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An evaluation of studies of biologically active nanoparticles provides guidance for the synthesis of nanoparticles with the goal
of developing new antibiotics/antifungals to combat microbial resistance. This review article focuses on the physicochemical
properties of cerium oxide nanoparticles (CeNPs) with antimicrobial activity. Method. This systematic review followed the
Guidelines for Transparent Reporting of Systematic Reviews and Meta-Analyses. Results. Studies have confirmed the antimicrobial
activity of CeNPs (synthesized by different routes) using nitrate or chloride salt precursors and having sizes less than 54 nm.
Conclusion. Due to the lack of standardization in studies with respect to the bacteria andCeNP concentrations assayed, comparisons
between studies to determine more effective routes of synthesis are difficult. The mechanism of CeNP action likely occurs through
oxidative stress of components in the cell membrane of the microorganism. During this process, a valence change occurs on the
CeNP surface in which an electron is gained and Ce4+ is converted to Ce3+.

1. Introduction

The prevalence of health care-associated infections is high,
especially those of blood and urinary tract infections that are
associated with catheters and surgical site infections [1].

Microorganisms responsible for such infections include,
in order of decreasing frequency, Staphylococcus aureus,
Enterococcus spp., and Escherichia coli. Resistantmicroorgan-
isms are present in 20% of infections, especially methicillin-
resistant Staphylococcus aureus (MRSA) [1].

The yeast Candida albicans is the species most commonly
involved in fungal infections [2]. Candida albicans is a
dimorphic and commensal fungus that colonizes the skin,
gastrointestinal tract, and reproductive system [3]. The num-
ber of new cases of fungal infections in immunocompromised
patients is increasing throughout the world [4, 5].

The use of nanotechnology to develop nanoscale mate-
rials having antimicrobial activities has been proposed for
the development of new therapeutic products and effective

strategies for prophylaxis and treatment of infections [6–8].
Recently, nanomaterials exhibited a great potential as con-
trast agents for visualizing the gastrointestinal tract [9] and
nanofibers have also been used as carriers for nanoparticles
that can interfere in multidrug resistant bacteria infections
[10].

In comparison with small molecule antimicrobial agents,
which have short-term activity and are often environmen-
tally toxic, nanoparticulate agents with antimicrobial effects
exhibit prolonged effects and are minimally toxic [8]. In
addition, Escherichia coli bacteria growth inhibition has
been shown to be inversely proportional to the size of the
nanoparticles [11].

Among these agents, the nanoparticulate cerium dioxide
(CeNP) is a rare earth metal oxide of the cubic fluorite type
[12, 13] and is of great interest because of its optical and
electronic properties. It has extensive industrial applications
in medicine, catalysis, and optical and sensor technologies
[14]. Its properties are related to its valence, since cerium
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Figure 1: Flow diagram of the search strategy used to identify studies included in this review based on PRISMA guidelines [19].

is the only stable tetravalent state lanthanide, whereas other
lanthanides are only stable in the trivalent state [15].

Natural sources of nanoparticles include soil erosion,
water evaporation sprays, and plants [16]. In industry, cerium
metal is present in sunscreen, solid electrolytes, solar cells,
fuel cells, luminescence, photocatalysts, and sensors [17].
Synthesis methodologies attempt to obtain small, high-
surface-area particles to potentiate the chemical, physical,
and antimicrobial properties of the nanoparticles.

The development of novel antimicrobial agents is of great
interest due to the increase in the mortality rate associated
with infection [18]. The goal of this systematic review is
to address the physicochemical properties of cerium oxide
nanoparticles having antimicrobial activity. The evaluation
of biologically active nanoparticles provides guidance to
nanoparticle synthesis with the aim of developing new anti-
biotics/antifungals to combat infection.

2. Material and Methods

This systematic review followed the Guidelines for Trans-
parent Reporting of Systematic Reviews and Meta-Analyses
(PRISMA statement) [19]. The systematic identification of
articles was performed in five databases: Google Scholar,
SciELO (Scientific Electronic Library Online), PubMed,
Lilacs (Latin American and Caribbean Literature on Health
Sciences), and Web of Science (Figure 1).

For the retrieval and selection of articles, the following
keywords were used: cerium oxide, antimicrobial activity,
antifungal activity, bacterial activity, toxicity, and nanoparti-
cles.

All English, Spanish, and Portuguese articles related to
the topic that were published from 2006 to October 27,
2016, were selected for analysis. The final selection of articles
was made using qualitative criteria in accordance with the
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theme of ceriumoxide nanoparticulate antimicrobial activity.
Initially, the titles and abstracts of the articles were assessed
by two researchers. Only complete articles were included in
the study.

Of the 24 studies identified, seven articles were excluded
for the following reasons: the particleswere not of nanometric
(size > 100 nm) (2 articles), only the abstract was available
(1 article), there was a lack of article data (such as year of
publication) (1 article), dextran and polyacrylic acid-coated
cerium oxide was utilized (1 article), gold-supported cerium
oxide was utilized (1 article), and a combination of cerium
oxidewithAllium sativumwas utilized (1 article).Thus, a total
of 17 articles composed the final sample.

3. Results and Discussion

3.1. Cerium Oxide Nanoparticle: Synthesis and Physicochem-
ical Characteristics. The materials used during nanoparti-
cle synthesis influence the size and shape of the resulting
nanocrystals. According to the in vitro studies analyzed in
Table 1, there are a variety of CeNP synthesis routes, with the
predominant one using ammonium cerium as the precursor
salt. Due to solubility, nitrate is preferable to other salts,
and it also results in a homogeneous solution [17]. However,
cerium chloride salt forms residual chlorine, which does not
adversely affect biological systems and therefore is poten-
tially the best precursor material for biological applications
[15].

Of the 17 evaluated studies of CeNP antimicrobial activity
(Table 1), seven used the principle of green chemistry with
extracts of plants, fruits, and fungi [13, 14, 17, 20–23]. The
green synthesis route is considered important because it is
nontoxic and of low cost and decreases the use of substances
that are harmful to human health and the environment [14,
22].

The morphology of the nanoparticles was determined
by transmission electron microscopy (TEM) in the majority
of studies (Table 1). The shapes of the particles observed
through transmission electron microscopy were elliptical,
spherical, square, oval, rectangular, triangular, and irregular.
Microscopy was also used to evaluate the size of nanoparti-
cles, which ranged from 5.0 [21] to 54 nm [13].

The average size of the CeNP crystallite was estimated
by the Debye-Scherrer formula, as 58.82% (𝑛 = 10) of
the analyzed articles used this method. However, there are
cases of divergence between these results and those observed
using TEM. For example, a 24 nm size value calculated by
the formula method was observed to be approximately 5 nm
using TEM [21]. Regardless of the method, the analyzed
studies highlighted the antimicrobial activity of nanoparticles
at a particle size of less than 100 nm [24].

The Debye-Scherrer formula uses X-ray diffraction data,
specifically the width at half-maximum of the diffraction
peak [15, 17]. The size of the nanoparticle can also be gauged
by a formula that uses data from the Brunauer-Emmett-Teller
(BET) equation, which considers the specific surface area and
density of the nanoparticles [25].

X-ray diffraction was used in studies to confirm the face-
centered cubic crystalline structures. The absence of peaks

from structures other than the nanoparticulate object of
analysis indicates purity of the synthesis product [13].

Surface area is relevant because it is inversely proportional
to the nanoparticle size [26, 27]. Smaller crystal sizes and
higher surface area lead to higher antibacterial activity. This
physical characteristic was described in only three studies
[28–30].The smaller nanoparticleswere thosewith the largest
areas favoring a large catalysis surface area [26, 27].

The potential for CeNP catalysis is also influenced by the
valence state of Ce4+ or Ce3+ [31]. This feature directly influ-
ences the anti- or prooxidant potential of CeNPs and deter-
mines different responses of the substrate to processes such
as oxidative stress, superoxide radical cleaning, and hydrogen
peroxide production. The conversion of Ce4+ to Ce3+ was
observed in Escherichia coli [29], J774A.1 macrophage cells
[31], and the hippocampus and cerebellum [32]. The surfaces
of algae cells are protected against reactive oxygen species
(ROS) in the face of low amounts of Ce3+ and high amounts of
Ce4+. The autoregenerative mechanism of valence reversion
influences the protective or toxic effect of the nanoparticle
[33].

3.2. Studies of Cerium Oxide Nanoparticles against Oppor-
tunistic Microorganisms. The inhibitory activity of CeNP
on microbial growth was studied in Gram-positive and
Gram-negative planktonic bacterial cultures and biofilms.
Microbiological tests used to test CeNP activity included
enumeration of colony forming units (CFU), agar diffusion,
time-kill, and cell viability using fluorescence assays (Tables
2–7).

Agar diffusion was the most frequently used to evaluate
the sensitivity of S. aureus (Gram-positive) to CeNP, being
used in 10 studies involving S. aureus (Table 2). The NCIM-
5022 strain was tested in three studies [17, 22, 30] and
showed little sensitivity to CeNP (diffusion halos between
0.53 and 3.33mm). In contrast, another study [13] showed the
formation of a 17mm of halo, but information concerning
the strain and nanoparticle concentration was omitted. For
time-kill tests, a greater than 50% inhibition of the S. aureus
at concentrations of 2.58–3.44mg/mL [15] was observed.The
two studies with the most significant antimicrobial activity
results for S. aureus had cerium chloride as the CeNP
precursor agent and a particle size of less than 54 nm in
common (Tables 1 and 2).

The macrodilution test method detected a CeNP min-
imal inhibitory concentration (MIC) of 50 ± 10 𝜇g/mL
using a planktonic culture of E. coli (Gram-negative) and
90 ± 40 𝜇g/mL for a biofilm; CeNP was sonicated prior
to treatment for 1 h [34]. The MIC values for biofilms
were superior to the planktonic culture, probably since
the biofilm is more conducive to microorganism devel-
opment. The benefits of antimicrobial nanoparticles have
been suggested to be above and beyond other molecules
because of their ability to penetrate biofilm substrates. Krish-
namoorthy et al. [18] reported the lowest MIC of 16 𝜇g/mL
against E. coli for CeNP synthesized from cerium nitrate
using sonochemical method and particles ≤ 25 nm in size
(Table 1).
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Table 4: Recent studies of CeNP antimicrobial activity against Pseudomonas aeruginosa.

Strain of
P. aeruginosa

Concentration
(mg/mL)

Microbiological
technique Result ReferenceA

Ni
10∗

Agar diffusion
0.0mm

[21]50∗ ∼3mm
100∗ 4.67mm

ATCC 27853 - Macrodilution 20 ± 5 𝜇g/mL (planktonic culture)
70 ± 0.0𝜇g/mL (biofilm) [34]

NCIM-2242

10
Agar diffusion

3.33mm

[30]
15 3.57mm
20 4.50mm

0.2 and 0.4 Diluted in broth Inhibition of growth was observed;
MIC was not identified

∗mg/paper disk; ni: not identified in the paper; MIC:minimum inhibitory concentration; Areference in chronological order. Source: original source.

Table 5: Recent studies of CeNP antimicrobial activity against Bacillus subtilis.

Strain of
B. subtilis

Concentration
(mg/mL)

Microbiological
technique Result ReferenceA

ATCC 6633

5.0 Agar diffusion

Particle A: ∼3.2mm
Particle B: <1mm
Particle C: ∼2mm
Particle D: ∼3mm

[11]
0.05; 0.1; 0.15 Fluorescence

Particle A: between 40 and 65% of viable
cells

Particle B: between 80 and 90% of viable
cells

Particle C: between 60 and 80% viable
cells

Particle D: between 45 and 65% of viable
cells

0.1 Counting CFU/mL Between 108 and 109 for experimental
groups and 109 for control

KACC 14394 - Broth
microdilution 4𝜇g/mL [18]

Ni
1

Agar diffusion
0.0mm

[20]5 4.67 ± 0.33mm
10 10.33 ± 0.33mm

ATCC 6633 0.17 CFU count ∼40% of survival
[23]0.34 ∼12% of survival

Ni: not identified in the paper; CFU: colony forming unit; Areference in chronological order. Source: original source.

Sonication to avoid the formation of nanoparticle
agglomerates is a relevant factor, as is the use of surfactants
to formmicelles around the nanoparticles. CeNPs made with
Tween 80, Triton X114, and polyvinylpyrrolidone surfactants
at concentrations of 0.01 and 0.001% (p/v) were tested for
inhibition of E. coli.The lowest concentration observed with
the highest sensitivity was 0.001% with Tween 80, indicating
the lowest required surfactant concentration for generating
micelles around the nanoparticles [16]. In addition, it is
believed that the surfactant changes the surface charge of
CeNP, forming a complex with cerium, which is capable of

filling the oxygen vacancy and thus prevents the antioxidant
effect [16].

The antimicrobial activity of CeNP is concentration
dependent [11, 15, 20]. Zeyons et al. [29] also observed this
for E. coli by enumerating CFUs; however, the result was not
dose dependent for the viability test using fluorescence. In
the fluorescence assay, the positively charged dye penetrates
the altered membrane of the microorganism when interact-
ing with a negatively charged material. Positively charged
nanoparticles in large quantities around the cell will interfere
with the action of the dye; thus, the CFU count method is
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Table 6: Recent studies of CeNP antimicrobial activity against Proteus.

Microorganism Strain of Proteus Concentration
(mg/mL)

Microbiological
technique Result ReferenceA

Proteus morganii Clinical urinary
tract infection

0.05 Agar diffusion 11.0 ± 0.51mm
[35]

- Microdilution MIC = MBC =
20 𝜇g/mL

Proteus vulgaris Ni
1.0

Agar diffusion
0.0mm

[20]5.0 3.67 ± 0.33mm
10.0 8.33 ± 0.33mm

Proteus vulgaris Ni
10∗

Agar diffusion
0.0 mm

[21]50∗ ∼3mm
100∗ 4.67mm

Proteus mirabilis ATCC 12459 - Macrodilution

30 ± 10 𝜇g/mL
(planktonic culture)
360 ± 160 𝜇g/mL

(biofilm)

[34]

∗mg/disc; Ni: not identified in the paper; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; Areference in chronological
order. Source: original source.

Table 7: Recent studies of antimicrobial activity of CeNP against Streptococcus pneumoniae.

Strain of S.
pneumoniae

Concentration
(mg/mL)

Microbiological
technique Result ReferenceA

ni
1.0

Agar diffusion
0.0mm

[20]5.0 3.33 ±0.33mm
10.0 10.67 ± 0.33mm

ni
10∗

Agar diffusion
0.0mm

[21]50∗ ∼3.60mm
100∗ ∼4.33mm

ATCC 25923 - Macrodilution

110 ± 40𝜇g/mL
(planktonic culture)
180 ± 80 𝜇g/mL

(biofilm)

[34]

∗mg/paper disk; ni: not identified in the paper; Areference in chronological order. Source: original source.

more consistent for verifying the ability of the cells to form
colonies.

For Pseudomonas aeruginosa (Gram-negative), only three
studies evaluated its sensitivity to nanoparticles, with MICs
of 20 ± 5 𝜇g/mL and 70 ± 0.0𝜇g/mL for planktonic cultures
and biofilms, respectively [34].The formation of an inhibition
zone ranged from approximately 3mm to 4.67mm (Table 4).
The results of Ravishankar et al. [30] showed a greater
CeNP activity against P. aeruginosa in smaller doses when
the particles were synthesized by combustion and cerium
ammonium nitrate was used as a precursor.

Bacillus subtilis (Gram-positive) was sensitive to CeNP,
with an inhibition greater than 50% observed [23]; however,
for the 1mg/mL concentration, there was no inhibition
zone formation (strain not reported) [20], although the
CIM observed by Krishnamoorthy et al. [18] was quite
small (4 𝜇g/mL) for the KACC strain 14394 (Table 5). This
difference can be attributed to differences in strain, route of
synthesis, and the salt precursor used.

The genus Proteus (Gram-negative) was tested in four of
the 17 studies analyzed.The formation of a ∼3-mm inhibition
zone was observed for Proteus vulgaris [20, 21], and the
inhibition zone was 11.0 ± 0.51mm for Proteus morganii [35]
(Table 6).

Streptococcus pneumoniae (Gram-positive) showed a sen-
sitivity to the CeNP at a concentration of 5mg/mL with the
formation of a 3.33 ± 0.33mm inhibition zone [20] (Table 7).

Only one study evaluated the sensitivity of C. albicans
to CeNP [7] using a clinical strain (UCM Y-690). A CeNP
concentration of 0.017mg/mL (lowest) yielded a reduction in
the viability of the fungus, while a 0.17mg/mL concentration
caused the complete inhibition of the fungus viability.

An 8 𝜇g/mLMIC of CeNP was observed for Enterococcus
faecalis (Gram-positive) (KACC 13807) and for Salmonella
typhimurium (KCCM40253) [18]. In anotherE. faecalis strain
(ATCC 19433), the MIC was 50 ± 20𝜇g/mL and 270 ±
0.0 𝜇g/mL for the planktonic culture and biofilm, respectively
[34]. Other strains showed different MICs; however, the salt
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precursor was the same, and the synthesis method varied
between the studies, with the sonochemical method seeming
to be the most effective.

Klebsiella pneumoniae (Gram-negative) (ATCC 13833)
presented sensitivity to CeNP (MICs of 140 ± 0.0 and
360 ± 160 𝜇g/mL for planktonic culture and biofilm, resp.)
[34]. Arumugam et al. [21] observed inhibition zones of
approximately 2.6 and 4.67mm at concentrations of 50 and
100mg/paper disk, respectively. Similar values were found for
Shigella dysenteriae (Gram-negative).

The clinical strain urinary tract bacteria Klebsiella sp.
(6.00 ± 0.74mm) and Enterobacter sp. (6.00 ± 0.12mm) had
the same inhibition zone value [35].

The cerium oxide formed a small inhibition zone
(<3mm) at a concentration of 10mg/mL for Klebsiella aero-
genes (Gram-negative) (NCIM-2098) [17, 22]. The nanopar-
ticles produced by Malleshappa et al. [22] were smaller and
had a defined shape (cube), while those of Reddy Yadav et al.
[17] were larger (when compared with nanoparticles of [22])
with irregular shapes (Table 1).

Shewanella oneidensisMR-1 (Gram-negative) is a faculta-
tive bacterium and was not sensitive to CeNP at concentra-
tions of 50 to 150mg/mL [11].

Masadeh et al. [34] performed a study aiming to deter-
mine the MIC of CeNP against various Gram-positive and
Gram-negative bacteria. Below are the sensitivity of the
microorganisms tested for the first time in the literature
with CeNP in planktonic culture and biofilms, respectively:
Acinetobacter baumannii (Gram-negative) ATCC 17978 (70±
0.0 𝜇g/mL and 360 ± 160 𝜇g/mL); Streptococcus pyogenes
(Gram-positive) ATCC 19615 (30 ± 10 𝜇g/mL and 70 ±
0.0 𝜇g/mL); Haemophilus influenzae (Gram-negative) ATCC
29247 (360 ± 160 𝜇g/mL and 530 ± 0.0 𝜇g/mL); Staphylococ-
cus epidermidis (Gram-positive) ATCC 12228 (20 ± 5 𝜇g/mL
and 90 ± 40 𝜇g/mL); Enterobacter aerogenes ATCC 29751
(70 ± 0.0 𝜇g/mL and 140 ± 0.0 𝜇g/mL); Citrobacter fre-
undii (Gram-negative) ATCC 8090; and Enterobacter cloacae
(Gram-negative) ATCC 13047 (70 ± 0.0 𝜇g/mL and 220 ±
80 𝜇g/mL for both bacteria).

Kannan and Sundrarajan [13] suggested that CeNP can
be used as an effective inhibitor in antimicrobial control
systems. The effectiveness of the nanoparticles depends on
their morphology and size. Masadeh et al. [34], after testing
various strains of different species of microorganisms, stated
that CeNP is not a good antibacterial candidate.

3.3. CeriumOxide Nanoparticles against Opportunistic Micro-
organisms: Mechanism of Action. CeNP showed activity in
Gram-positive and Gram-negative bacteria, with the greatest
antimicrobial activity observed against Gram-negative bac-
teria (E. coli) [22]. Gram-positive bacteria have a thick layer
of peptidoglycan that contains linear polysaccharides chains
with short peptides that together form a rigid structure that is
difficult to penetratewithCeNP.Gram-negative bacteria have
a thin layer of peptidoglycan and a lipopolysaccharide that
protects the cytoplasmic membrane from outside chemical
agents [22]. Gopinath et al. [20] stressed that the greater
antibacterial activity of CeNP on Gram-positive bacteria is
possibly because the peptidoglycan layer possesses teichoic

acid as interaction site for CeNP. Both studies used the agar
diffusion method, which yielded small inhibition halo values
at the concentrations tested.

Transmission electron microscopy showed that the
cerium oxide nanoparticles with antimicrobial activity
against E. coli adsorb to the bacteria surface but do not pene-
trate the cell [11]. These findings are in accordance with Thill
et al. [28], who suggested three types of interaction between
bacteria and CeNP: (1) adsorption, (2) oxi-reduction, and (3)
toxicity.

(1) Adsorption occurs by electrostatic attraction, possi-
bility modifying cellular transport via ionic pumps
[28]. Extracellular polymeric substances production
by a microorganism, for example, Synechocystis, can
compromise adsorption and the consequent oxi-
reduction [29].

(2) In the process of oxi-reduction, modifications occur
on the surface of the nanoparticle and the bacteria.
The Ce4+ charge of the nanoparticles is reduced to
Ce3+ in the presence of the bacteria (E. coli), resulting
in oxidative stress on lipids and/or proteins in the
plasma membrane of the microorganism, or through
cellular metabolism electron uptake. It is important
to highlight that no reduction of Ce4+ was observed
in abiotic culture medium [28, 29].

(3) Toxicity involves the impairment of cellular respira-
tion, as observed by differences in gene expression, in
nanoparticulate exposed and nonexposed E. coli. The
low level of succinate dehydrogenase and cytochrome
b terminal oxidase gene expression in the experimen-
tal group indicates that cerium attacks electron flow
and bacterial respiration [11].With respect toCandida
albicans, it is believed that the interaction between
cerium and components of the fungal cell wall can
cause irreversible changes, such as blocking fungal
enzymatic activity [7].

Another relevant factor in antimicrobial activity is alter-
ing of nanoparticle surface charge by the culturemedium pH.
The extreme pH ranges after the incubation period contribute
to this activity by establishing an unfavorable environment
for the proliferation by microorganisms [11].

Considering the above factors, a diagram representing the
probablemechanismof antimicrobial action for ceriumoxide
nanoparticles is proposed (Figure 2).

4. Conclusions

The reviewed studies report the antimicrobial activity for
CeNP as synthesized by different routes that use nitrate or
chloride salt precursors and have a size of less than 54 nm.
A lack of standardization between the studies, for both the
bacteria used and concentrations of CeNP tested, makes
them difficult to compare and determine the most efficient
synthesis route. Aggregation of CeNP particles by moisture
in the air seems to inhibit antimicrobial activity, and it is
necessary to standardize the studies with a storage protocol
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Figure 2: Diagram of the probable mechanism of antimicrobial action for cerium oxide nanoparticulates on the cell membrane. Candida
albicans; (b) the cell wall of the fungus formed by monoproteins, insoluble glycan and chitin. Phospholipid bilayer of the cell membrane with
glycan synthase and ergosterol. (c) Adsorption of cerium oxide nanoparticles, reduction of Ce4+ to Ce3+, elevation of pH, and oxidative stress
of the fungus.

in a dryer, sonicate the nanoparticles, and use Tween-80
surfactant.

The antimicrobial mechanism of action is probably due
to oxidative stress on components of the microorganism cell
membrane, manly of Gram-negative and fungi microorgan-
isms. This process occurs during CeNP adsorption to the
bacterium, which is favored by the acidic pH of the site
of infection, since at a low pH, the nanoparticles become
positively charged and more easily adhere to the negatively
charged bacteria through electrostatic interactions. During
this process, a change in valence on the surface of the cerium
oxide nanoparticle occurs by gain of an electron, converting
Ce4+ to Ce3+. The greatest antimicrobial activity observed
against Gram-negative and fungi occur probably by direct
contact and unbalance of the outermembrane. Conversely, in
Gram-positive bacteria a thick layer of peptidoglycan in their
membrane can modulate this effect. As a result, few particles
of Ce4+ are reduced to Ce3+ and the oxidative stress events in
Gram-positive bacteria are diminished.
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