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Functional Brain States Measure 
Mentor-Trainee Trust during Robot-
Assisted Surgery
Somayeh B. Shafiei1,2,3, Ahmed Aly Hussein2,3,4, Sarah Feldt Muldoon   5 & Khurshid A. Guru2,3

Mutual trust is important in surgical teams, especially in robot-assisted surgery (RAS) where interaction 
with robot-assisted interface increases the complexity of relationships within the surgical team. 
However, evaluation of trust between surgeons is challenging and generally based on subjective 
measures. Mentor-Trainee trust was defined as assessment of mentor on trainee’s performance quality 
and approving trainee’s ability to continue performing the surgery. Here, we proposed a novel method 
of objectively assessing mentor-trainee trust during RAS based on patterns of brain activity of surgical 
mentor observing trainees. We monitored the EEG activity of a mentor surgeon while he observed 
procedures performed by surgical trainees and quantified the mentor’s brain activity using functional 
and cognitive brain state features. We used methods from machine learning classification to identity 
key features that distinguish trustworthiness from concerning performances. Results showed that 
during simple surgical task, functional brain features are sufficient to classify trust. While, during more 
complex tasks, the addition of cognitive features could provide additional accuracy, but functional brain 
state features drive classification performance. These results indicate that functional brain network 
interactions hold information that may help objective trainee specific mentorship and aid in laying the 
foundation of automation in the human-robot shared control environment during RAS.

Robot-Assisted Surgery (RAS) has revolutionized the field of surgery by incorporating improved 3D visualiza-
tion, 10× magnification, and endowrist technology allowing for six degree of wrist freedom in a miniaturized 
fashion1,2. In this environment, the surgeon operates remotely from the console by controlling robotic tools dur-
ing surgery. Developing analytical methods to quantify surgical performance in real-time is of great importance, 
as real-time surgical mentorship can provide qualitative feedback during RAS3,4.

RAS requires a surgeon to not only master motor skills (human-machine interaction) in order to operate the 
robotic surgical system (console), but also to develop cognitive competence while operating remotely with no 
tactile feedback5,6. Therefore, surgical skill monitoring is an essential part of surgical training as well as procedure 
safety evaluation5,7. In the shared environment between a surgeon and robot, a mentor robotic surgeon monitors 
the performance of trainees8 and provides them with helpful assessment feedback5,9, and guidance8,9. Further, the 
expert surgeon must switch from surgical console or monitor and follow a trainee on a dual console.

In this shared environment, trust plays a key role and can lead to an open communication10 and coopera-
tion11,12 leading to quality decision making13, safe risk-taking14, and satisfaction15,16. Hence, mutual trust between 
team members is required17–19, and is a fundamental factor in predicting the success or failure of the team, espe-
cially during high risk states20,21. While trust is difficult to define, Ring and van de Ven22 define it as “confidence in 
another’s goodwill”. In complicated teamwork environments such as RAS, many unpredictable complications and 
unforeseen events may occur during surgery. Trust is critical to help team members manage stressful situations 
by relying on their collaborative performance23.

Different approaches for trust evaluation have been proposed: affect and cognition-based24. Both are associ-
ated with performance in different ways24 and influence the psychological state of a team. Affect-based trust is 
related to the emotional understandings between team members25. The focus of affect-based trust is mostly psy-
chological26 and therefore not the purpose of this study. However, cognition-based trust is related to performance 
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and the understandings between team members engaged in it26 especially when evaluating competence27, respon-
sibility28, reliability25,29, integrity, and dependability26.

Cognition-based trust has also been proposed to positively impact team performance26. Lack of mutual trust 
between team members30 results in anxiety, stress, and disappointment31. These effects can negatively influence 
performance, reduce cognition-based trust and subsequently, affect-based trust25.

We sought to model and investigate the level of cognition-based trust, which an expert robotic surgeon 
(with over 10000 hours of console time) has with regard to surgical training while performing Urethrovesical 
Anastomosis (UVA; a simple surgical procedure) during radial prostatectomy and Lymph Node Dissection (LND; 
a complex risky surgical procedure). We examined the brain activity of the expert surgeon utilizing electro-
encephalogram (EEG) as the expert surgeon observed the trainees perform the surgical steps. Surgical perfor-
mance was additionally categorized as “trustworthy” or “concerning” based on validated NASA Task Load Index 
(NASA-TLX) scores and written feedback of the expert mentor surgeon.

Using both cognitive and functional brain state features, we used machine learning methods to objectively 
quantify the trust relationship between the mentor and trainee surgeons during RAS. We were able to extract key 
cognitive and functional features of brain activity which were capable to discriminate between surgical perfor-
mances. During UVA, only functional brain state features were selected to discriminate between trustworthy and 
concerning performances. During more complex procedures- LND, both cognitive and functional measures of 
brain activity were selected to differentiate surgical performances, but functional features continued to drive per-
formance classification. The experimental design includes controlled EEG data of mentor while he is engaged in 
observing trainees’ performances. EEG features such as ‘level of engagement’, that may be affected by other exter-
nal effects rather that trust, were calculated and their effects were considered in classification analysis. Factors like 
frustration, level of task complexity and level of engagement are other possible factors, effective on EEG activity 
that were considered. This consideration is because all these effects are influential in the level of cognitive trust 
between mentor and trainee. Hence, the proposed mentor-trainee trust evaluation algorithm is objective. By 
objectively monitoring mentor-trainee trust during RAS mentorship, our findings will allow the development 
of protocols for measuring trust. The developed protocols can be employed during surgery to ensure safety, and 
may also aide in development of shared control and automation for the human-machine (robot) environment.

Results
In order to quantify the brain state of the expert surgeon, we extracted 12 cognitive and 21 functional measures of 
one expert’s brain activity from EEG recordings as he observed three trainees’ performances during 87 UVA and 
83 LND operations, as part of the “Mind Maps” program (Methods). These measures represent total brain activity 
calculated across six cognitive systems32: frontal (F), prefrontal (PF), temporal (T), central (C), occipital (O), and 
parietal (Pa). The 12 cognitive features included mental workload (MW), mental load (ML - calculated for each 
of the six cognitive systems), situation awareness (SA), engagement (E), blink rate (BR), asymmetry index (AI), 
and completion time (CT). The 21 functional state features were extracted by calculating the average phase syn-
chronization, using equation (7), within (strength) and between (communication) the six cognitive systems. The 
functional features were calculated for each of four frequency bands: θ(4–8 Hz), α(8–12 Hz), β(12–35 Hz), and γ
(35–60 Hz), resulting in a functional feature space of 84 dimensions. Combining the cognitive and functional 
features resulted in a final feature space (96 dimensions). Clustering and classification of brain activity was per-
formed using this final feature space.

Surgical Performance Categorization.  In addition to recording single expert surgeon’s EEG activity 
during surgery, at the end of each procedure, the expert surgeon also completed a subjective assessment of the 
performance of the trainee using the validated NASA-TLX questionnaire33,34. Based on the subjective assess-
ment, trainee performance could be separated into two groups:“trustworthy” and “concerning” performances. 
Performance level (PL) was extracted from the performance score (PS) of NASA-TLX, PL = 20-PS34,35. Surgical 
procedures with PL > 11 were categorized as ‘trustworthy’ and others were categorized as ‘concerning’. The 
threshold of ‘11’ was suggested by the mentor as trainees who got score of PL > 11 were qualified to continue 
supervised performance on the console.

Functional brain measures for Urethrovesical Anastomosis (UVA).  In order to determine which 
brain features were associated with trustworthy or concerning performances, we turned to a standard classifi-
cation method from machine learning. Using support vector machine (SVM) classification36 with kernel target 
alignment (KTA)37, we derived a method for selecting the combination of features that provided the highest 
classification accuracy. These features are refered as key features (Methods). During UVA, the optimum number 
of discriminative features for accurate classification was three (Fig. 1a) with maximum accuracy of 98.81% cal-
culated using the LOOCV algorithm. By using 10-fold cross-validation, the accuracy of trust evaluation for the 
UVA recordings was 95.40%, with F-score 94.25%. Use of 10-fold cross-validation decreased the classification 
performance, compared to resulted performance using LOOCV method. However, classification accuracy is still 
high, suggesting classification algorithm and selected features appropriate for classification of UVA recordings 
based on trustworthiness.

The results of the linear classification using LOOCV projected onto the first and second principal components 
seen in Fig. 1b. The accuracy of clustering the data set using 3 key features was additionally verified using fuzzy 
C-means clustering, resulting in an accuracy of 98.81% and J = 5.23. The two-sample t-test was applied to selected 
features to find the significance level of each feature difference in trustworthy and concerning performances.

Cognitive and functional brain measures for Lymph Node Dissection (LND).  From a clinical point 
of view, LND is more complicated than UVAs as seen in our previous study7. This difference in complexity is 
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also apparent in the classification results seen in this study. Although UVA could be categorized by using just 
three functional brain state features, more detailed features from both cognitive and functional feature sets were 
required for classifying LND. For these more complicated tasks, the incorporation of nine features resulted in the 
highest classification accuracy (using LOOCV method), 98.79% (Fig. 2a).

The projection of this classification onto the first and second principal components can be seen in Fig. 2b. 
Ten-fold cross-validation was also considered for classification. Accuracy of trust evaluation for the LND record-
ings was calculated as 93.97% with F-score 90.91%. Using 10-fold cross-validation, classification accuracy is 
decreased compared to the accuracy of classification of LND samples using LOOCV method. However, high 
classification accuracy even by using 10-fold cross validation, suggests that classification algorithm is reliable 
in discriminating trustworthy and concerning samples of LND recordings.The accuracy of clustering the data 

Figure 1.  Selected features and classification results for UVA. (a) Classification accuracy by SVM method and 
LOOCV algorithm at different dimensions of selected features. Each training/testing sample used in LOOCV 
is the full 30 minute data from one surgery. (b) First and second principal components of features for UVA, 
classified using linear SVM method. (c) Average value and standard error of the mean (s.e.m) –standard 
deviation divided by the square root of number of data- of features for Trustworthy and Concerning procedures. 
Error bars represent s.e.m. for trustworthy (N = 63) and concerning (N = 24) samples. Selected features were 
significantly independent for trustworthy and concerning samples for selected features (two-sample t-test for 63 
trustworthy and 24 concerning cases, resulted in P = 9.4 × 10−25, 1.03 × 10−15, and 4.9 × 10−26, respectively).

Figure 2.  Selected features and classification results for LND. (a) Classification accuracy by SVM method and 
LOOCV algorithm at different dimensions of selected features. Each training/testing sample used in LOOCV is 
the full 30 minute data from one surgery. (b) First and second principal components of features for LND, 
classified using linear SVM method. (c) Average value and standard error of the mean (s.e.m) –standard 
deviation divided by the square root of number of data- significant selected features for Trustworthy (N = 43) 
and Concerning (N = 40) LND performances (all selected functional state features are from γ frequency band). 
Two-sample t-test is used for evaluation, P = 1.2 × 10−25, 2.11 × 10−23, 4.6 × 10−21, 2.3 × 10−21, 8.1 × 10−19, 
1.63 × 10−19, 1.5 × 10−19, 3.3 × 10−5, 1.7 × 10−4, respectively. Features ranked in descending order, as ‘F’ is better 
ranked than other featues and ‘AI’ has the lowest rank.
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set using nine key features was additionally verified using fuzzy C-means clustering, resulting in an accuracy of 
98.79% and J = 4.56.

Interestingly, the key features selected for this classification were drawn from both the functional and cog-
nitive feature spaces and ranked by descending order shown in Fig. 2c and Table 1. While the top 7 key features 
used in the classification algorithm are again functional measures (Fig. 3) that largely involve the frontal cortex, 
the highest classification accuracy also required the incorporation of two cognitive features: blink rate (BR) and 
asymmetry index (AI).

For UVA, we found that the key discriminatory features were all functional measures of brain activity. As 
ranked by the classification method, the selected key features were Frontal strength (F), Frontal-Parietal commu-
nication (F-Pa), and Frontal-Central communication (F-C). These features took on substantially different values 
between trustworthy and concerning procedures (Fig. 1c, Fig. 3, and Table 2). Notably, the frontal cortex was 
involved in all selected features for UVA recordings, as might be expected due to its role in conscious thoughts, 
decision making, cognition, and reasoning38–41.

Correlation of Engagement, Situation Awareness, and Mental Workload with key features.  If 
two features in our feature space are significantly correlated, our feature selection method will only select one of 
these to be used by the classification algorithm. We examined the correlation between our selected key features 
and the remaining features. The correlation analyses helped to see if unselected features might also be useful for 
discriminating trustworthy and concerning procedures. These analyses also helped in interpretiton of the results. 
We found that engagement, and MW were significantly correlated with multiple key features for UVA (Table 3). 
Engagement, situation awareness, and MW were correlated with key features in LND (Table 4).

Effect of the complexity of the task on results.  LND and UVA are two distinct controlled tasks, for 
trust evaluation, that were considered in this study. Therefore, the analyses were applied to recordings from 
each task separately to take into account only the level of mentor surgeon’s trust on trainee’s performance. This 
statement was considered because the complexity level was consistent for recordings in each task – UVA and 
LND- separately.

However, to investigate the effect of task complexity level on classification results and find the driving factor 
(whether trustworthiness or complexity level), all LND and UVA recordings were considered together. To find if 
trustworthiness is driving factor or complexity level, we performed dependency statistical test and also classifi-
cation analyses.

While the mentor was engaged in all recordings (trainee mentoring), he subjectively assessed the complexity 
of UVA and LND tasks as simple and complicated, respectively. Using two-sample t-test, we found that trustwor-
thiness and complexity level are two significantly independent factors (p-value = 0.0089).

We also classified all recordings (combined data: LND and UVA samples together). Here, we repeated classifi-
cation algorithm for classifying combined data based on 1) trustworthiness (trustworthy and concerning groups) 
and 2) Their complexity level (complicated and simple groups). In all classifications (1 and 2), the same selected 
features (the same nine features selected in LND by KTA algorithm), LOOCV method, and the SVM classification 
method were used.

The accuracy of complexity level classification for combined data was 66.47% (F-Score = 64.15%). On the other 
hand, accuracy of trustworthiness classification for combined data was calculated as 95.29% with F-score 94.11%.

These results showed that the selected features are useful to evaluate trustworthiness, while complexity level 
may not be a driving factor toward the results of this article.

Discussion
Currently, subjective assessment methods are common practical approaches in trust evaluation. Trust assessment 
using features extracted from brain activity can provide an objective method for addressing this challenge during 
robot-assisted surgery environment. Different types of trust in human-robot interaction environment, mostly 
human on human and human on autonomous robot, are challenging topics in this area42,43. Previously, robot 

Feature Name Trustworthy Feature Value Concerning Feature Value P-value

F strength**** 0.34 ± 0.01 0.73 ± 0.02 1.2 × 10−25

PF-F communication**** 0.42 ± 0.01 0.73 ± 0.02 2.1 × 10−23

PF-Pa communication**** 0.55 ± 0.01 0.79 ± 0.02 2.3 × 10−21

F-Pa communication**** 0.38 ± 0.01 0.68 ± 0.02 4.6 × 10−21

T-O communication**** 0.49 ± 0.01 0.74 ± 0.02 8.1 × 10−19

F-C communication**** 0.38 ± 0.02 0.73 ± 0.02 1.6 × 10−19

F-O communication**** 0.48 ± 0.00 0.73 ± 0.02 1.5 × 10−19

BR**** 0.83 ± 0.02 0.71 ± 0.02 3.3 × 10−5

AI** −0.23 ± 0.03 −0.10 ± 0.02 1.7 × 10−4

Table 1.  Stable significantly independent features, selected for classification of Trustworthy (N = 43) and 
Concerning (N = 40) LND procedures. A two-sample t-test is applied for significance evaluation. Feature 
values are represented as mean±standard error. ****And ***indicate correction multiplication test rejects null 
hypothesis and feature is significantly independent from other features with p-value ≤ 0.0001 and ≤0.001, 
respectively.
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Figure 3.  Illustration of discriminative brain features while observing trustworthy and concerning 
performances by robot-assisted surgical mentor. Functional connectivity features (strength and 
communication) for six systems of brain32 are shown for UVA and LND recordings. Values in orange circles 
represent the average and standard error of communication between channels in pairs of cortical systems 
for Trusthworthy (T) and Concerning (C) cases. Values in blue circles represent the average and standard 
error of strength within channels in the associated cortical system for Trusthworthy (T) and Concerning (C) 
cases. For UVA performances, functional connectivity features were able of discrimination. However, for 
LND performances, Asymmetry Index (AI) and Blink Rate (BR) features added discriminative information 
to functional state features to improve classification accuracy. Considering the distict function of each brain 
system, results can be interpreted as specific systems of the mentor’s brain (Frontal, Central, Parietal) being 
functionally connected in a different way for Trustworthy and Concerning cases. While for LND recordings, 
most functional connectivity features behave differently for Trustworthy and Concerning cases. Also, for LND 
recordings two cognitive features (AI and BR) showed different patterns for trustworthy and concerning cases.

Feature 
Name

Trustworthy 
Feature Value

Concerning 
Feature Value P-value

F**** 0.37 ± 0.01 0.75 ± 0.03 9.4 × 10−25

F-Pa**** 0.35 ± 0.01 0.58 ± 0.03 1.03 × 10−15

F-C**** 0.35 ± 0.01 0.68 ± 0.03 4.9 × 10−26

Table 2.  Stable significantly independent key features, selected for classification of Trustworthy (N = 63) and 
Concerning (N = 24) procedures for UVA (all selected features are from γ frequency band). A two-sample 
t-test is applied for significance evaluation. Feature values are represented as mean ± standard error- standard 
deviation divided by the square root of number of data. ****Indicates correction multiplication test rejects null 
hypothesis and feature is significantly independent from other features with p-value ≤ 0.0001.

Key Features
Non-key 
Features Correlation P-value

F E −0.56 1.0 × 10−8

F-Pa E −0.49 1.6 × 10−6

F-C E −0.46 6.8 × 10−6

F MW 0.54 5.2 × 10−8

F-Pa MW 0.53 9.5 × 10−8

F-C MW 0.56 1.36 × 10−8

Table 3.  Significant Pearson-correlations between key features, cognitive engagement level, situation awareness, 
and mental workload (MW) for LND (N = 83) procedures. Results are calculated for a 95% confidence interval.
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trustworthiness and trust of human on robot has been studied42,44,45. However, focus of existing studies is mostly 
on the motion fluency of robots and trust of human on the autonomy of the robots43.

Previous work has explored the relationship between cognitive brain features and surgical performance5,7, 
correlations between cognitive features when performing vs. observing surgery5,7, or classification of satisfaction 
in brain computer interface environments16. However, these studies relied on calculations of cognitive features, 
some of which (MW, engagement) involve taking additional baseline information into account46,47.

The current study, first of its kind to our knowledge, evaluates the cognition trust of mentor on trainee per-
formance (human-human). Trust was evaluated while trainee is performing very complicated hand motions to 
remotely control surgical robot tools (with no autonomy) during different surgical procedures in the operating 
room.

Here, we showed that by quantifying the mentor’s brain state we are able to achieve trust classification based 
on functional features alone for simple UVA procedures. Mentor’s brain state were quantified using functional 
brain networks and extracting simple measures of strength and communication between brain systems. For more 
complicated LND procedures, incorporating the Asymmetry index (AI) and Blink Rate (BR) into the functional 
feature space increased classification accuracy. However, these two cognitive measures are simple to calculate. 
These metrics were ranked in descending order (Fig. 2). We note that functional metrics drive the classification 
performance.

While functional features drive the classification of trustworthiness during RAS, we did observe a correlation 
between certain cognitive features and key functional features. Specifically, during UVA procedures, engagement 
and MW were found to be correlated with all three key functional features. As mentioned above, these two cogni-
tive features require additional recordings of baseline EEG in their calculation46,47, making their calculation time 
consuming and potentially limiting their usefulness in real-time evaluation of trust during RAS. Given that the 
simpler measures of functional brain states provide similar information about the mental state during RAS, the 
functional features could be used to estimate MW. This application is useful, especially in clinical applications, 
where situational and other time concerns might impede performing more complex calculations.

During LND, we additionally observed a correlation between SA and multiple functional key features. SA is 
designed to measure the level of cognitive integration by assessing the difference in the PSD of the frontal region 
between the theta and gamma frequency bands. We observed a positive correlation between SA and multiple 
measures of communication (F-Pa, F-C, F-O, T-O; all extracted from the gamma band). This demonstrates a link 
between cognitive integration as assessed through frequency dependent activation of the frontal cortex and the 
co-activation of brain regions as assessed through measures of functional communication.

It should also be noted that we observed lower levels of functional strength and communication measures in 
trustworthy as compared to concerning procedures. This reflects lower levels of synchronization between brain 
regions, which may be an indication that more brain regions are invoked in the observation of concerning pro-
cedures. During LND, we also saw that the BR is lower during concerning procedures, potentially indicating 
increased concentration. The AI is also less negative during concerning LND, indicating higher levels of stress, 
fear, surprise, and possible disappointment.

Key Features Non-key Features Correlation P-value

F Engagement −0.6 3.3 × 10−8

PF-F Engagement −0.49 2.6 × 10−6

PF-Pa Engagement −0.44 2.8 × 10−5

F-Pa Engagement −0.51 6.5 × 10−7

F-C Engagement −0.52 4.0 × 10−7

F-O Engagement −0.58 1.0 × 10−8

AI Engagement −0.30 5.0 × 10−3

T-O Situation Awareness 0.33 3.0 × 10−3

F-C Situation Awareness 0.25 2.0 × 10−2

F-O Situation Awareness 0.41 1.0 × 10−4

AI Situation Awareness 0.38 4.1 × 10−4

F Situation Awareness 0.38 4.3 × 10−4

F-Pa Situation Awareness 0.42 6.5 × 10−5

F Mental Workload 0.45 1.6 × 10−5

PF-F Mental Workload 0.30 0.006

PF-Pa Mental Workload 0.34 0.001

F-Pa Mental Workload 0.60 4.17 × 10−8

T-O Mental Workload 0.43 4.43 × 10−5

F-C Mental Workload 0.48 5.39 × 10−6

F-O Mental Workload 0.44 2.81 × 10−5

BR Mental Workload −0.28 0.01

Table 4.  Significant Pearson-correlations between key features, cognitive engagement level, situation awareness, 
and mental workload (MW) for LND (N = 83) procedures. Results are calculated for a 95% confidence interval.
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These proposed metrics for objective trust evaluation were applied on mentorship data during RAS. However, 
this methodology can have many other applications in which cognitive trust plays an influential role, and will be 
essential in assessing and evaluating training of surgeons in RAS.

EEG features have been previously used by ET Esfahani et al.48 to evaluate the level of human satisfaction 
in human-humanoid robot interaction. They used cognitive EEG features of power spectral density and the 
Lyapunov Exponent measures to classify level of human satisfaction of robot motion direction into three catego-
ries of neutral, satisfied and not satisfied groups. They could find classification rate of 79.2%. They also investi-
gated the dependency of their result on subjects. They reported expectation of higher accuracy (80.2–94.7%) for 
subject based emotional classification. Although the current study evaluates trust between two humans (mentor 
and trainee) and the methodology proposed in this study is different from the one used by Esfahani et al., we 
compared our results with the study by ET Esfahani et al.48 to find advantages and shortcomings of our proposed 
features in evaluating emotional states of trust using EEG data. EEG data used for extracting features in this study 
include 30 minutes recordings from mentor surgeon’s brain during supervising surgical tasks using 20-channel 
EEG headset, compared to 1–2 second recordings from subject’s brain during emotional response to the motion 
of humanoid robot using 14-channel EEG headset in Esfahani’s study. Our results show a high accuracy of 95.29% 
in classifying EEG recordings of the mentor’s brain into two categories of trustworthy and concerning. Finding 
high accuracy, compared to the result of study by ET Esfahani et al.48, shows that functional connectivity features 
may be more informative in evaluation of emotions like trust in collaborative environments. However, this high 
accuracy may be affected by involving more than one mentors in the study. The Lyapunov Exponent measures 
also seem informative in evaluation of emotions like satisfaction level in human robot interaction as these features 
measure the sensitivity of a dynamical system to initial conditions48.

The purpose of our next study is to repeat the current study using more than one mentor and also add 
Lyapunov Exponent measures to our feature set to develope a more objective trust evaluation algorithm to be 
used in human-robot interaction environment. Our expectation is using the brain functional connectivity fea-
tures proposed in the current study combined with Lyapunov Exponent measures proposed by ET Esfahani et 
al.48, consider most important aspects of brain map during functioning in human-robot interactions, and may 
result in more valid results in emotion evaluation.

Methods
The “Mind Maps” program was initiated in 2013 to record EEG data of surgeons during RAS. All participants 
provided an informed consent to participate. The brain activity of an expert robotic surgeon was recorded while 
observing the operations of three trainees. Data in this study included 83 LND (two trainees performed 28 LNDs 
and one trainee performed 27 LNDs) and 87 UVA (each trainee performed 29 UVAs) during Cystectomy and 
prostatectomy procedures using the da Vinci surgical system. The study was conducted in accordance with 
relevant guidelines and regulations, and were approved by Roswell Park Cancer Institute Institutional Review 
Board (IRB: I-241913). On average recorded procedures took approximately 4 hours and trainees performed 
30 ± 12 minutes on the UVA and/or LND. During this research study certain portions were considered, especially 
EEG portions in which the mentor observed trainee’s performances. Hence, the term ‘recordings’ throughout 
this study means EEG data recorded from one mentor surgeon while supervising a trainee – with each recording 
being approximately 30 minutes.

A 24-channel wireless electroencephalogram (EEG) recording device was used to monitor one mentor’s brain 
activity during all surgical procedures using an ABM X-24 neuro-headset (Advanced Brain Monitoring, Inc. 
Carlsberg, CA). Sensors were placed over frontal (F), temporal (T), parietal (Pa), central (C), and occipital (O) 
cortices. EEG data from each channel was sampled at 256 samples per second.

NASA-TLX is a gold standard and subjective measure of performance at various human-machine interface 
systems33,34. During a multi-dimensional rating procedure, scores are assigned to six indexes33,34:

•	 Mental Demand: Evaluates the level of mental/perceptual activity demanded to complete the task.
•	 Physical Demand: Level of physical activity required to complete the task.
•	 Temporal Demand: Level of time pressure the subject feels during completing the task.
•	 Performance: Quality level of outcome and the level of satisfaction of doing the task.
•	 Effort: evaluates how hard (mentally and physically) should the subject work to complete the task.
•	 Frustration: Level of negative (compared to positive) psychological emotions the subject feels while complet-

ing the task.

The score given by mentor surgeon to mental demand index was used to evaluate level of complexity of LND 
and UVA recordings. The scores given by mentor surgeon to overall performance index were used to categorize 
recordings into trustworthy and concerning groups (labeling).

Data Pre-Processing.  The recorded EEG data were raw signals contaminated with different types of arti-
facts such as eye-blink, muscle activity, and environmental effects. The algorithm proposed by Berka et al. and 
implemented in Advanced Brain Monitoring framework46 was used to detect these artifacts and decontaminate 
EEG data. EEG signal in the time domain, which includes 3, 5, or 7 data point spikes with amplitudes greater 
than 40 mV, were detected as saturation and excursions artifacts46. These artifacts were discarded from data46. 
Environmental artifacts were removed by applying a 60 Hz notch filter to EEG data46,47. The EEG data from chan-
nels were filtered with a band-pass filter (0.5–128 Hz)46. Artifacts including muscle activity and eye movement 
were detected using wavelet transform and discriminant function analyses (DFA) applied to the raw data46,47. 
Linear Discriminant Function Analysis (DFA) was applied to EEG data to detect data points contaminated with 
eye blink46. This DFA uses absolute value of the 0–2, 2–4, 4–8, 8–16, and 16–32 Hz wavelet coefficients from the 
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50th, 40th 30th, 20th, and 10th data points before and after the target data point from FzPOz and CzPOz as fea-
tures to classify each data point into categories of eye blink, theta wave, or non-eye blink. Database available from 
Advanced Brain Monitoring framework, including selected data from healthy, sleep-deprived subjects, were used 
to train the DFA. EEG data contaminated with eye-blink were removed from next analyses46.

Decontaminated EEG data recorded from the mentor’s brain while observing each trainee performing specific 
surgery was considered in the analyses. Short Fast Fourier Transform (SFFT) with a one second Kaiser moving 
window was used to calculate the power spectral density (PSD) of EEG signal. A 50% overlap was considered for 
Kaiser moving window. Considering the whole data in each recording and each channel, data points larger than 3 
times the standard deviation were marked as outliers49 and discarded from the data set (recordings).

Parcellation of the brain into cognitive systems.  Perception, action, and cognition tasks were pro-
cessed by specific brain systems32. Based on the function of different cortices of the brain, six main sub-networks32 
were considered here as active systems while processing RAS operations. These systems are Frontal (F; cognition 
and action; F3, Fz, F4, F7, F8 electrode channels), Prefrontal (PF; cognition; Fp1, Fp2 electrode channels), Central 
(C; action; C3, Cz, C4 electrode channels), Temporal (T; perception; T3, T4, T5, T6 electrode channels), Parietal 
(Pa; cognition; P3, Pz, P4, POz electrode channels), and Occipital (O; perception; O1, O2 electrode channels)32.

Measurement of cognitive features.  Cognitive features extracted by analyzing strength of brain activ-
ity were used in human-computer-interaction applications to find the cognition status of user’s brain50,51. We 
analyzed the following cognitive features to evaluate cognitive trust in human-RAS shared environment: mental 
workload (MW), mental load (ML), situation awareness (SA), engagement (E), blink rate (BR), asymmetry index 
(AI), and completion time (CT). Explanation of these features were summarized in Table 5.

Mental Workload.  To calculate MW, we used the framework developed by the B-Alert EEG series from 
Advanced Brain Monitoring (ABM) company, which has been frequently validated in different studies46,47,52. 
Briefly, this framework calculates a baseline value of the absolute and relative power spectral variables from the 
C3-C4, Cz-PO, F3-Cz, Fz-C3, and Fz-PO channels during mental arithmetic, grid location, and digit-span base-
line tasks. These baselines have been recorded from 80 healthy subjects, and are available from ABM software. A 
two-class quadratic logistic discriminant function analysis (DFA)46 was used to extract the probability of present-
ing a high mental workload. The quadratic logistic DFA was established once for one mentor based on baseline 
data collected before surgeries. The main assumption in MW interpretation is that each person has a relatively 
fixed cognitive capacity46. Commonly, MW refers to the portion of a person’s total mental capacity which is 
loaded53.

Mental Load.  The ML for each brain system during each recording was defined in equation (1) as the total 
power amplitude (A) of channels in each of the six considered cortices during each recording (one mentor 
observed trainee performing surgery):

∑= ∈ ∈ML A j i F PF C O Pa T j i( ), , , , , , ;
(1)

i
j

Situation Awareness.  The awareness of environmental elements, anticipating their status in near future, 
and managing probable risks and emergency response54 helps surgeons overcome uncertain and stressful envi-
ronments55. Therefore, one can consider three levels of SA56; perception of the data and environmental element 

Feature Description Main extraction method

Mental Workload (MW) Level of working memory during problem 
solving and analytical reasoning

Mental Workload Classifier: Linear DFA 
is used to extract classes of low and high 
mental workloads

Mental Load (ML) EEG channel amplitude Power Spectral Density -PSD analysis

Situation Awareness (SA) Expertise in predicting risks and making 
appropriate decisions Power Spectral Density-PSD analysis

Engagement (E) Level of information-gathering, visual 
processing, and allocation of attention

Engagement Classifier: PSD bands are 
used as inputs, and logistic discriminant 
function analysis (DFA) is applied to find 
the level of engagement

Blink rate (BR) Portion of signal data points contaminated 
with eye-blink Linear Discriminant Analyses

Asymmetry index (AI) Difference of power decreased in alpha at 
right and left frontal hemispheres Power Spectral Density-PSD analysis

Completion time (CT) Total time of performance Difference between end and start of 
performance

Strength Level of total functional connectivity within 
channels in a specific subsystem

Functional connectivity network 
(pairwise phase synchronization)

Communication Level of total functional connectivity 
between channels from different subsystems

Functional connectivity network 
(pairwise phase synchronization)

Table 5.  Cognitive and functional brain state features.
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(Level 1), cognitive integration to comprehend the current situation (Level 2), and projection of future states 
and events (Level 3). Here, we were interested in measuring SA at level 2, because EEG analysis has shown that 
SA at level 2 (cognitive integration) is associated with the higher activity in the theta (4–8 Hz), and the gamma 
(35–60 Hz) frequency bands in the frontal cortex (F)49. We therefore defined the level of situation awareness as 
equation (2):

θ γ= +SA PSD PSD( ) ( ) (2)F F

Engagement.  Engagement reflects the spatial recruitment of the brain regions in processing tasks associated 
with decision making. These tasks include, but are not limited to, information gathering, visual scanning, audio 
processing, and attention concentration on one aspect of the environment while ignoring other distractions46,47. 
As with the calculation of MW, we used the framework developed by the B-Alert EEG series from Advanced 
Brain Monitoring (ABM) company. However, in this case, the baselines were drawn from 5 minutes of three dif-
ferent tasks (3-choice vigilance task, eyes open, and eyes closed).These baselines were recorded from one mentor 
at the beginning of the whole research study. Here, the absolute and relative PSD of the Fz-POz and Cz-POz 
channels were used in a four-class quadratic logistic discriminant function analysis (DFA) which returned an 
estimation of the engagement level46,47. The range of this estimation is between 0–1 with 0 being no engagement 
and 1 fully engaged.

Blink Rate.  Signal data points, in each recording while one mentor observed trainee performing, contami-
nated with eye blinks are detected and decontaminated during data preprocessing as described in ‘Methods’. The 
number of contaminated points (Nc) in the signal divided by the total points in the signal (N ) is defined as the 
blink rate in equation (3):

=BR N
N (3)

c

Asymmetry index: a representation of surprise and fear.  Negative emotions such as surprise, frus-
tration, fear, and concern have opposing effects on the activity of the right and left lobes of the frontal cortex57. 
Asymmetry index is defined as the difference between the power density decrease in the left and right frontal 
hemispheres in the alpha band58, normalized as equation (4)58,59. AI was obtained from each recording (one men-
tor observed a specific trainee performing about 30 minutes).

α α α α

α α α α

=
−
+

= − + −

= − + −

AI L R
L R

L PSD PSD PSD PSD

R PSD PSD PSD PSD

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (4)

F F F F

F F F F
max

3
min

3
max

7
min

7

max
4

min
4

max
8

min
8

The AI was calculated as the average value over the following pairs of electrodes: (F3 and F4), and (F7 and F8). 
During negative emotional stimulations, the right frontal lobe shows more intense activity (associated with lower 
α power59) compared to the left lobe59–62 (alpha power is inversely related to activation58).

Completion Time.  By synchronizing the recorded EEG and the associated video of the surgery, completion 
time was defined as the total time a trainee was performing a surgery. The completion time can be defined using 
the number of total data points in signal (N) and the data recording sampling frequency ( fs) in equation (5).

=CT N
f (5)s

Extraction of functional brain networks.  There are several methods for mapping time series into a com-
plex network63. Here, Phase Locking Value (PLV) was used to map EEG time series into a complex network of 
brain functional connectivity. PLV was used because our purpose was to analyze brain functional connectiv-
ity when information is transformed throughout areas of the brain. Information transformation occurs when-
ever two areas are phase-synchronized (locked). PLV was calculated by applying continuous Huang Transform 
(HHT)64 to EEG recordings.

We calculated the pairwise phase synchronization of electrode channels to analyze the functional connectivity 
of the brain across four different frequency bands of θ, α, β, and γ.

To find the phase (ϕ) of the EEG signals, we applied the continuous HHT64 to decontaminated EEG record-
ings. The instantaneous phase difference at time t, ( φ∆ t( )xy ), for pair of channels (x and y) can be calculated based 
on equation (6)65.

φ φ φ∆ = | − |t t t( ) ( ) ( ) (6)xy x y

Transferring the range of phase into the boundary φ π π∈ −[ , ]x , the phase difference for all pairs of channels 
was normalized by using the range of phase difference ( φ π∆ = 2xy

max  and φ∆ = 0xy
min ).

The average phase synchronization index Γ FB( )xy  can be defined by using the equation (7)66:
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φ φ
Γ =

∑ ∆ + ∑ ∆
FB

t t

P
( )

[ cos( ( ))] [ sin( ( ))]
(7)xy

t x y
FB

t x y
FB

,
2

,
2

where, P is the number of data-points in the time series used for averaging, and FB is the frequency band. 
Calculating Γ for all pairs of channels resulted in the creation of four independent, frequency based functional 
connectivity matrices66. The extracted matrices were then used to calculate the functional features used in surgical 
performance classification.

Measurement of functional features.  In order to assess functional brain features, we measured the func-
tional connectivity of the brain by assessing the pairwise phase synchronization between electrodes as described 
above. We then quantified functional brain activity across the 6 defined cognitive systems by defining two meas-
ures of cognitive system functioning: strength and communication. These features are explained in Table 5.

Strength.  The strength of a cognitive system was defined as the average functional connectivity of electrodes 
within the system.

Communication.  Communication, C, between two cognitive systems k1 and k2, was defined as the average 
functional connectivity in electrode pairs where one electrode lies within the first system and the second elec-
trode lies within the second system:

=
∑ Γ

| || |
∈ ∈C
S S( ) (8)

k k
i k j k ij

k k
,

,
1 2

1 2

1 2

Where | |Sk  is the number of nodes in the cognitive system k, where = ...k 1 6, and ≠k k1 2. Note that the strength 
of each cognitive system can be calculated by letting =k k1 2 in equation (8).

Accuracy of clustering.  The accuracy of clustering data into two categories of trustworthy and concerning 
was evaluated using fuzzy C-means clustering. In addition to a high accuracy of clustering, which was calculated 
by comparing the cluster label and real label for the data, the clustering cost criterion parameter (J), also should 
be high for good clustering36. J, defined in equation (9), represents the ability of method to separate two groups of 
data by maximum distance between cluster center points36:

= −J tr S S( ) (9)W B
1

where, SB, the between-cluster scatter, and SW is the within-cluster scatter matrix.

Classification of data and selection of key features.  To classify data, we used a linear SVM in combi-
nation with kernel-target alignment (KTA) and kernel class separability (KTS criteria)37. This approach iteratively 
calculates kernel alignment with different weights for combinations of features. The numerical iteration continues 
until the convergence of the kernel. Feature weights which result in maximum KTA were selected as the output 
of the algorithm and ranked by descending order37. It was assumed that features with higher weights are more 
important features67. Key features were chosen to be the minimal set of highest ranking features, which result in 
maximum clustering accuracy68. The only parameter the KTA method requires is the number of features to be 
selected. To maximize the performance of feature selection using this method, this parameter was selected from 
2 to the size of the feature set with an increment of 1. Finally, the number of features that resulted in highest clas-
sification accuracy was considered for data analysis.

The LOOCV and 10-fold cross-validation were used during trustworthiness classification. We used both 
LOOCV and 10-fold cross-validation methods to investigate the effect of the training dataset size on the classifi-
cation performance36,69.
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