrier stream (flow rate 0.8–1 Lmin−1, containing
blank air) at a passive mixing block leading to a nose chamber,
allowing for the concentrations of two different odorants to be
controlled continuously and independently. To vary olfactory
stimulation without varying perceived airflow, the carrier stream
was updated dynamically to maintain a constant total flow rate
of 1 Lmin−1. This carrier stream could be controlled independently
to simulate variation in wind flow, though this capability was not
employed here. To rapidly clear the odorants, the nose chamber
covered the snout of the mouse, creating a micro-environment of
volume 0.07 cm3 (including the snout) in which the gas volume was
replaced by the 1 Lmin−1 airflow every 4ms. The nose chamber
did not touch the snout or the majority of the whiskers, and
produced no obvious effect on whisking or grooming behavior
(Supplementary Fig. 1)

To overcome the problems of delivery speed and consistency,
we first selected two distinct odorants, methyl valerate (bub-
blegum smell) and α-pinene (pine smell), with vapor pressures
high enough to continuously saturate the vapor phase, but low
enough not to significantly deplete the liquid phase over time
(11.2 and 4.9 mmHg at 25 °C, respectively). Next, we designed a
rapid odorant saturation chamber in an effort to maintain steady-
state saturation of the vapor phase in each odorant stream and
generate perceptible but not overpowering scents at the nose
chamber. For each odorant path, the air stream was bubbled
through 12 mL of odorant solution (1:125 and 1:37.5 in mineral
oil for methyl valerate and α-pinene, respectively) filling the
bottom two thirds of a 40-mL vial that was filled nearly to the top
with 3-mm glass beads. This configuration increased the
interaction of air with the odorant solution first by bubbling in
through the bottom two thirds of the chamber and then by
passing through the increased solution surface area generated by
the coated beads in the top third. We then used a photo-
ionization detector (PID) to measure the response time and
depletion of our olfactometer (measured at the nose chamber).
When driven by 0.5-Hz sinusoids, our olfactometer delivered
odorants as continuous variables with a delay of 0.148 ± 0.059 s
for methyl valerate and 0.183 ± 0.070 s for α-pinene (n= 300
cycles: 150 low-offset and 150 high-offset) (Fig. 1b; Methods
section), on the order of the sniffing cycle for mice25. At
maximum flow rate (0.1 L min−1) for ~100 min, the odorant
concentrations decayed with time constants of 242 and 1027 min
for methyl valerate and α-pinene, respectively (Fig. 1c, Supple-
mentary Fig. 2, Methods section). This means that over a typical
behavioral session length of 30 min, the fastest-depleting odorant,
methyl valerate, would be reduced in magnitude by at most 12%
(if the mouse remained at the methyl valerate side of the track the
whole session). Thus, we established the mechanical components
capable of rapid and reliable control of odorants in VR.

Controlling olfactory virtual landscapes. We incorporated our
olfactometer into a visual VR system5,8,9,11 and drove the
olfactometer using a modified version of existing VR software20.
This permitted the options of synchronizing (or desynchronizing)
visual and olfactory VRs, or using one or the other sensory
modality alone (Fig. 1d–g).

Real-world odorant distributions can occur as concentration
gradients caused by molecular diffusion, as distributed bursts of
high-concentration plumes caused by turbulence, or a combina-
tion of these two resulting in concentration gradients with added
noise29,30. Accordingly, animals have been shown to use gradient-
ascent and/or sparse-searching strategies under different
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conditions29–33. To allow for the study of gradient-guided
navigation, we demonstrate that our system can generate smooth
spatial distributions of methyl valerate and α-pinene across a
linear track (Fig. 1f). The real-world generation of odorant
plumes by air turbulence is an ongoing focus of fluid dynamics
research34, making it difficult to simulate precisely a true
turbulent odorant distribution in virtual reality. However, we
demonstrate that our system can generate a “noisy” odorant
distribution (Fig. 1g), as well as turbulent-like plumes (Supple-
mentary Fig. 3).

Two challenges that needed to be overcome for the precise
control of odorant distributions were: (1) mechanical delay of
odorant delivery through the olfactometer (quantified in previous
section) and (2) variable locomotion velocity of the mouse
requiring rapid changes in odorant flow rates. Combined, these
problems resulted in a skewed odorant spatial distribution in
which the mouse received concentrations corresponding to a
previous position rather than its current position (Fig. 2a). To
correct for this, we developed an algorithm that delivered
odorants based on a prediction of the mouse’s future position.
This algorithm used the subject’s instantaneous position and
velocity at each update iteration (~5 ms) of VR to predict its
position at one odorant mechanical delay in the future.
Instantaneous velocity was calculated by averaging the previous
several Δposition/Δtime measurements within a previously
determined time window determined offline by minimizing the
error between real and predicted position (Fig. 2b, Methods
section). Implementing the position-predictive algorithm elimi-
nated the skew in concentration and tightened the odorant spatial

distributions by factors of 4.4 and 3.7 for methyl valerate and α-
pinene, respectively (Fig. 2c, d, Methods section). This position-
predictive algorithm compensated for the mechanical delay of the
system despite variable locomotion velocity, and thus generated
precisely controlled odorant concentration gradients.

The position-predictive algorithm alone was not sufficient for
precisely controlling sharp concentration changes characteristic of
a noisy odorant distribution (Fig. 2e, f). This was due to two
additional problems associated with the precise control of odorant
distributions: (3) a variable relationship between the rate of change
of MFC flow rate and the resulting odorant concentration change
detected at the nose chamber one odorant mechanical delay in the
future (Fig. 2g, Supplementary Fig. 5e,f), and (4) a variable
odorant mechanical delay as a function of control drive frequency
(Supplementary Fig. 5d). These problems, combined with problem
2 above, resulted in a noisy odorant signal that did not represent
the spatial frequencies of an idealized noisy distribution when only
the position-predictive algorithm was implemented (Fig. 2f). To
correct for these problems, we first analyzed the frequency
components of the ideal (desired) concentration distributions,
calculated the mean frequency, and chose the delays (one for each
odor) corresponding to this mean value. We then added an
amplitude correction to our control algorithm to exaggerate the
odorant stream flow rates by a magnitude that is a function of the
desired concentration change (difference between current
concentration and desired concentration one odorant mechanical
delay in the future) (Fig. 2g). Implementing this combined
position-amplitude-predictive algorithm, outlined in Supplemen-
tary Fig. 4 and 5, enhanced the frequency components of the
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Fig. 1 Odorant delivery in VR. a Two mass flow controllers (MFCs) in parallel sent odorants to the nose. The odorants were methyl valerate (bubblegum
smell, pink) and α-pinene (pine smell, green). A third MFC sending blank air was dynamically updated to maintain a constant final flow rate (1 L min−1). The
three streams converged at a passive mixing block and flowed to a nose chamber that covered the snout of the mouse (Supplementary Fig. 1). b Rapid,
continuous odorant delivery following a 0.5-Hz sinusoidal command of low and high offset. Relative odorant concentration was measured using a photo-
ionization detector (PID) placed at the nose chamber. c Stable odorant delivery at maximum flow rate (0.1 L min−1) for ~100min measured with PID at
nose chamber. Small gaps occur where baseline measurements were taken to calibrate the PID (Supplementary Fig. 2). d The odorant delivery apparatus
incorporated into an existing visual VR system in which a head-fixed mouse ran on a spherical treadmill facing a 5-panel monitor beneath a 2-photon
microscope. e Top: view from the α-pinene side of the track. Bottom: view from the methyl valerate side of the track. f Idealized smooth odorant spatial
distributions. g Idealized example noisy odorant spatial distributions (top). Cartoon of the visual virtual track (bottom)
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with the PID at the nose chamber. a–d A position-predictive algorithm tightens a smooth odorant spatial distribution. a Odorant delivery with no position-
predictive algorithm for two traversals, one toward methyl valerate and one toward α-pinene (top), and for the entire behavioral session (bottom). b The
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position-amplitude-predictive algorithm on for each traversal (n= 205, gray) and for all traversals pooled (color). k Spatial cross-correlation plots between
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desired concentration distribution that the position-only pre-
dictive algorithm could not achieve (Fig. 2h, i). Using this
algorithm, the ideal noisy distributions were replicated with
residual errors of 4.3% for methyl valerate and 4.6% for α-pinene
(s.d., Fig. 2j) and spatial phase lags of 0.00 ± 0.30 cm for methyl
valerate and also 0.00 ± 0.30 cm for α-pinene (Fig. 2k). We used
this algorithm to control temporal frequencies up to 4 Hz
(Methods section), which translates to a spatial frequency of up
to 8 m−1 for an animal traveling at a speed of 0.5 m s−1. These
frequencies are sufficient to simulate odorant bursts measured in a
real-world behavioral chamber33 that occur with a duration of
~0.25 s (Supplementary Fig. 3). Thus, our final system can control
noisy odorant distributions and turbulent-like plumes, in addition
to smooth odorant concentration gradients.

Olfactory-driven virtual behavior. As an initial demonstration
for behavior and neural recording, we used the smooth odorant
gradient track (Fig. 1f). Since olfactory-only VR has not pre-
viously existed, it is unknown whether a mouse in VR can per-
form purposeful odor-guided spatial behaviors, and if so, what
neural systems underlie such behaviors. To determine this, we
first asked whether a mouse can navigate along the virtual
odorant gradients (Figs. 1f, 2c).

We trained head-fixed, water-scheduled, wild type, male
C57BL/6 mice to run on a spherical treadmill to traverse a
virtual linear track (Fig. 1d–f) to receive a water reward at each
alternating track endzone as described previously5,8,11. To learn
the angular gain of the treadmill, mice were first trained with
visual and olfactory cues (light odor condition) for ~6 days,
~30–45 min/day until they consistently performed anticipatory
licking as detected by a capacitive circuit (Fig. 3a, d). This licking
indicated that the mice had formed an association between track
location and reward. The visual VR was then shut off for all
subsequent behavioral sessions (~6 days, ~30–45 min/day, dark
odor condition), forcing the mice to navigate by olfactory cues
alone (Fig. 3a, c). In this condition, comparable anticipatory
licking to the light odor case was observed (Fig. 3a). Interestingly,
mice showed no decrease in performance on the first dark odor
session (Fig. 3b), indicating that no additional training was
needed to navigate in the dark odor condition. To control for the
possibility that the mice in the dark odor condition were
navigating using odor-independent strategies, such as path
integration35, timing, or step-counting, the odorant gradients
were then “flattened” (dark flat condition) to make the odorant
concentration position-invariant (Fig. 3a). Immediately after
flattening (Fig. 3d), and for the subsequent sessions in the
dark flat condition (Fig. 3b), anticipatory licking was abolished
(p= 5.8 × 10–4, two-sided Mann–Whitney U-test between end-
zone lick indices in the final dark odor session (0.76 ± 0.18) vs
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first dark flat session (0.12 ± 0.17) when instantly switched
(Fig. 3d), n= 7 mice). This indicated that behavior in the dark
odor condition was indeed odor-dependent. Thus, we established
an odor-driven behavior in virtual space. Although self-motion
cues alone were not sufficient to solve the dark flat task, they are
necessarily present in all conditions, and are likely used in
conjunction with the odors to solve the dark odor task.

Separately, we found that when using oxidized methyl valerate,
a sour-smelling odor, three of four mice in a cohort consistently
avoided this odor for several consecutive days in the dark odor
condition (Fig. 3e, f). When transferred from the dark odor
condition (mean position= 59.4 ± 14.7 cm) to the dark flat
condition (mean position= 100.5 ± 3.5 cm), this place-
avoidance was abolished (p= 9 × 10–6, repeated measures
ANOVA, F(1,14)= 45.8, n= 3 mice) (Fig. 3e, f). This indicates
that our olfactory VR system can be used to perform head-fixed
assays of innate valence and place preference.

Place cells in olfactory VR. To determine whether this behavior
engages neural mechanisms known to be associated with real-
world36 and visual VR3,5,8,11,15,20 navigation, we monitored
potential “place cells” in CA1 of the hippocampus. Before train-
ing, we injected a virus to express the genetically encoded calcium
indicator GCaMP6f37 in neurons of CA1 stratum pyramidale and
implanted a chronic imaging window over CA1 as described
previously8,11. After completing the training described above, we
performed 2-photon calcium imaging of CA1 during behavior in
the dark odor condition (Fig. 4a, b). From the seven mice that
completed the full training, we performed one imaging session
per mouse and identified 120 neurons in the dark odor condition
that exhibited statistically significant place fields (Methods sec-
tion) characteristic of place cells (Fig. 4c). To estimate the fraction
of active neurons that were place cells, we divided the number of
place cells by the number of ROIs identified by the cell-
identification algorithm38. This fraction was 10% ± 7%, a lower
value than previously reported using similar methods in visual8,13

and multisensory12 VR (Discussion).
One concern is that these place fields could be driven by an

intrinsic path integration system35 or by firing sequences
representing time or distance, as have been reported in a similar
setup using a spherical treadmill with passive (computer controlled)
view angle control in visual VR19, and also using a linear treadmill
with no task-related features39,40. To control for this, after imaging
each mouse in the dark odor condition, we instantly switched to the
dark flat condition and imaged the same field of view. In this
condition, the number of place cells (across the whole-imaged
population) dropped drastically to 14, 88% less (Fig. 4d, e, black
bars). This demonstrates that the dark odor condition spatial
representation was largely odor-dependent, and not solely due to an
intrinsic mechanism. Further, the firing of the place cells in the dark
odor condition was associated with less variance in position than in
distance run on the treadmill40 (Supplementary Fig. 7a).

In the dark odor condition, the spatial distribution of place fields
across the track was non-uniform, as described previously for
real41 and visual VR8 environments, with a greater concentration
of place fields at the endzones (Fig. 4d). These place fields occurred
with a width of 60 ± 30 cm (Fig. 4e), which is on the higher end of
previously reported optically imaged place field widths in multi-
sensory VR using the same indicator (~30–60 cm)12.

Of the 120 place cells identified, 78 exhibited place fields during
traversals of increasing methyl valerate (bubblegumward direc-
tion), 40 exhibited place fields during traversals of increasing α-
pinene (pineward direction), and only 2 exhibited place fields at
any locations in both directions (Fig. 4d, e). To further characterize
these directional preferences, we examined each neuron’s activity

in its preferred vs non-preferred direction. (Fig. 5a, b). A trajectory
along one direction tended to be represented by a different
population of place cells than a trajectory along the opposite
direction (Fig. 5b, c). To quantify each neuron’s directional

c
Bubblegumward direction Pineward direction

T
ra

ve
rs

al

1

10

1 2 3 4 5 6

P
os

iti
on

 (
m

) Methyl valerate (bubblegum)

α-pinene (pine)

a

0 2

0

2

5

7 8Neuron:

b

d

P
la

ce
 fi

el
ds

Bubblegumward
direction

Pineward
direction

Bubblegumward
or pineward direction

Position (m) Position (m) Position (m)
0 2 0 2 0 2

0

5

15

10

P
la

ce
 fi

el
ds

Field width (m) Field width (m) Field width (m)
0 21 0 21 0 21

0

5

10

e

1 1 1

Position (m)

1

23 4
58

7

6

Fig. 4 Olfactory-guided virtual navigation in darkness engages CA1 place
cells. a Position of a mouse behaving in VR. Traversals in the
bubblegumward and pineward direction are colored pink and green,
respectively. Scale bar= 1 min. b Averaged field of view of CA1 stratum
pyramidale during the behavioral session shown in a as measured by 2-
photon calcium imaging. Each significant place cell is outlined with the color
indicating the direction in which its place field occurs. Neurons with place
fields in both directions are outlined in both colors. Scale bar= 100 µm. c
Traversal-by-traversal (top, arbitrary units) and mean change in
fluorescence (bottom, ΔF/F, mean ± s.e.m.) for each neuron numbered in b
during traversals in its preferred direction as indicated in a. Scale bar=
100% ΔF/F. d Histograms of all mean place field peak locations during
traversals in the bubblegumward direction (left), the pineward direction
(middle), or either direction (not both directions) (right), pooled from
seven mice, one session per mouse. Colored bars represent the dark odor
condition and black bars represent the dark+ flat condition for the same
fields of view during the same behavioral sessions. e Histograms of all place
field widths for the same data as described in d

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03262-4

6 NATURE COMMUNICATIONS |  (2018) 9:839 | DOI: 10.1038/s41467-018-03262-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


preference, we calculated a directionality index8 (Methods section)
where 0 indicates bidirectionality and 1 indicates unidirectionality.
These place fields exhibited directionality indices of 0.73 ± 0.30,
indicating a strong tendency toward unidirectionality (Fig. 5d).
Such directional preferences of place cells have previously been

reported in real41–43 and visual VR5,8 environments. Further, the
directionality indices in the dark odor condition occurred
within the range of those reported for visual virtual navigation
(0.83 ± 0.25)8. This directional preference indicates that these
neurons are tuned to representations of specific trajectories43
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rather than to lower level task features, such as concentration,
reward-prediction, self-motion, distance, or timing. These results
demonstrate that locomotion through odorant gradients can
provide sufficient information for the CA1 network to recruit a
cognitive map44.

Behavior in a noisy olfactory virtual landscape. We next vali-
dated our system for studying behavior in a noisy olfactory virtual
landscape (Fig. 1g). We trained a separate cohort of mice to
navigate in the dark odor condition (smooth condition), as well as
in the dark odor condition with noise added (noisy condition,
Methods section). In order to add noise on top of a linear odorant
spatial distribution (Fig. 1f, g), the range of the linear odorant
spatial distribution was reduced to 30–70% (as opposed to 0–100%
used in Figs. 3–5). Once proficient in both conditions, mice were
transferred between the smooth, noisy, and flat conditions
(Fig. 6a). Well-trained mice showed anticipatory licking in both
the smooth and noisy conditions, but not in the flat condition,
indicating that this noise level does not completely disrupt the
behavior (Fig. 6a). In the noisy compared to the smooth condition,
anticipatory licking was less precise: it began significantly earlier
before reward delivery (Fig. 6b, smooth: −1.8 ± 1.5 s; noisy: −2.2
± 1.7 s, p= 6.7 × 10–8, two-sided Mann–Whitney U-test) and the
endzone lick index (Methods section) was significantly affected by
odor condition (Fig. 6c, p= 7 × 10–5, repeated measures ANOVA,
F(2,12)= 23.6, n= 7 sessions from five mice). These results
indicate that this noise level hampered, but did not abolish, the
mouse’s ability to accurately anticipate rewards. This demonstrates
that our system can be used to study the effects of environmental
sensory variation on mouse behavior.

We next examined the effect of the direction and magnitude of
noise fluctuations on anticipatory licking (Fig. 6d, Supplementary
Fig. 8). At each anticipatory lick (Methods section) in the noisy
condition, we calculated position error as the difference between
the mouse’s true position and its “perceived position” based on
each odorant concentration level (Methods section). For example, a
positive deflection of bubblegum would correspond to a position
error toward the bubblegumward reward site. This analysis was
performed separately for both odors and both traversal directions.
In every case, position error toward the reward site corresponded
to an increased chance of licking (Fig. 6d). Anticipatory licking was
distributed about median position errors of +6.5 ± 33.8 cm
(bubblegum odor, bubblegumward direction, p= 0.0002), +7.6 ±
34.3 cm (pine odor, bubblegumward direction, p= 0.0004),+7.9 ±
36.4 cm (bubblegum odor, pineward direction, p= 0.0117), and
+6.4 ± 33.4 cm (pine odor, pineward direction, p= 0.0014) (two-
sided Wilcoxon signed-rank test). This indicates that olfactory
noise can systematically bias a mouse’s estimation of its position,
and validates that our system can control high-frequency odor
fluctuations of behavioral relevance.

As a proof of principle, we next imaged hippocampal neurons
in one mouse during behavior in the noisy condition (Fig. 6e–g)
and identified 13 place cells. For the control case, we identified
only 1 place cell for the same field of view in the flat condition,
suggesting that these 13 place cells were indeed largely odor
dependent. While a thorough characterization of the noise-
sensitivity of place cells will require extensive experiments
exploring the parameter space of the fluctuations (e.g., amplitude,
frequency, spatial vs temporal oscillations), we demonstrate in
principle that behavior in a noisy olfactory virtual landscape can
engage a cognitive mapping44 mechanism.

Discussion
We have established a system to create and maintain precise odorant
distributions across virtual space. We have also demonstrated that

mice can use these odorant distributions to perform spatial behavior
that engages hippocampal cognitive mapping.

Continuous odorant spatial distributions have been achieved in
real-world behavioral chambers using spatially arranged airflow
sources and sinks31 or by imaging and computationally modeling
odorant point sources45, and these methods have been validated
for studying odor-place preference and spatial navigation in small
animals, such as drosophila. Similar systems have also been used
in rodents to study odor-place preference46, odor trail-tracking47,
and odor-guided navigation33. However, in such rodent systems,
it is difficult to control for multisensory features of the environ-
ment, such as walls/borders and self-generated odor cues, and it is
difficult to quantify odorant concentration due to real-world
turbulence introduced by the airflow and by the moving rodent.
One system has been designed to control concentration as a
continuous variable for flies48, but this system has not been
validated for timescales faster than ~1 s, nor has it been applied to
rodents or VR. The system presented here eliminates multi-
sensory features and precisely controls concentrations during
behavior, allowing more direct relationships to be drawn between
an olfactory landscape and its neural representation.

It is well-established that neurons in CA1 can respond to
odors49–57. Perhaps due to the inability to control concentration
as a continuous variable, however, research on the effect of odor
on these neurons has been limited mainly to object recogni-
tion54,57 and contextual association51, with odor almost always
categorized as non-spatial information49,51,52,54,56,57. These find-
ings have led to valuable conceptual and circuit models of how the
hippocampus processes spatial vs non-spatial information54,58,59.
Yet, despite several ethological lines of evidence suggesting that
olfactory-guided navigation was a major driving force behind the
evolution of the hippocampus60,61, olfactory-guided navigation
has scarcely been incorporated into hippocampal models. Here, by
defining odorant concentrations as continuous spatial variables,
we demonstrate that the CA1 place cell network is able to recruit a
cognitive map even when the only spatial feature of an environ-
ment is odorant concentration (Figs. 4, 5). Whether and how this
result fits into current spatial vs non-spatial models of the hip-
pocampal system is unknown, but can be addressed in the future
by combining the present method with pathway-specific circuit
manipulations59. It is possible that the directional preferences of
the place fields (Fig. 5) could be explained by the concentration
gradients being perceived differently along the different trajec-
tories, as could occur by olfactory adaptation. This potential role
of olfactory adaptation in navigation can be investigated in the
future by combining the present technique with recordings/
manipulations of adaptation-related regions of the olfactory sys-
tem62. It is also possible that the directional cognitive maps
(Fig. 5) represent abstract trajectories through a sensory con-
tinuum63 rather than true trajectories through space. Nonetheless,
the present results demonstrate in principle that the hippocampus
can recruit a cognitive map in an odor-only environment.

Olfactory VR seems to engage fewer place cells than visual8,13

or multisensory VR12. This could possibly be explained by the fact
that only a subset of CA1 pyramidal neurons (including place
cells) receives direct olfactory input from lateral entorhinal cortex
via the temporoammonic pathway59. Another study has reported
fewer place cells in visual VR than in a real environment19, sug-
gesting that when modalities of sensory information are sub-
tracted, place cell number decreases. It is possible that such a
mechanism could account for the low number of place cells found
here in olfactory VR.

The mechanisms by which multisensory cues inform place cell
representations are presently a subject of controversy19,64.
Attempts have been made in real-world environments to deter-
mine such a mechanism by manipulating odor cues relative to
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visual cues50,51,53,55, but this approach has yet to yield a clear
consensus. By a different approach, it has been shown that bats
use different hippocampal maps to navigate the same environ-
ment when using vision versus echolocation65. Yet, this does not
address how an animal’s brain represents a single environment

while simultaneously using two different sensory modalities.
While a full investigation of multisensory integration will now be
possible in future studies, here we establish behavior in an
environment defined by two and only two sensory modalities—
vision and olfaction (Fig. 3a, b). This opens the doorway to
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performing more sophisticated multisensory experiments, such as
flipping or shifting odor cues relative to visual ones. This ability to
synchronize (or desynchronize) precisely defined visual and
olfactory cues in isolation creates a new and straightforward way
to study how multiple sensory streams can integrate to inform the
neural representation of space.

How the brain produces innate attractive vs aversive responses
is of great interest to cognitive neuroscience. Yet, the ability to
deliver controlled stimuli to an animal while recording from its
brain and evaluating its innate behavior presents a technical
challenge. Using our system, the innate behavior of retreating
from a noxious odor (Fig. 3e, f) can be monitored using fine
stimulus control and advanced recording and stimulating tech-
niques that are difficult to apply in state-of-the-art real-world
systems46. Thus, the present system offers a new way to study the
neural mechanisms of valence.

While this study focuses on dorsal CA1, olfactospatial proces-
sing has been shown to involve many other brain areas, including
ventral CA152, CA352,66, postsubiculum67, anterior dorsal thala-
mus67, mediodorsal thalamus68, entorhinal cortex, amygdala69,
and olfactory bulb70. Brain regions upstream of hippocampus,
such as lateral entorhinal cortex71 and piriform cortex72 are of
particular interest for studying how the navigation system uses
odor and spatial information. The present method thus opens a
vast array of possibilities for studying olfactospatial processing in
these areas of the behaving animal using previously infeasible
recording and stimulating methods that require head-fixation.

The ability to control sensory variability during a behavioral
experiment is central to studying the neural bases of adaptive
behaviors and prediction-making73. But in real and visual VR
environments, meaningful sensory variables are difficult to
quantify due to the high-dimensionality intrinsic to viewing 3D
space. Thus, visual VR experiments have used sensory manip-
ulations, such as deleting landmarks3, narrowing walls4, changing
cues from “vivid” to “bland”74, or abruptly changing the entire
visual scene13,20. A method to control a spatial sensory feature as
a single variable has been difficult to conceptualize, even in the
unisensory world of visual VR. The present system offers a clear
method to control the variation of concentration as a single
parameter while monitoring a spatial behavior and its neural
correlates (Fig. 6). This capability provides a way forward for
studying how basic features of an environment, such as sensory
variability, can inform the neural representation of a behavior.

Methods
Olfactometer. To deliver odorants with spatial precision to the behaving mouse,
pressurized air (20 PSI) was run through 1/4-inch nylon tubing to a gas purifier
(Chromatography Research Supplies) and split to reach three MFCs in parallel
(Fig. 1a). Two MFCs (Alicat MC-100SCCM-D, flow rate 0–0.1 L min−1) led to 1/
32-inch Teflon tubing bubbling into a 12-mL solution of methyl valerate (Sigma-
Aldrich, 1:125 methyl valerate:mineral oil) or α-pinene (Sigma-Aldrich, 1:37.5 α-
pinene:mineral oil) contained in a 40-mL amber glass vial with a rubber membrane
cap (Thermo Fisher). Vials were filled nearly to the top with soda-lime glass beads
(diameter 3 mm, Sigma-Aldrich) to increase air bubble saturation and decrease
splashing. Odorant type, concentration, and vial configuration were optimized
empirically to maximize delivery speed while minimizing odorant exhaustion over
long durations. Outlet tubing (Teflon, 0.002-inch) above the beads/liquid led to a
custom-made Teflon mixing block where the odorant streams met a stream of
blank air delivered by a third MFC (Alicat MC-15SLPM-D/10M, flow rate 0–1 L
min−1) through 1/32-inch tubing. This air-odorant mixture then led through 1/32-
inch Teflon tubing to a custom-made Teflon nose chamber fully covering the snout
of the mouse. To eliminate variation in airflow, blank air flowrate was updated
dynamically to maintain a constant final flow of 1 L min−1. All junctions were
secured by threaded Teflon fittings (NResearch) reinforced with Teflon tape, and
regularly passed water-immersion leak-checks. All tubing length was minimized,
and all tubing diameters were optimized to the minimum possible without com-
promising MFC operation or causing backflow of odorant solution into the MFCs
(through capillary action). To prevent flows in any direction but toward the nose
chamber, during all odorant delivery sessions, including testing and behavior, the
odorant stream flow rates were never permitted to fall below 1 mLmin−1.

Odorant measurement. Relative odorant concentration was measured using a
miniature photo-ionization detector (PID, Aurora) with a flow rate of 950 mLmin
−1 placed at the nose chamber. The PID signal, all MFC command and feedback
signals, and virtual position and view angle were recorded and synchronized at 1
kHz using a Digidata1440A (Molecular Devices) data acquisition system (Clampex
10.3). Before each PID measurement, relative odorant concentrations of 0 and
100% were defined as the mean of 5 s of PID signal at flows of 1 and 100 mLmin−1,
respectively. Subsequent measurements were then normalized accordingly. Since
the PID cannot simultaneously distinguish two odorants, each PID test was
performed separately. To control for any potential variation due to PID placement,
the PID was fixed rigidly to the nose chamber for all sequences of measurements.
To facilitate odorant clearance, inward- and outward-facing fans were built into the
ceiling of the behavioral chamber. At the end of each day of odorant delivery, and
between all PID measurements of different odorants, the odorant bottles were
removed, submerged tubing was wiped clean, empty bottles were attached, and all
MFCs were set to maximum flow rate for 30 min. Fresh odorants solutions in new
bottles were mixed daily from stock odorants that were stored in nitrogen gas. For
the odor place-avoidance experiment (Fig. 3e, f), odorants were not stored in
nitrogen. This resulted in sour-smelling oxidized methyl valerate.

Speed of odorant delivery. To evaluate the speed of odorant delivery, each
odorant MFC was driven by a sinusoid of 0.5 Hz of low or high offset for 150 cycles
(Fig. 1b). Delay between the command and the odorant delivery was calculated as
the mean peak-to-peak difference between the command signal and the PID signal.
To characterize the speed of odorant delivery as a function of sinusoid frequency,
we applied 10 cycles each of all combinations of sinusoids of amplitudes (10, 20, 30,
40, 50, 60, 70, 80, 90, and 99) mLmin−1 and frequencies (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, and 5) Hz and calculated the delay for each sinusoid. Delay was found to be
relatively amplitude-invariant at each frequency, and was thus pooled over all
amplitudes and plotted as a function of frequency (Supplementary Fig. 5d). Note
that this amplitude-invariant sinusoidal response is conceptually different from the
amplitude-dependent square pulse response described in the section below.

Stability of odorant delivery. To evaluate the stability of odorant delivery, each
odor MFC was left at its maximum flow rate of 100mLmin−1 for ~100min (Fig. 1c,
Supplementary Fig. 2). A problem for long-duration PID use is drift of the baseline
reading. To quantify the PID signal relative to a stable baseline, we took baseline
measurements (odorant stream flow of 1 mLmin−1) for 1 min every 20min (gaps
in Fig. 1c), fitted these baseline points with a second-order polynomial, and
subtracted this polynomial from the non-baseline points (Supplementary Fig. 2).
After baseline correction, time constants of depletion were calculated by fitting an
exponential to the non-baseline points (Supplementary Fig. 2). We speculate that
methyl valerate was delivered more quickly (Fig. 1b, Supplementary Fig. 5d) but also
depleted more quickly (Fig. 1c) because of its higher vapor pressure.

This system was integrated into a visual virtual reality setup, and both visual and
olfactory virtual realities (Fig. 1d–g) were controlled in Matlab using the Virmen
virtual reality engine20 with a refresh period of ~5ms. Flow rates were updated at
each iteration of VR using Matlab to send analog voltages to the MFCs via a data
acquisition card (National Instruments). To create smooth odorant gradients across
a 2 m linear track (Fig. 1f), we defined MFC flow rates F (mLmin−1) as functions of
virtual position x (m):

F1 ¼ 1þ 99
2
x ð1Þ

F2 ¼ 100� 99
2
x: ð2Þ

In every testing and behavioral session, the carrier stream was set to maintain a
constant flow rate of 1000 (mLmin−1):

F3 ¼ 1000� F1 � F2: ð3Þ

Some high-frequency noise in the odorant spatial distribution occurred at the
track ends at high concentrations (Fig. 2a, c). This noise was due to two factors:
increased variability of odorant delivery at high concentrations (Supplementary
Fig. 6), and increased likelihood of mouse accelerations near the reward sites
(Supplementary Fig. 3). It is likely that our first-order algorithm cannot completely
correct for these accelerations.

Position- and position-amplitude-predictive algorithms. To apply a position-
predictive algorithm to control smooth odorant gradients (Fig. 2a–d), we first
selected the time delays measured as outlined above using 0.5-Hz sinusoids. These
delays were 0.148 s for methyl valerate and 0.183 s for α-pinene. These were the
times it took from each command signal for each odorant to be received at the nose
chamber, and therefore the times Δt in the future that the algorithms needed to
predict. Since Δt was different for each odorant, two independent algorithms were
implemented to control each odorant stream in parallel. Each algorithm used first-
order kinematics at each iteration of VR to predict future position xf as:

xf ¼ x0 þ v0Δt; ð4Þ
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where x0 is the instantaneous position and v0 is the instantaneous velocity. Since
the VR physics engine itself included no acceleration component20, no acceleration
term was included in the algorithm. v0 was calculated as the average of the pre-
ceding several Δx/Δt samples:

v0 ¼ 1
w

X0

i¼1�w

xi � xi�1

ti � ti�1
; ð5Þ

where w is the smoothing window measured in number of iterations i. As it is not
obvious how many previous iterations should be averaged to calculate instanta-
neous velocity, this parameter was optimized offline. To do this, we first created a
standard behavior data set comprised of 10 min each of good, mediocre, and poor
performance (characterized by the reward rate and distance run between rewards)
chosen from our behavioral datasets at sampling rate 1 kHz (Supplementary
Fig. 5a). We then replayed this testing set in VR to simulate behavior in real time,
and recorded the positions and timestamps in order to achieve the same sampling
rate as the VR engine (4.9 ± 0.1 ms). We then applied Equation 4 offline at each
timepoint to get each predicted position xf. This was done for each value of w from
1 to 40. For each w, error was calculated as the sum of the absolute differences
between all predicted positions xf and their corresponding real future positions x(t0
+ Δt) over all n samples:

Error ¼
Xn

i¼1

jxf � xðt0 þ ΔtÞj: ð6Þ

This error was plotted as a function of w (Fig. 2b), and the optimum window was
chosen as the w at which the minimum error occurred. These windows were 9
iterations for methyl valerate and 10 iterations for α-pinene.

To test whether this algorithm reduces the error in the odorant spatial
distribution in real time, the PID was placed at the nose chamber and the standard
behavior was replayed with the position-predictive algorithm on and off for each
odorant. Fresh odorant solutions were used for each replay. To again control for
the slow drift intrinsic to the PID, each recording was broken into 5-min blocks
and normalized to the best-fit line of PID signal vs position. These normalized
blocks were then pooled. The difference between the data and the best-fit line was
calculated as the sum of the absolute values of the residuals (Fig. 2d). Performance
of the algorithm was visualized by plotting the differences between the data and the
best-fit line, i.e., the residuals (Fig. 2d). Improvement bestowed by the algorithm
was calculated as the ratio of least absolute deviations with the algorithm off vs on.
To remove points during which the mouse was stationary and therefore the
algorithm would be expected to have no effect, only points during which the mouse
was moving faster than 0.1 m s−1 were included in these plots and calculations.

To simulate a noisy environment, a set of 1000 ideal noisy odorant spatial
distributions was created. Each concentration distribution C(x) was defined as a
line plus a sum of spatial sinusoids (Fig. 2e):

C xð Þ ¼ ax þ bþ
X8

i¼1

Aisinð2πfix þ ϕiÞ; ð7Þ

where line slope a= 20%m−1, line y-intercept b= 30% for methyl valerate and a
=−20%m−1, b= 70% for α-pinene. For both odorants, each sine wave amplitude
Ai was chosen randomly from (0:6%), each phase offset ϕi was chosen randomly
from (0: 2π) rad, and sine wave spatial frequency fi was [1, 2, 3, 4, 5, 6, 7, 8] m−1.

To simulate a turbulent-like environment (Supplementary Fig. 3), the track was
first divided into 24 bins, for a maximum plume rate of 12 plumes m−1. Plumes
were then randomly assigned to these spatial bins according to the probability
distributions:

PðxÞ ¼ 0:05þ 0:20x; ð8Þ

P xð Þ ¼ 0:45� 0:20x: ð9Þ

For methyl valerate and α-pinene respectively, such that methyl valerate plumes
were more likely near x= 2 m and α-pinene plumes were more likely near x= 0 m.
Plume concentration C(x) within a bin was defined as a half-cycle of a rectified
spatial sine wave:

C xð Þ ¼ bþ A sinð2πfxÞj j; ð10Þ

where offset b= 30%, plume amplitude A for each plume was chosen randomly
from (0:50%), and frequency of the plume waveform f= 6 m−1 (1 cycle/2 bins).
The concentration in bins without plumes was defined as the offset C(x)= b.

For both the noisy and turbulent-like distributions, the corresponding ideal flow
distributions were calculated as:

FðxÞ ¼ 1þ 99
100

CðxÞ: ð11Þ

This assumes essentially a 1:1 relationship between flow and concentration at all
positions, e.g., 100 % odorant always corresponds to the maximum flow of 100 mL

min−1. A delay Δt was then chosen from Supplementary Fig. 5d that was
representative of the frequency components of the concentration distribution. We
chose 97 and 98 ms for methyl valerate and α-pinene, respectively: the delays
corresponding to the mean temporal frequency of 2.25 Hz. We then optimized the
position-predictive time window for these delays as described above. These
windows were 9 iterations for both odorants.

When implemented during VR, a new C(x) distribution was chosen each time
the mouse turned around, i.e., its view angle crossed 0 or π rad in any direction,
with the bubblegumward view angle direction defined as π/2 rad. The index of each
chosen distribution and its corresponding timestamp were saved to a file each time
a turn-around occurred. When replaying the standard behavior with the position-
predictive algorithm on, this method resulted in a noisy-looking concentration
distribution that did not capture the waveforms of the ideal distribution (Fig. 2f).
This implied that the assumption of a 1:1 relationship between flow and
concentration was not correct for fast concentration changes.

To determine the correct relationship between flow and concentration, we
drove each odor MFC with a sequence of square pulses of flow amplitude ΔF
upward from a baseline flow of 1 mLmin−1 to (5, 10, 15…100) mLmin−1,
downward from a baseline of 100 mLmin−1 to (95, 91, 87…1) mLmin−1, and
outward from a baseline of 50 mLmin−1 to (1, 5, 10, 15,…100) mLmin−1, 10
pulses each, 2 s/pulse, followed by 2 s baseline. We measured the change in PID
signal ΔC at time Δt after the onset of each square pulse (Supplementary Fig. 5e).
This was done by taking the triggered average of the 10 PID signals and finding the
magnitude of the PID signal at time Δt. We then plotted all (ΔF, ΔC/Δt) pairs on
the same graph for all directions and amplitudes. These plots include both the
upstroke and downstroke of each square pulse. The regions of this plot with ΔF
between ~ −25 and +25 mL min−1 showed a linear relationship. Thus, the
nonlinear regions were discarded and the linear region for each odor was fitted
with a line with y-intercept zero (Supplementary Fig. 5f) of the form:

ΔF ¼ m
ΔC
Δt

: ð12Þ

The slopes m of these lines were 0.512 and 0.567 (mLmin−1)/(% s−1) for
methyl valerate and α-pinene, respectively. This is the change in flow needed to
achieve a 1% concentration change in delay time Δt. These linear fits were suitable
for producing turbulent-like distributions (Supplementary Fig. 3), but resulted in
overshoots of the ideal concentrations for the noisy distributions (data not shown).
To counteract this overshooting effect, these linear fits were replaced with logistic
(sigmoidal) fits with y-intercept zero (Fig. 2g) of the form:

ΔF ¼ L

1þ e�kðΔC=ΔtÞ ; ð13Þ

where (L= 15, k= 0.106) for methyl valerate and (L= 20, k= 0.080) for α-pinene.
Flow correction was then implemented during VR (first by replaying the

standard behavior for testing and calibration, and subsequently online during
mouse behavior). At each iteration, the predicted position xf was calculated using
Equation 4 (Supplementary Fig. 5g). The corresponding future ideal concentration
C(xf) from the current ideal noisy distribution was looked up (Supplementary
Fig. 5h) from the previously defined known distribution (Equation 7). The current
ideal concentration C(xi) was subtracted from C(xf) to get change in concentration
ΔC. The corrected flow rate ΔF’ needed to achieve the future ideal concentration
was then calculated using the ideal flow rate and the flow correction
(Supplementary Fig. 5i) as:

ΔF′ ¼ F x0ð Þ þ ΔF: ð14Þ

This resulted in a flow rate that preemptively “overshot” that of the ideal flow
distribution (Supplementary Fig. 5j) and restored the frequency components of the
ideal concentration distribution (Fig. 2h, i). To quantify these differences in noise
frequencies controlled by the position-predictive vs the position-amplitude-
predictive algorithms, we first selected all periods of movement of at least 0.5 m, far
enough to sample at least 1/4 of the noisy distribution. For each such period, we
binned (averaged) the real and ideal odorant distributions into spatial bins of 1 cm
to achieve the same spatial sampling rate, then calculated the spatial power spectral
density. Over all of these runs through noisy concentration distributions, we
calculated the average power as a function of spatial frequency for each algorithm
case (Fig. 2i). To eliminate unwanted variability, the behavior and the sequence of
noisy distribution choices were set to be identical for each algorithm case.

To quantify the performance of this position-amplitude-predictive algorithm
for producing noisy odorant spatial distributions, residuals were calculated between
each real and ideal distribution for each traversal (Fig. 2j, gray) and for the entire
replayed behavioral session (Fig. 2j, color). As the DC offset of the real odorant
signal was subject to PID drift and odorant depletion (Supplementary Fig. 2), real
and ideal traces on each traversal were aligned by varying the real DC offset until
the sum of absolute differences between the real and ideal curves was minimized.
Residuals were then calculated. To quantify relative spatial phase between the real
and ideal odor curves, the cross-correlation between the real and ideal curve for
each traversal was then calculated (Fig. 2k, gray). For presentation, these cross-
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correlation curves were normalized and averaged (Fig. 2k, color). Spatial phase lag
for each traversal was defined as the peak of the cross-correlation.

Surgery. All experiments were approved by the Northwestern University Animal
Care and Use Committee. Male C57BL/6 mice of postnatal age ~70 days were
anaesthetized with 1–2% isoflurane, and a craniotomy of diameter ~1mm was
made over the right hippocampus at 1.8 mm lateral, 2.4 mm caudal of Bregma. To
express GCaMP6f37 in CA1 stratum pyramidale as described previously11, ~60 nL
of titer 8.95 × 1012 GC/mL AAV1.Syn.GCaMP6f.WPRE.SV40 was injected through
a beveled glass micropipette at a depth of 1.25 mm below the surface of the dura.
Mice were then water-restricted to 0.8–1.0 mL/day for the rest of the experiment.
After 3–7 days, a stainless-steel cannula with a glass coverslip fixed to one side was
implanted over the hippocampus and a titanium headplate and light-blocking ring
was cemented to the skull as described previously8.

Behavior. Mice were head-fixed by the headplate on a spherical treadmill5,8,11,75

facing a 5-panel monitor setup9. An optical computer mouse (Logitech) was mounted
at the equator of the front of the treadmill to record its pitch and yaw velocities as
described previously5,8,11. Optical mouse signals were read at 1 kHz using Labview 10.0
on a separate computer, then sent to the VR engine computer via a data acquisition
card (National Instruments) and read in Matlab at each iteration of VR. Gains of the
optical mouse were set in the VR engine to create a track length of 2m in the pitch
rotation direction and an angular component of 7.5 treadmill revolutions in the yaw
rotation direction per VR revolution. To smooth linear and angular movements in VR,
the optical mouse readings were averaged over the preceding 50ms. Averaged optical
mouse readings were multiplied by their respective gains to generate virtual transla-
tions and rotations as described previously20. As the treadmill’s roll velocity was not
recorded, virtual position and distance run on the treadmill (Supplementary Fig. 7a)
were calculated using only the pitch and yaw components. MFCs were mounted on the
optical table beside the treadmill so as not to obscure the mouse’s vision (Fig. 1d). The
tubing, mixing chamber, and nose chamber were fixed to a steel rod. The cylindrical
nose chamber of inner diameter 5.0mm and depth 5.2mm was positioned to enclose
the mouse’s snout as deeply as possible without touching it. A water spout was placed
within reach of the mouse’s tongue, and a capacitive circuit was used to register licking.
All visual cues, MFC flow rates, and water rewards were controlled using a Matlab-
based VR engine20.While a linear treadmill3,9,13,40 or spherical treadmill with passive
(computer controlled) view angle control19 would have likely facilitated behavioral
training, we intentionally chose the more difficult spherical treadmill with active
(animal controlled) view angle control in an attempt to create a task that could not be
solved by path integration alone. We chose this design for the following purposes: (1)
to establish an odor-guided navigation behavior that is not simply distance-estimation,
and (2) to acquire a data set of “place cells” that are indeed sensory-driven and are not
only driven by an intrinsic distance19,40 or time39 metric.

Training. Repeated measures designs were used such that each animal served as its
own control across conditions, thus group randomization was not necessary. Sample
sizes were chosen to measure experimental parameters reliably while remaining in
compliance with ethical guidelines to minimize the number of animals used, which was
similar to sample sizes described previously for 2-photon calcium imaging in VR8,9,11–
13. Experiments did not involve blinding. At least 3 days after cannula implantation,
mice were placed nearly daily into the behavioral apparatus for 30–45min in the light
odor condition (Fig. 3a, b) in which rewards of 4 µL could be achieved by moving to
each alternating track endzone as described previously for visual VR5,8,11. Smooth
odorant gradients (Equations 1–2, Figs. 1f, 2c) were applied using the position-
predictive algorithm (amplitude correction was not required for the smooth gradient
VR). After 6–11 sessions in the light odor condition, mice exhibiting anticipatory
licking were transferred to the dark odor condition. For 6 of 7 mice, this transfer
occurred by shutting the lights off in the middle of the final light odor session, and for
one mouse, this transfer occurred the next day. In both cases, there was no impairment
in anticipatory licking on the first dark odor session (Fig. 3b). After 4–8 sessions in the
dark odor condition, mice were instantly switched to the dark flat condition (Fig. 3e, f),
and returned to the dark flat condition for the subsequent 1–2 sessions. This timepoint
marked the completion of the behavioral training. Mice that failed to perform
anticipatory licking for several consecutive days in the light odor or dark odor
condition were removed from the study. Of the 18 mice we attempted to train, 13
completed the training. Of these 13 mice during the behaving imaging session (see
below), 4 showed poor behavior (low track traversal rates), 2 showed poor imaging
quality, and 7 showed acceptable behavior and imaging quality. Data from these 7 mice
are presented in (Figs. 3–5), with the exception of (Fig. 3e, f). The valence assay (Fig. 3e,
f) was performed on a separate cohort of four mice, three of which showed a consistent
side preference and are therefore included in (Fig. 3d). For this valence experiment
only, the optical mouse was mounted beneath the treadmill and set to an angular gain
of three treadmill revolutions in the roll direction per VR revolution.

In the dark odor condition, the only sources of angular information are the rate
of change of odorant concentration and the motor patterns learned during the light
odor condition when visual angular cues were present. We were unsuccessful at
training naive mice to perform in the dark odor condition (i.e., without prior
experience in the light odor condition; data not shown). This suggests that good
behavior in the dark odor condition was driven by the available odor information
combined with an intrinsic path integrator that was “calibrated” in the light odor
condition.

Noise experiment. For the experiment shown in Fig. 6, mice were trained as
described above for 5–10 sessions in the light odor condition with the odor
gradient ranges reduced to 30–70%. Once proficient in the light odor condition,
mice were transferred to the dark odor (smooth) condition and trained for an
additional 3–10 sessions. Once proficient in the smooth condition, mice were
transferred to the dark odor (noisy) condition for 3–5 sessions in which noisy
odorant spatial distributions were presented as governed by Equation 7 and
controlled by the position-amplitude-predictive algorithm with a sigmoidal
correction (Equation 13, Fig. 2g, h). During the last ~5–10 min of the final ~2–3
noisy sessions, mice were transferred to the dark flat condition. Once proficient in
the noisy condition, the training was complete. On subsequent sessions, mice were
transferred between the smooth, noisy, and flat conditions on the same day
(Fig. 6a). Mice that failed to consistently perform anticipatory licking for several
consecutive days in any (excluding flat) condition were removed from the study. Of
the 19 mice trained, 5 achieved proficiency. Of these mice, good behavior was
achieved for eight sessions by five mice (Fig. 6a–d). For one session, the flat
condition was not included (Fig. 6c), so this session was removed from the
ANOVA calculation. For one of these mice, CA1 imaging was performed as
described above (Fig. 6e–g).

Odor-based position error. To quantify the position error associated with a
given odor noise level (Fig. 6d Supplementary Fig. 8), we first calculated “perceived
position” using the noisy odorant concentration C by applying the same line
equation that was used to define the smooth odorant spatial distribution:

xperceived Cð Þ ¼ �1:5þ 2
40

C: ð15Þ

For methyl valerate and

xperceived Cð Þ ¼ 3:5� 2
40

C: ð16Þ

For α-pinene. This is the position that a mouse would perceive itself to occupy
assuming that it uses a direct mapping of smooth odorant concentration to
position. For example, if a mouse in the middle of the track experienced high-
amplitude bubblegum noise, it would perceive itself to be on the bubblegumward
side of the track. Since noise for the two odorants was not synchronized, the two
odorants could produce different perceived positions at the same time. The error
between perceived and true positions were calculated to obtain odor-based position
error for each odor:

xerror Cð Þ ¼ xperceived � xtrue: ð17Þ

This is the error in the mouse’s estimation of its position based on the odor. To
calculate the effect of odor-based position error on anticipatory licking, we first
defined an anticipatory lick as any lick that occurred less than 6 s before a reward
and <1 m away from a reward. The two reward sites were analyzed separately. For
each anticipatory lick before each reward site, we calculated the position error
based on each odor. For display purposes (Fig. 6d, Supplementary Fig. 8), positive
position error was defined as toward the reward.

Endzone lick index. To quantify anticipatory licking as a single value, the track
was divided into sections: the middle half and the endzone quarters. These sections
did not include the reward sites and beyond. The number of licks in each section
was counted as Lm and Le. Endzone lick index E was defined as: E= (Le−Lm)/(Le
+ Lm), where −1 indicates exclusively middle licking, +1 indicates exclusively
endzone licking, and 0 indicates equal middle and endzone licking.

2-photon imaging. On the session after completing the behavioral training, mice
were placed back into the dark odor condition. Mice that began to perform long
track traversals with anticipatory licking were immediately subjected to 2-photon
calcium imaging of CA1 stratum pyramidale. This was done using a customized
Moveable Objective Microscope (Sutter Instruments) described previously9, except
here a 40×/0.8 NA water immersion objective (LUMPlanFL N×40/0.8W, Olym-
pus) and ScanImage 5 was used. Laser average power at the sample (after the
objective) was 30–50 mW. Time series movies of 16,000 frames, 512 × 256 pixels,
0.0675 ms/line were acquired at 57.87 Hz. A Digidata1440A (Molecular Devices)
data acquisition system (Clampex 10.3) was used to record and synchronize VR
position, view angle, the three MFC flow rates, licking, reward delivery, and two-
photon image frame timing at 1 kHz. Mice that achieved ≳10 rewards in the dark
odor condition were instantly switched to the dark flat condition, and the same
field of view was imaged again after at least ~2 min in the new condition. Imaging
sessions during which the mouse achieved ≳10 rewards in both conditions were
analyzed for place fields. Mice that did not achieve sufficient rewards in both
conditions were subjected to the same imaging protocol on subsequent sessions.

Imaging analysis. All data analysis was performed using custom scripts written in
Matlab (MathWorks). All data in the text and figures are presented as mean ± s.d.
except the spectral densities presented in Fig. 2i and the mean place fields presented
in Figs. 4c, 5b, and 6f where error represents s.e.m.
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Movie processing. In this and the following sections of the Methods, F refers to
fluorescence and not flow rate (as above). Calcium imaging movies were corrected
for motion artifact using a whole-frame cross-correlation algorithm described
previously8,9,11. ROIs were defined using a PCA/ICA algorithm described
previously38 (mu= 0.6, 150 principal components, 150 independent components,
s.d. threshold= 2.5, s.d. smoothing width= 1, 100 pixels < area of ROI < 1200
pixels; see Mukamel et al.38 for parameter definitions). This algorithm was applied
separately for each left/right half of each movie. ROIs of opposite halves sharing a
middle border were stitched together as a single ROI and their time series were
averaged under the following circumstances: (1) Their temporal Pearson’s
correlation was >0.7, and (2) the number of border pixels shared by both cells was
>50% of the average of the number of border pixels occupied by each cell
separately.

Calcium transient identification. For each ROI, a ΔF/F versus time trace was
generated as described previously8,9,11. Briefly, slow changes in the fluorescence
traces were removed by examining the distribution of fluorescence in a 20.7 s
interval around each sample in the trace and normalized by the 8th percentile
value. These baseline-corrected traces were then subjected to the analysis of the
ratio of positive- to negative-deflecting transients of various amplitudes and
durations described previously75. We used this analysis to identify significant
transients with < 0.1% false positive error rates. The behavioral data were then
binned (averaged) to the imaging frame rate of 57.87 Hz and synchronized with the
corresponding significant transient traces. These significant transients were used
for all subsequent analysis. Example significant transients are shown in (Figs. 4c,
5b, and 6f).

Place field identification. Each traversal direction (bubblegumward or
pineward) was treated separately for the identification of place fields. We used a
slightly modified version of an existing procedure8 to conservatively identify place
fields. To exclude periods when the mouse was not actively engaged in the task, we
selected for periods during which the mouse was traversing the track (Figs. 4a, 6e)
as follows. To allow for slight stoppages and turn-arounds, position was smoothed
with a mean filter of 5.9 s. Traversals were defined as sequences of the (non-
smoothed) position during which the mouse moved with a (smoothed) speed of at
least 1 cm s−1 for a (smoothed) distance of at least 130 cm. Only points of forward
progress were included in each traversal. ΔF/F of each neuron was then plotted for
each traversal of each direction (Figs. 4c, 5b, 6f). These traversal-by-traversal traces
were then averaged over 80 track bins to calculate the mean ΔF/F (Figs. 4c, 5b, 6f).
The mean ΔF/F was then smoothed (averaged) over a window of 3 bins. The
baseline of each mean ΔF/F was calculated as the mean of the 20 bins of lowest
amplitude. Potential place fields were identified as contiguous regions of the mean
ΔF/F with amplitude >25% of the difference between the peak mean ΔF/F and the
baseline ΔF/F. Only place fields that satisfied the following criteria were included:
(1) a width of at least 15 cm and at most 125 cm, (2) a maximum mean ΔF/F of at
least 0.1, (3) a mean in-field amplitude of at least 8× the mean out-of-field
amplitude, (4) transients occurring during more than 30% of the traversals through
the field, (5) at least 5 total traversals through the field. In the event that one
neuron exhibited multiple potential place fields in the same direction, only the one
with the greatest number of in-field transients per traversal was considered. In the
case of a tie, only the one with the largest amplitude was considered. Potential place
fields were then tested for significance. This was done by breaking the ΔF/F trace
during the traversals into at least 100 segments (though leaving each individual
transient intact), shuffling these segments, calculating the shuffled mean ΔF/F, and
subjecting it to the same potential place field criteria as above. The bootstrapped p-
value was calculated as the ratio of shuffled potential place fields per 1000 shuffles.
Place fields with a p-value <0.05 were called significant place fields.

Place field properties. Each significant place field’s position (Fig. 4d,
Supplementary Fig. 7b) was defined as the track position at which its peak mean
ΔF/F occurred. Place field width (Fig. 4e) was calculated as the distance between
the place field boundaries defined above. Any place field with a boundary at either
track end was excluded from this calculation. To calculate directionality index8 for
each significant place field (Fig. 5d), the mean ΔF/F M in the place field was
calculated in the bubblegumward (Mb) and pineward (Mp) directions.
Directionality index was was defined as |Mb−Mp|/(Mb+Mp), where 0 indicates
identical activity in both directions, and 1 indicates activity in only one direction.

Data availability. The data and code that support the findings of this study are
available from the corresponding author upon reasonable request.
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