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Merkel cell carcinoma (MCC) is a rare but often deadly skin cancer that is typically 
caused by the Merkel cell polyomavirus (MCPyV). Polyomavirus T-antigen 
oncoproteins are persistently expressed in virus-positive MCCs (∼80% of cases), while 
remarkably high numbers of tumor-associated neoantigens are detected in virus-
negative MCCs, suggesting that both MCC subsets may be immunogenic. Here we 
review mechanisms by which these immunogenic tumors evade multiple levels of 
host immunity. Additionally, we summarize the exciting potential of diverse immune-
based approaches to treat MCC. In particular, agents blocking the PD-1 axis have 
yielded strikingly high response rates in MCC as compared with other solid tumors, 
highlighting the potential for immune-mediated treatment of this disease.
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Merkel cell carcinoma (MCC) is a rare and 
often lethal skin cancer with an incidence 
of approximately 2000 new cases per year in 
the USA [1]. While infrequent, the reported 
incidence of MCC has tripled in the last 30 
years [2,3]. This increased incidence is partially 
attributable to the identification of cytokera-
tin-20 (Figure 1C) as an immunohistochemical 
marker of MCC in 1992, which has greatly 
enhanced the detection of MCC [4]. Addition-
ally, a rising prevalence of known risk factors 
for MCC including immune suppression, age 
over 50 and extensive prior sun exposure likely 
contribute to the increased number of reported 
MCC cases [5]. Clinically, MCCs present as 
painless, red or purple nodules (Figure 1A) and 
are commonly misdiagnosed as benign cysts 
or as another malignant neoplasm [2,5]. The 
vast majority of cases arise in Caucasians, pre-
dominantly in males and in sun-exposed areas, 
suggesting that UV-induced skin damage is a 
major contributing factor in the development 
MCC [5]. While the single most common 

site of presentation is on the head and neck, 
accounting for nearly half of cases, MCC can 
arise on non-sun exposed regions including on 
the skin of the buttocks as well as rarely on the 
oral and genital mucosae [2]. Our understand-
ing of the etiology of MCC has expanded dra-
matically over the past several decades, most 
notably with the discovery of the Merkel cell 
polyomavirus (MCPyV), which is causative in 
approximately 80% of MCC cases [6].

The majority of MCCs are associated 
with the Merkel cell polyomavirus 
(MCPyV)
MCC occurs more frequently in patients with 
immunodeficiency, including AIDS, suggest-
ing that MCC may have an infectious etiology 
similar to Kaposi’s sarcoma and EBV-induced 
Burkitt’s lymphoma [7–10]. This was confirmed 
in 2008 when MCPyV was discovered in eight 
of ten MCC tumors using Digital Transcrip-
tome Subtraction, a high-throughput cDNA 
sequencing platform that aligned MCC tumor 
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transcripts against reference human sequences [6]. 
MCPyV was found to be clonally integrated in these 
tumors, suggesting that viral integration is a critical and 
early event in MCC development [6]. Viral integration 
occurs throughout the genome without apparent speci-
ficity [11] and therefore likely does not require perturba-
tion of specific host cell genes to mediate oncogenesis. 
Furthermore, integration is probably a rare biological 
event as it prevents viral transmission and renders the 
MCC tumor cell a dead-end host for MCPyV [12].

MCPyV infection is widely prevalent and appears 
to be asymptomatic, with the exception of rare occur-
rences of MCC [13,14]. Seropositivity against the viral 
capsid protein VP1 as well as viral DNA from cuta-

neous swabs indicate that 40–88% of healthy adults 
have been infected, with primary exposure often 
occurring during childhood [13,15–18]. Viral DNA 
has also been detected in the respiratory tract, saliva, 
urine and the gastrointestinal system, suggesting 
possible fecal–oral transmission [14]. Fascinatingly, 
MCPyV is currently the only human polyomavirus 
known to be oncogenic, despite numerous studies 
investigating the carcinogenic potential of the 12 
other human polyomaviruses [19].

MCPyV biology
MCPyV is a small (∼5 kb), double stranded DNA virus 
that consists of both early and late gene regions [20]. 
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Figure 1. Clinical and pathologic presentation of Merkel cell carcinoma. (A) A 2.5 cm primary MCC on sun exposed skin of 
the left cheek. (B) Hematoxylin & eosin magnification of MCPyV-positive MCC tumor. Bar indicates 50 μm. (C) Cytokeratin-20 
immunohistochemical staining of an MCPyV-positive MCC demonstrates characteristic perinuclear dot-like expression. Bar indicates 
100 μm. (D) Viral oncoprotein expression limited to tumor (not adjacent stroma). MCPyV LT antigen expression detected using CM2B4 
antibody. Bar indicates 50 μm.  
Photos courtesy of Chris Lewis
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The early region contains the T (tumor) antigen locus 
that contains multiple, alternatively spliced tran-
scripts encoding four unique gene products (large 
T [LT], small T [sT], the 57 kT and ALTO) while 
the late region encodes three viral capsid proteins 
(VP1, VP2 and VP3) [20]. Current evidence suggests 
that LT and sT are the major oncoproteins mediat-
ing MCPyV-driven tumorigenesis as knockdown of 
these T antigens results in cell cycle arrest and death 
in MCPyV-positive MCC cell lines [21–23].

MCPyV LT promotes oncogenesis partially through 
the highly conserved LXCXE motif, which binds to 
Rb [24]. Rb normally sequesters the transcription factor 
E2F, however, LT binding to Rb releases E2F resulting 
in increased expression of cyclin E and CDK2. This 
promotes entry into the S-phase of the cell cycle and 
subsequent cellular proliferation [20]. While it appears 
that the LXCXE motif is critical for MCPyV-driven 
oncogenesis, mutation of LT resulting in C-terminal 
truncation is another crucial event in MCC tumor 
development. This hallmark truncation event within 
MCCs eliminates uncontrolled viral replication, as 
is seen in other virally-driven cancers, thereby pre-
venting initiation of DNA damage response and cell 
death [12,20].

While MCPyV sT shares the first 78 N-terminal 
residues with MCPyV LT, expression of sT alone 
mediates in vitro transformation of rodent fibroblasts 
independent of LT expression and can induce hyper-
plasia and transformation in transgenic mice [25–28]. 
MCPyV sT alters cap-dependent translation through 
inhibition of 4E-BP1 and can prevent degradation of 
MCPyV LT as well as other key oncoproteins includ-
ing cyclin E, c-Myc, c-Jun, Notch, mTOR, MCL-2 
and NF-κB2 through suppression of the E3 ubiquitin 
ligase, SCFFbw7 [29]. Detailed summaries of the cur-
rently known functions of LT and sT are presented 
in several recent reviews [20,30]. Importantly, these 
viral oncoproteins are persistently expressed in MCC 
tumors (Figure 1D) and are absent in normal tissues, 
thereby providing ideal targets for immune therapy.

Immune response against MCC
Immune suppression leads to a dramatically increased 
risk of developing MCC [5,7,8,31]. While 90% of MCC 
patients do not have clinically apparent immune dys-
function, patients on immunosuppressive regimens 
following organ transplantation or with compro-
mised cell-mediated immunity (such as those with 
chronic lymphocytic leukemia and HIV/AIDs) are 
10–30-fold more likely to develop MCC and suffer a 
higher MCC-specific mortality rate than the general 
population [5,31–34]. This suggests that impaired cel-
lular immunity predisposes individuals to not only 

developing MCC, but also to poorly controlling their 
disease.

Additionally, MCCs can regress following with-
drawal of immune suppressive treatment [35,36] and 
spontaneous regression of MCCs is associated with T 
cell and foamy macrophage infiltration suggesting that 
regression may be immune-cell mediated [37,38]. While 
rare, spontaneous regression in MCC is much more 
common (1.3 per 1000 cases) than in other malignan-
cies (1 in 60,000–100,000 cases) [38]. Furthermore, a 
subset of advanced stage MCC patients present with 
unknown primary tumors (no primary skin lesions are 
detectable) likely as the result of immune-mediated 
clearance of the primary lesion and these patients 
have markedly improved overall and disease-specific 
s urvival [39].

Humoral response
The immune response against MCC encompasses 
both the humoral and cellular arms of adaptive immu-
nity. While MCPyV infection is almost ubiquitous, 
MCC patients have significantly higher capsid pro-
tein antibody titers and higher MCPyV DNA levels 
on their skin than healthy controls, suggesting that 
these individuals have reduced viral control [15,18,40]. 
Humoral recognition of MCPyV T antigen oncopro-
teins on the other hand is restricted to MCC patients. 
Among MCC patients, approximately 40% are sero-
positive for the oncoproteins at the time of diagnosis 
while these antibodies are detected in <1% of healthy 
controls [16]. MCPyV oncoproteins are not expressed 
within MCPyV virions, however, viral integration in 
the setting of MCC results in persistent intracellular 
expression of LT and sT, potentially explaining why 
the presence of oncoprotein antibodies is restricted to 
MCC patients [41]. Oncoprotein antibody titers have 
been found to fluctuate with tumor burden and a 
clinical test monitoring oncoprotein antibody titers is 
now being used as a tool to monitor disease progres-
sion (www.merkelcell.org/sero) [42].

T cell response
The production of oncoprotein-specific antibod-
ies implies the presence of a MCPyV-specific CD4 
response. In an effort to identify MCPyV-specific 
T cells, Iyer et al. described an initial set of 24 epi-
topes within the persistently expressed region of the 
T-antigen oncoproteins [43]. Five of the 24 were rec-
ognized specifically by CD4 T cells and subsequently 
two additional CD4 epitopes have been reported [43–
45]. Therefore, 7 MCPyV-specific CD4 epitopes have 
been described, however, further phenotypic and 
functional analysis is required in order to understand 
the role of these cells in the context of MCC.
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The importance of the CD8 T cell response against 
MCC is highlighted by the finding that robust intratu-
moral (not peritumoral) infiltration of CD8+ TILs is 
associated with a striking 100% survival in a study of 
146 patients [46]. Additional studies have also indicated 
that MCC TILs, including CD3+, CD8+ T cells, are 
associated with improved overall and disease-specific 
survival [47,48]. Furthermore, expression of genes encod-
ing granzyme A, B, H and K, CCL19, lymphocyte 
activation genes (SLAMF1 and NKG2D) and CD8α 
are associated with favorable prognoses, independent 
of stage [46]. To date, 17 MCPyV-specific CD8 epitopes 
have been identified, for which 14 HLA-I tetramers 
have been generated, enabling functional and pheno-
typic analysis [43,45,49,50]. Importantly, while robust 
CD8 responses have been associated with improved 
outcome in MCC, only 4–18% of MCC patients pres-
ent with significant CD8 infiltration, suggesting that 
most MCCs block intratumoral CD8 infiltration as a 
means of evading immune detection [46,51].

MCC tumor evasion mechanisms
Over the past few years, studies have reported several 
immunological barriers that often occur within the 
MCC tumor microenvironment.

MHC-I downregulation
In order for a tumor to be immunologically detected by 
CD8 T cells, tumor-associated antigens must be pre-
sented in the context of MHC-I molecules. However, 
immunohistochemical evaluation of 114 MCC tumors 
indicated that 84% downregulated expression of MHC-
I, with 51% being markedly downregulated (Figure 2: 
process ‘A’) [52]. Furthermore, mRNA expression lev-
els of MHC-I closely correlated with expression levels 
of antigen processing machinery, including proteins 
involved in the antigen processing complex TAP. This 
suggests that multiple components involved in antigen 
processing and presentation are downregulated in MCC 
and may impair T-cell recognition of MCC tumors [52]. 
Importantly, treatment of MCC cell lines with type-I 
interferons, etoposide (a standard MCC chemothera-
peutic) and radiation, can all induce MHC-I upregula-
tion in vitro [52]. Notably, in vitro treatment of MCC 
cells lines with type-I interferons also reduced expres-
sion of MCPyV LT, which may further promote tumor 
destruction [53]. Downregulation of MHC-I can also be 
reversed in vivo and will be discussed subsequently in 
the context of intralesional IFN treatment.

Programmed cell death ligand-1 (PD-L1)
PD-L1 is a member of the B7 immunoglobulin 
superfamily [54] and is a ligand for the programmed 
death-1 (PD-1) receptor expressed primarily on 

T l ymphocytes [55]. PD-L1 binding to PD-1 limits T 
cell expansion, promotes functional exhaustion of T 
cells by inhibiting IL-2 and IFN-γ production and 
decreases survival [56,57]. This mechanism is thought 
to play an important physiological role in facilitating 
tolerance and suppressing autoimmunity, however, 
evidence suggests that cancers and viruses (including 
HBV, HPV, EBV, HTLV-1) can induce PD-L1/PD-1 
expression to promote local immune suppression [56,58]. 
Expression of PD-L1 within the tumor microenvi-
ronment in gastric carcinoma, RCC, and esophageal 
cancer is associated with poor prognosis [59–61]. Con-
versely, in melanoma and MCC, PD-L1 expression is 
associated with improved overall survival [58]. An eval-
uation of 67 MCC specimens from 49 MCC patients 
found that 49% of tumor cells and 55% of tumor-
infiltrating lymphocytes (TILs) expressed membra-
nous PD-L1 (Figure 2: process ‘B’) [58]. All of these 
PD-L1 expressing tumors had TILs while TILs were 
detected in only 47% of PD-L1 negative tumors [58]. 
Similarly, in another study PD-L1 protein and mRNA 
expression correlated with the presence of intratumoral 
CD8 T cells [49]. Therefore, while increased PD-L1 
expression may be preventing a complete antitumor 
response, detection of intratumoral PD-L1 indicates 
some degree of immune activity against MCC and 
suggests that PD-1 blockade may be a promising thera-
peutic approach for this disease [58].

Downregulation of E-selectin
While MHC-I downregulation and PD-L1 expres-
sion may reduce activation of tumor-specific T cells, 
another mechanism of immune evasion is to prevent 
recruitment of T cells into the tumor microenviron-
ment. Cutaneous lymphocyte antigen is expressed on 
skin-homing T cells and is critical for T-cell extrava-
sation from the vasculature into the tissue [62]. Cuta-
neous lymphocyte antigen binds to E-selectin and/
or P-selectin expressed by endothelial cells. In squa-
mous cell carcinomas, E-selectin downregulation is 
mediated through nitric oxide (NO) signaling that 
is released by tumor-associated myeloid derived sup-
pressor cells [63]. Nitration of proteins is a marker 
of NO production and evaluation of nitrotyrosine 
expression in MCCs indicated that increased levels of 
nitrotyrosine was associated with decreased E-selec-
tin expression and CD8 T cell infiltration, suggesting 
that a similar mechanism is being employed within 
MCC tumors (Figure 2: process ‘C’) [64]. Notably, 
elevated expression of E-selectin was correlated with 
improved survival in MCC patients, implying that 
T-cell extravasation into the tumor microenviron-
ment is critical for optimal immune function against 
MCC [64].
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Figure 2. Schematic of documented and putative mechanisms of immune evasion in Merkel cell carcinoma. The letters in the key 
above (A-H) indicate critical mechanisms implicated in immune evasion for Merkel cell carcinoma, which are detailed in the text.
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Decreased expression of TLR9
While most of the described mechanisms have related 
to adaptive immune responses to MCC, innate 
immune signaling can also elicit antitumor effects. 
Toll-like receptor 9 (TLR9) is expressed within the 
endosomal compartment and activates the NF-κB 
pathway in response to viral and bacterial CpG-
DNA motifs thereby promoting a proinflammatory 
response [65]. MCPyV-LT and -sT have been shown to 
inhibit TLR9 expression in an epithelial and MCC cell 
line in vitro which may reduce inflammatory responses 
(Figure 2: process ‘D’) [66]. Several other oncogenic 
viruses (including HPV, EBV and HBV) have also been 
shown to alter TLR9 expression, suggesting that this is 
a common strategy to limit immune a ctivation [67].

CD8 T cell exhaustion
T cells can become dysfunctional or exhausted within 
a few weeks after infection if the infectious agent per-
sists and is not cleared by the host [68]. This has been 
extensively described in the setting of persistent viral 
infections or more recently in cancer [68]. The obligate 
expression of viral T-antigens in MCC, therefore may 
similarly induce a state of exhaustion in virus-specific 
T cells. Exhausted T cells have distinct transcriptional 
programs, impaired proliferative capacity, decreased 
cytokine production and reduced cytotoxicity [68]. A 
hallmark of exhausted T cells is the increased expres-
sion of various inhibitory receptors including PD-1, 
TIM-3, Lag-3 and 2B4 [68]. MCPyV-specific T cells 
isolated from MCC tumors and peripheral blood have 
been shown to express elevated levels of the inhibitory 
markers PD-1 and TIM-3 relative to control CMV- or 
EBV-specific cells (Figure 2: process ‘E’) [49]. Addition-
ally, MCPyV-specific CD8 T cells often have a limited 
ability to secrete the effector cytokine IFN-γ following 
antigenic stimulation and TILs within MCC tumors 
have markedly lower expression of the early activation 
marker CD69 relative to T cells isolated from normal 
skin, supporting the notion that these cells are dys-
functional and exhausted [43,69,70].

CD4 T cell polarization
In several cancer types, intratumoral infiltration of 
Th1 CD4 T cells is strongly associated with good 
clinical outcomes while infiltration of other CD4 sub-
types (Th2 and Th17) is associated with mixed out-
comes [71]. Th1 cells produce large amounts of IFN-
γ, which facilitate priming and expansion of CD8 
T cells [72]. Th1 CD4s also serve to recruit NK and 
type-I macrophages (proinflammatory) to the tumor 
site, thereby orchestrating robust antitumor immu-
nity [72]. In the setting of MCC, secretion of Th1 and 
Th2 type cytokines by bulk intratumoral CD4 T cells 

was observed from one MCC patient [43]. Whether a 
significant bias toward a particular subtype occurs in 
MCPyV-specific CD4s or in additional MCC tumors 
has not been investigated. Importantly, several thera-
peutic approaches (discussed below) that promote a 
Th1 type response have shown clinical promise in 
treating MCC suggesting that a Th1 response may be 
beneficial in MCC.

T regulatory cells
T regulatory cells (Tregs), typically identified through 
expression of CD25 and FOXP3, play a crucial role in 
mediating peripheral tolerance to self-antigens under 
normal conditions. However, in the setting of can-
cer they are generally thought to be tumor promot-
ing [73,74]. It has been shown that high percentages 
of CD25+FOXP3+ T cells infiltrate MCC tumors 
relative to normal skin (Figure 2: process ‘F’) [70]. 
Notably, among FOXP3+ T cells, a discrete popula-
tion of CD8+FOXP3+ T cells was observed in MCC 
tumors [70]. These CD8 Tregs are associated with 
disease progression in several other cancers including 
malignant melanoma, prostate, ovarian and colorec-
tal [70]. These cells preferentially target Th1 CD4 
cells while sparing Th2 cells which may contribute 
to a tumor-promoting polarization within the tumor 
microenvironment [75]. While Dowlatshahi et al. 
reported that intratumoral FOXP3 expression was 
not correlated with survival in MCC, a study by 
Sihto et al. indicated that increased FOXP3 expression 
was associated with improved survival [48]. Therefore, 
it is unclear whether Treg function is a decisive factor 
in immune evasion in MCC.

Infiltration of M2 macrophages
M2 macrophages are typically induced by type II 
cytokines (IL-4, IL-10 and IL-13) and have reduced 
antigen presentation capacity, promote angiogenesis 
through secretion of VEGF, facilitate tissue remodel-
ing and ultimately tumor progression [76]. Evaluation 
of immune cell infiltrates in 21 MCC tumors, found 
that nearly all of the macrophages present within 
MCC stained positive for CD163, a marker often used 
to identify M2 macrophages. Immunohistochemical 
analysis of MCC tumor samples from 29 patients indi-
cated that VEGF-A, VEGF-C as well as the VEGF-
receptor-2 (VEGF-R2) are highly expressed (>75%) 
within MCC tumors (Figure 2: process ‘G’), suggest-
ing that angiogenesis via VEGF-VEGF-R ligation may 
be occurring in this disease [77]. Importantly, CD163 
expression alone is likely insufficient to fully identify 
M2 macrophages [78], therefore a more detailed analysis 
including additional markers could more definitively 
characterize macrophage phenotypes in this disease.



www.futuremedicine.com 913future science group

Immune-based therapies in Merkel polyomavirus-positive & -negative Merkel cell carcinomas    Review

Inhibition of NK cell killing
NK cells can induce cytotoxicity against certain tumor 
types without prior stimulation and high levels of infil-
trating NK cells have been correlated with favorable out-
comes in patients with several types of solid tumors [79]. 
NK cells are regulated by a complex balance of inhibi-
tory and stimulatory signals [80]. Inhibitory killer Ig-like 
receptors expressed on NK cells bind MHC-I molecules 
and prevent NK-mediated killing of normal tissues [80]. 
Stimulation occurs primarily through MHC class 
I-related chain -A and -B (MICA/MICB) binding of 
NKG2A and NKG2D expressed on NK cells [80]. Can-
cer cells have been shown to evade NK cell activation 
by cleaving surface MICA/B into a soluble form, which 
transiently activates NK cells nonspecifically, but ulti-
mately causes inhibition by inducing downregulation 
of NKG2D (Figure 2: process ‘H’) [80]. The presence of 
soluble MICA in patient sera has been associated with 
poor outcome in some cancer types [80] but has not been 
reported in MCC. Infiltration of NK cells intratumor-
ally has been reported in MCC [48] and the development 
of tumors despite significant downregulation of MHC-I 
implies that mechanisms of NK cell evasion are being 
employed within MCC tumors.

Other candidate mechanisms of immune 
evasion
Numerous additional mechanisms of evasion have been 
reported in other cancers that have yet to be investigated 
in MCC. These include elevated expression of the anti-
phagocytic signals CD200 and CD47 which have been 
associated with tumor progression and poor clinical 
outcome in several solid tumor types [81]. Secretion of 
immunosuppressive cytokines such as TGFβ, IL-10 and 
Fas-L within the tumor microenvironment can promote 
the expansion of Tregs and decrease the activation of 
cytotoxic T cells and NK cells [74]. Tumor cell secretion 
of indoleamine 2,3-dioxygenase (IDO) and galectins 
can impair antitumor T cell responses [74]. Addition-
ally, other cellular infiltrates, including myeloid derived 
suppressor cells, can promote tumor growth through 
numerous mechanisms including increased angiogenesis 
and disruption of antigen presentation [82]. Notably, sev-
eral of these mechanisms are targetable for therapeutic 
purposes and therefore may merit further investigation 
in MCC [74,81,82].

Virus-negative MCCs & UV-induced 
neoantigens
While the study of MCC has primarily focused upon 
the immunobiology of tumors caused by MCPyV, 
several studies have recently investigated the approxi-
mately 20% of MCCs that do not contain the virus. 
The prognosis and overall survival of these two subsets 

of MCC patients has been debated. Two studies have 
indicated that patients with virus-negative MCC expe-
rience decreased survival as compared with patients 
with virus-positive MCC [83,84]. Conversely, several 
others have reported no significant survival difference 
between the two groups [85–87]. Importantly, genetic 
analysis indicates that these two subsets are etiologi-
cally distinct [88–90]. Specifically, several recent studies 
have shown that MCPyV-negative MCCs have a very 
high mutation burden (median 1,121 somatic single 
nucleotide variants per exome). These are dominated by 
C > T transitions, characteristic of UV-induced DNA 
damage [88–90]. This UV-induced signature was not 
observed in MCPyV-positive tumors and the mutation 
burden was 19-fold lower (median 12.5 somatic single 
nucleotide variants per exome) indicating that these 
tumor types arise through distinct mechanisms [88–90]. 
High mutational burdens seen in melanoma, colorectal 
and several types of lung cancer have been associated 
with a higher prevalence of tumor-associated neoanti-
gens, greater immunogenicity and improved response 
to immune-based therapies [91]. Strikingly, on average, 
MCPyV-negative tumors were found to contain more 
tumor neoantigens than either melanomas or non-
small-cell lung cancers suggesting that these virus-neg-
ative MCCs have the potential to be highly immuno-
genic [88]. Furthermore, among virus-negative tumors, 
a subset expressed PD-L1 and these PD-L1-positive 
tumors harbor a higher mutational burden as com-
pared with PD-L1-negative tumors, which may reflect 
immune recognition within these tumors [89]. Notably 
there were also varying grades of TIL within virus-neg-
ative tumors and an increased TIL infiltration corre-
lated with improved survival, as has been described for 
MCC more generally [46,48,89]. These findings indicate 
that among virus-negative MCCs, tumors with higher 
mutational burdens have increased immune recogni-
tion which may indicate that this subset may be partic-
ularly responsive to checkpoint inhibitors as has been 
similarly described in other cancers [92,93].

Treatment of MCC
The standard initial management of MCC typically 
involves surgical excision and radiation therapy for 
local and regional disease while patients presenting 
with distant disease are primarily managed with sys-
temic therapy [94]. Although virtually all patients are 
initially rendered free of detectable disease, roughly 
half of these patients will recur [95,96]. Once distant 
metastatic disease arises, cytotoxic chemotherapy leads 
to a response in >50% of cases, but the median time to 
progression is only 3 months and durable responses are 
exceedingly rare [97]. There is thus an urgent need for 
improved therapies.
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Local immune therapies
The delivery of targeted therapies specifically into 
a tumor has proven efficacious for several immune-
based agents and can significantly reduce toxicity that 
is observed with systemic treatment [98].

Single fraction radiation
Radiation therapy has been shown to increase antigen 
presentation and to diversify the T-cell receptor reper-
toire of intratumoral CD8 T cells [99,100]. Preclinical 
models using targeted single-fraction radiation ther-
apy (SFRT) indicate that SFRT enhances antitumor 
immunity more effectively than fractionated radia-
tion [101]. SFRT has been reported for treatment of 
bone metastases in other cancers and because of the 
known immunogenicity of MCC, SFRT has been used 
for palliative treatment of MCC patients who either 
developed chemotherapy-resistant disease or who were 
unable to receive fractionated radiation for logistical 
reasons [102]. This approach has yielded a remarkable 
94% objective response rate of irradiated lesions in 26 
patients who received SFRT to 93 tumors [102]. Com-
plete responses were reported in 45% of tumors with no 
progression of 77% of tumors with a median follow-up 
time of 277 days [102]. Importantly, this approach is 
limited to ‘in field’ lesion control and therefore may 
not be appropriate for all tumors. However, SFRT may 
be combined with other immune-stimulating agents as 
a means of lowering tumor burden and increasing anti-
genicity to enhance systemic immune responses [99,102].

Intralesional IL-12 DNA electroporation
IL-12 is a Th1 promoting cytokine that can facilitate 
antitumor immune responses by inducing IFN-γ secre-
tion and increasing proliferation and effector function 
of NK cells and T cells [103]. Furthermore, IL-12 can 
induce increased expression of MHC-I, MHC-II and 
ICAM-1 on human melanoma cells thereby enhanc-
ing antigen presentation and T-cell recruitment [104]. 
However, systemic administration is extremely toxic 
and can lead to temporary immune suppression and 
even death [103]. Localized delivery of plasmid-IL-12 
using electroporation has significantly reduced toxic-
ity and has shown promising results in melanoma [103]. 
Subsequently, a Phase II clinical trial using electro-
poration of intratumoral IL-12 DNA for MCC has 
fully enrolled and has had promising results in some 
patients (NCT01440816) [105].

Intralesional TLR4 agonist (GLA) injection
Activation of toll-like receptor signaling can lead to 
secretion of proinflammatory cytokines and type-
I IFNs promoting adaptive and innate immune 
responses [106]. Glucopyranosyl Lipid-A is a recently 

generated synthetic TLR-4 agonist that is adminis-
tered within a stable emulsion (GLA-SE) and specifi-
cally induces Th1 responses while minimizing Th2 
responses [106]. A Phase I/II clinical trial for treating 
MCC patients has completed enrollment and has been 
efficacious in some patients (NCT02035657) [107].

Intralesional IFN-β
The majority of MCCs downregulate MHC-I expres-
sion thereby evading cellular immune responses, how-
ever, several case reports have described MHC-I upreg-
ulation on MCC tumors following either intralesional 
IFN-β injections or local radiation therapy [52,69]. The 
use of IFN-β injections clinically has also induced 
lesion shrinkage, which may be due to enhanced 
T-cell recognition of these tumors [52,69,108]. Notably, a 
woman in Japan with multiple MCC metastases on the 
right arm was treated with IFN-β injections and expe-
rienced a complete response that continued for more 
than 8 years, indicating the potential efficacy of this 
approach [108].

Topical dinitrochlorobenzene
Dinitrochlorobenzene forms stable protein conjugates 
that can stimulate T cells to secrete Th1 type cytokines 
and induce contact sensitization [109]. One patient with 
multiple local and regional MCC metastases experi-
enced a complete response following 4 weeks of topi-
cal application of dinitrochlorobenzene [110]. Adjuvant 
radiation of the whole scalp was performed following 
regression and the patient had remained in remission 
for more than a year at the time of the report [110].

Systemic immune therapies
While several local immune therapies have shown 
clinical promise, the treatment options for patients 
with advanced distant disease remain severely limited, 
therefore systemic immune approaches are being inten-
sively investigated.

Anti-4-1BB (CD137)
The TNF-family receptor, 4-1BB, is expressed on 
activated T cells and antibodies binding this receptor 
increase NF-κB activity resulting in cytokine produc-
tion, leukocyte proliferation and antitumor efficacy in 
preclinical models [111]. MCPyV-specific T cells express 
elevated 4-1BB on their surface relative to other virus-
specific cells suggesting that these cells may be par-
ticularly responsive to 4-1BB agonism [49]. A Phase-I 
trial in solid tumors (including MCC) and B-cell 
non-Hodgkin’s lymphoma using a 4-1BB agonist (PF-
05082566) has completed enrollment. The drug was 
well tolerated and had promising antitumor activity in 
an MCC patient [112].
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Allogeneic NK cell therapy
NK cells can be dysfunctional or suppressed in the set-
ting of cancer, which may be augmented by the infu-
sion of allogeneic (nonself) NK cells [79]. Unlike autol-
ogous NK cells, allogeneic NK cells are not inhibited 
by host MHC-I expression and can therefore overcome 
NK cell suppression [79]. One such cell line is NK-92, 
a continuously growing, IL-2 dependent line that is 
highly cytotoxic against several tumor cell types in 
vitro and in vivo [113]. Not only are NK-92 cells alloge-
neic, they also lack expression of most inhibitory recep-
tors, thereby enhancing their cytolytic function [113]. 
A Phase II clinical trial is currently recruiting MCC 
patients in order to evaluate the safety and efficacy of 
this approach (NCT02465957).

IL-2 fusion protein targeting tumor stroma
Tenascin C is expressed on reactive stromal cells in 
many solid tumor types predominantly around vascu-
lar structures [114]. The use of a monoclonal antibody 
(F16) targeting tenascin C fused to IL-2, enables tar-
geted delivery of IL-2 to reactive tumor vasculature 
which may help mediate intratumoral immune acti-
vation [115]. Administration of F16-IL2 has been well 
tolerated and has shown clinical efficacy in trials of 
certain solid tumors. A Phase II trial using F16-IL2 
in combination with a chemotherapeutic agent, 
paclitaxel, is currently enrolling for metastatic MCC 
patients in Europe (NCT02054884) under the aus-
pices of IMMOMEC (www.immomec.eu).

Ipilimumab (anti-CTLA-4)
Over the last decade, the use of monoclonal antibod-
ies targeting checkpoint inhibitors CTLA-4, PD-1 and 
PD-L1 has revolutionized clinical oncology. These 
agents have proven remarkably efficacious in treating a 
range of liquid and solid tumors [116–121]. Ipilimumab, 
an IgG1 monoclonal antibody targeting cytotoxic 
T-lymphocyte associated antigen 4 (CTLA-4), was 
the first checkpoint inhibitor to be approved by the US 
FDA for treating advanced melanoma [116]. Ipilimumab 
therapy augments the T-cell response through inhibi-
tion of T-regulatory cells and enhanced T-cell prim-
ing thereby expanding the T-cell repertoire [57,99,122]. 
Treatment of several cancer types with ipilimumab 
has shown promising results and a randomized clinical 
trial utilizing ipilimumab in the adjuvant setting for 
the treatment of MCC is currently enrolling in Europe 
(NCT02196961).

Nivolumab (anti-PD-1)
In melanoma, agents targeting the PD-1/PD-L1 
axis have tended to show higher response rates than 
those targeting CTLA-4 [123]. PD-1 axis blockade, 

like i pilimumab, enhances T-cell function, though 
through a distinct mechanism. Instead of priming 
new responses, PD-1 blockade facilitates the expansion 
of pre-existing quiescent T cells [57,99]. A trial using 
nivolumab, an anti-PD-1 human IgG4 monoclonal 
antibody, was better tolerated than ipilimumab and 
reported a 28% response rate in melanoma patients. 
Responses were durable, with patients continuing 
to benefit even after drug discontinuation [117,124]. A 
Phase I/II clinical trial utilizing nivolumab is open for 
patients with virus-associated tumors including MCC 
(NCT02488759).

Pembrolizumab (anti-PD-1)
Pembrolizumab (MK3475), a humanized IgG4 anti-
body, has been most well studied in the context of 
melanoma but has shown promising clinical results in 
several tumor types [116]. In a recent Phase II study of 
pembrolizumab for a variety of advanced solid tumors 
(NCT01295827), the most dramatic response was 
observed in the single MCC patient who experienced 
a complete response that was ongoing at the time 
of last follow-up, reflecting 100+ weeks of durable 
response [125]. Results for a clinical trial using pem-
brolizumab for first-line treatment of advanced MCC 
(NCT02267603) have been striking and indicate some 
of the highest response rates observed in solid tumors 
to date [126]. 26 patients received at least one dose of 
pembrolizumab, 25 of which were evaluable. Ten expe-
rienced partial responses and four achieved complete 
regression indicating a remarkable 56% response rate. 
Importantly, responses were observed among patients 
with both virus-positive and negative tumors with 
objective response rates of 62% and 44% respectively. 
Two grade 4 adverse events were reported including 
myocarditis and transaminase elevation. Both patients 
were taken off therapy and improved following treat-
ment with steroids. Interestingly, both of these patients 
had tumor responses that were still ongoing months 
after cessation of therapy [126].

Avelumab (anti-PD-L1)
The PD-1 axis can also be inhibited through antag-
onism of PD-L1, the ligand for PD-1 expressed pri-
marily on cells of the monocyte lineage [54]. Ave-
lumab (MSB0010718C) is a human monoclonal 
IgG1 antibody that binds to PD-L1 [127]. Binding of 
PD-L1 instead of PD-1 may reduce toxicity as anti-
PD-1 blockade prevents PD-1 interaction with both 
PD-L1 and PD-L2 [128]. PD-L2 is expressed on normal 
parenchymal cells in the lung and kidneys and pre-
vents autoimmunity against these tissues [128]. Indeed, 
anti-PD-1 agents such as nivolumab have induced 
adverse reactions in these tissues including severe 
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p neumonitis [128]. Avelumab, however, retains PD-1/
PD-L2 signaling, thereby preserving these potentially 
important mechanisms for avoiding autoimmunity. A 
Phase II clinical trial of avelumab has recently com-
pleted enrollment of 88 MCC patients who were 
refractory to c hemotherapy (NCT02155647).

Autologous T cell therapy
Autologous T cell therapy involves isolating tumor-spe-
cific or tumor-infiltrating T cells from a patient, expand-
ing them in culture and infusing them back into the 
patient. This approach has shown efficacy in treating sev-
eral cancers including other virally-induced malignan-
cies and melanoma [129–131]. In 2013, an MCC patient 
received three infusions of MCPyV-specific CD8s in 
combination with subcutaneous administration of IL-2 
and HLA-I upregulating agents (single-dose radiation 
and IFN-β injections) [69]. This patient experienced 
mixed tumor responses but did not develop a recurrence 
for 535 days, significantly longer than median time (200 
days) to next metastasis experienced by historical con-
trols [69]. It appears that this immune therapy may have 
conferred benefit, in part because functional infused T 
cells persisted for >200 days and preferentially accumu-
lated within tumor tissue [69]. A Phase I/II trial utilizing 
avelumab (anti-PD-L1) and HLA-I upregulation with 
or without the infusion of autologous T cells is currently 
enrolling (NCT02584829) and should shed light on 
whether PD-1 blockade could improve the efficacy of 
autologous T-cell therapy.

Conclusion & future perspective
Remarkable early responses have been observed among 
MCC patients treated with PD-1 axis blockade as well 

as other immune-based therapies. However, approxi-
mately 50% of patients with advanced MCC are either 
not candidates for immune checkpoint blockade or 
will require the addition of other therapies to achieve 
meaningful clinical benefit. Studies of potential pre-
dictive biomarkers will be important to identify patient 
subsets that are either particularly likely or unlikely to 
respond to a given therapy. One potential biomarker 
for response to PD-1 axis blockade is the expression of 
PD-L1 within tumors. In melanoma, PD-L1 expres-
sion within the tumor closely correlates with clinical 
response in several studies, however, some patients 
with PD-L1-negative tumors can also respond [132]. 
Notably, Tumeh et al. also reported that the presence 
of pre-existing CD8 T cells at both the invasive tumor 
margin as well as within the tumor, was associated with 
PD-L1 expression and response to PD-1 axis block-
ade [133]. Preliminary evidence suggests that expression 
of PD-L1 and CD8 T-cell infiltration prior to therapy 
is not predictive of checkpoint response in MCC, how-
ever, this study was limited to 25 evaluable patients and 
therefore further investigation is warranted [126]. Addi-
tionally, a recent study indicated that among malignant 
melanoma patients, those with higher neoantigen load, 
and expression of cytolytic markers responded better to 
CTLA-4 blockade [134]. Consequently, virus-negative 
MCCs with higher mutational burdens may respond 
better to checkpoint inhibitors than those with lower 
mutational burdens.

While identifying predictive biomarkers is of great 
significance, for patients that are refractory to mono-
therapeutic approaches, numerous immune-combi-
nation therapies have been reported for other cancers 
that may also be beneficial in MCC [135]. In melanoma, 

Executive summary

•	 Merkel cell carcinoma (MCC) is a rare but deadly skin cancer caused by the Merkel cell polyomavirus in 
approximately 80% of cases.

•	 Viral oncoproteins provide nonself epitopes for immune cell recognition in virus-positive MCCs.
•	 Virus-negative MCCs have a 2.7-fold higher number of tumor associated neoantigens on average than 

melanoma suggesting that this subset of MCC can also be immunogenic.
•	 Markers of immunity are observed in virus-positive and -negative MCCs.
•	 Antibodies against MCPyV capsid and oncoproteins can be detected.
•	 CD8 and CD4 T-cell epitopes within MCPyV have been identified.
•	 Virus-positive and negative MCC tumors can express PD-L1, which is often associated with intratumoral T cells.
•	 MCCs have developed diverse mechanisms to dampen and evade the immune system.
•	 MCC tumors have several intrinsic evasion mechanisms including downregulation of MHC-I, E-selectin and 

TLR9 expression.
•	 Effector T-cell dysfunction and immunosuppressive cell types are detected within MCCs.
•	 Traditional therapies have limited efficacy for advanced MCC.
•	 Although responses to cytotoxic chemotherapy are frequent, they are rarely durable.
•	 Immune-based therapies in clinical trials have had promising results for treating MCC.
•	 Localized therapies have shown promising local and distant control in some cases.
•	 The use of systemic pembrolizumab (anti-PD-1) has led to a high response rate as compared with other solid 

tumors.
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the combination of nivolumab (anti-PD-1) and ipilim-
umab (anti-CTLA-4) has shown markedly increased 
response rates and longer progression-free survival 
than monotherapy [136,137]. This is likely because these 
agents act through nonredundant mechanisms [57]. A 
preclinical model described by Twyman-Saint Vic-
tor et al. also reported that the triple therapy of radia-
tion, anti-CTLA-4 and anti-PD-L1 yielded superior 
response rates as compared with dual checkpoint 
blockade without radiation, suggesting that triple 
therapy such as this may also be beneficial in human 
subjects [99].
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