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Abstract

Statins are potent cholesterol reducing drugs that have been shown to reduce tumor cell 

proliferation in vitro and tumor growth in animal models. Moreover, retrospective human cohort 

studies demonstrated decreased cancer-specific mortality in patients taking statins. We previously 

implicated membrane E-cadherin expression as both a marker and mechanism for resistance to 

atorvastatin-mediated growth suppression of cancer cells; however, a transcriptome-profile-based 

biomarker signature for statin sensitivity has not yet been reported. Here, we utilized transcriptome 

data from fourteen NCI-60 cancer cell lines and their statin dose-response data to produce gene 

expression signatures that identify statin sensitive and resistant cell lines. We experimentally 

confirmed the validity of the identified biomarker signature in an independent set of cell lines and 

extended this signature to generate a proposed statin-sensitive subset of tumors listed in the TCGA 

database. Finally, we predicted drugs that would synergize with statins and found several predicted 

combination therapies to be experimentally confirmed. The combined bioinformatics-experimental 

approach described here can be used to generate an initial biomarker sensitivity for statin therapy.
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Introduction

Despite advances in cancer therapy in past decades, cancer remains the second leading cause 

of death in the United States [1]. The high cost and length of novel drug development 
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motivates the repurposing of existing drugs, especially since their safety profiles are well-

established [2, 3]. This goal, at least in part, can be supported by identifying biomarker 

sensitivity signatures for existing anti-cancer therapies, and by predicting drug combinations 

that would augment the effectiveness of monotherapies.

The HMG-CoA reductase (HMGCR) inhibitors, statins, have been clinically approved for 

the treatment of hypercholesterolemia for thirty years [4]. Large retrospective studies of 

statin usage in cancer patients have shown that while statins do not affect cancer incidence 

[5, 6], their use appears to reduce cancer mortality [7, 8]. These studies have been supported 

by experimental data that show anti-tumor effects of statins on many cancer cell lines and in 

some animal models by inducing apoptosis or growth arrest [9-13]. Not all tumor cell lines 

are sensitive to statins, however, and prospective clinical trials have reported ambiguous 

outcomes [14]. Thus, a gene expression signature of statin sensitivity would enable 

researchers and clinicians to focus on predicted sensitive and resistant cell lines, tissues, and 

patients for further mechanistic and clinical studies. Moreover, those predictions would 

identify candidate biomarkers and genes that play a role in tumor susceptibility or resistance 

to statins. Finally, this model may suggest a role for statins in anticancer therapy for patients 

with predicted statin-sensitive tumors.

Here, we satisfied these aims by utilizing transcriptome data from fourteen NCI-60 cancer 

cell lines and their sensitivity data to two statin drugs to produce a genetic signature 

identifying statin sensitive cells. We enriched these data with publicly available gene 

expression data from the National Cancer Institute (NCI-60) and the Cancer Cell Line 

Encyclopedia (CCLE), and with biomarker discovery algorithms that can distinguish direct 

from indirect interactions in large datasets. We experimentally confirmed the validity of the 

identified biomarker signature in an independent set of cell lines, showed that a subset of 

TCGA tumors are predicted to display statin sensitivity, and demonstrated the biological 

viability of the predicted signature. The combined bioinformatics-experimental approach 

described here can be used to generate biomarker sensitivity signatures for anticancer 

therapies and generate hypotheses of mechanism of action of drug sensitivity and resistance.

Material and Methods

Cell culture, statin treatment and cell proliferation assay

We selected seven pairs of cell lines from the NCI-60 cancer cell panel. These cell lines 

represent seven different major solid tumor types. For each site, we selected one cell line 

with low and one with high protein synthesis rate, as previously reported [15]. The selected 

cell lines - colon cancer (HCT-116, KM-12), ovarian cancer (IGROV1, OVCAR3), breast 

cancer (HS-578T, T47D), lung cancer (HOP-92, NCI-H322M), prostate cancer (PC-3, 

DU-145), melanoma (SK-MEL-5, MDA-MB-435), and brain cancer (SF-295, SF-539) - 

were cultured in RPMI 1640 medium (Life Technologies, Grand Island, NY), supplemented 

with 10% heat-inactivated fetal bovine serum (HI-FBS, Life Technologies) and 0.5% 

penicillin/streptomycin (Life Technologies) at 37°C with 5% CO2.

Atorvastatin (Sigma-Aldrich, St. Louis, MO) and Rosuvastatin (Santa Cruz Biotechnology, 

Santa Cruz, CA) were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich; final 
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concentration of 0.1% in RPMI 1640 medium) at a final concentration of 10 μM. The cells 

were seeded in 6-well plates at a density of 1×105 cells/ml and incubated overnight prior to 

treatment with 10 μM Atorvastatin, 10 μM Rosuvastatin, or 0.1% DMSO (DMSO served as 

solvent control). Three independent experiments were performed. Cell proliferation was 

quantified at 2, 4, and 6 days by direct cell counting with Scepter™ Handheld Automated 

Cell Counter (EMD Millipore, Billerica, MA) using Scepter™ Tips‒60 μm sensor (EMD 

Millipore).

Description of the IC50 determination, Immunofluorescence microscopy and Computational 

Models can be found in the Supplementary Materials

Results

Biomarker identification for statin sensitivity of cancer cell lines using temporal statin 
growth inhibition data in fourteen cancer cell lines

Previous experiments have demonstrated that statins, including atorvastatin (Lipitor), inhibit 

the growth of a subset of NCI-60 cancer cell lines, and that a subset of statins show similar 

half-maximal inhibitory concentration (IC50) values [16]. To test if the chemical properties 

of statins affect their inhibition of tumor cells, we cultured fourteen cancer cell lines from 

the NCI-60 collection, derived from seven organ types, in standard growth medium in the 

presence of a lipophilic (10 μM atorvastatin) or hydrophilic (10 μM rosuvastatin) statin. 

Importantly, in enzyme assays these statins have similar affinities for their enzyme target, 

HMG-CoA reductase (HMGCR), with IC50 values of 8.2nM and 5.4nM for atorvastatin and 

rosuvastatin, respectively [17]. We previously demonstrated that atorvastatin affected the 

growth of these cancer cell lines differentially; some cell lines displayed full or partial 

growth inhibition while others were completely insensitive to atorvastatin treatment [15]. In 

the current study, we have found that all the atorvastatin sensitive cell lines except HOP-92 

are partially or fully resistant to rosuvastatin at the tested drug concentrations (Fig. 1).

We utilized gene expression data from these fourteen NCI-60 cancer cell lines [16, 18] and 

statin dose-response data (see Fig. 1) to produce a genetic signature distinguishing between 

atorvastatin and rosuvastatin sensitive and resistant cell lines. Specifically, our training set 

consisted of baseline gene expression data for the fourteen (non-treated) NCI-60 cell lines, 

and a measure of statin sensitivity as our response variable. We computed this response 

variable over a growth period of six days utilizing atorvastatin (ato), rosuvastatin (rosu), ato 

+ rosu, or vehicle treatment on each cell line. From these data, dose-response curves were 

formed, depicting the number of (proliferating) cells at each time point. Using these curves, 

we found the ratio of the area under the dose response curve for the control and the area 

under the dose response curve for the treatment group, and used this number as a final 

response variable for each cell line.

To determine a genetic signature of statin sensitivity, the variables that were found to be 

associated to the sensitivity score measure from our graphical modeling methods were 

selected as important features. Specifically, we used three different methods for feature 

selection in this analysis. First, we used the “Atorva MGM” approach, which simply used 

the MGM model to produce an undirected graphical network from the NCI-60 data, and 
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used all the genes adjacent to the statin sensitivity variable in the network as features. 

Nineteen genes were selected by this approach (Table 1) (Fig. S1a). To determine the 

reliability of the selected genes, we employed a leave-one-out cross validation method using 

an SVM regression model, and we obtained a cross validation error rate of 0.0082 for this 

set of features.

Our second approach was the “Combined” approach. Here, we used the MGM selected 

features from rosuvastatin on the NCI-60 dataset with the sensitivity scores from the 

rosuvastatin experiments. We combined them with the MGM selected features from the 

atorvastatin cell lines, and applied T-ReCS on the NCI-60 dataset to produce clusters of 

relatively overexpressed or suppressed genes predictive of statin sensitivity. Following this 

step, we searched for those genes from the rosuvastatin MGM selected features that were in 

any cluster from the atorvastatin features selected. These were then utilized as the genetic 

signature. In total, nine genes were selected using this approach (Table 1)(Fig. S1b), but the 

cross validation error rate was higher (0.1967).

Our final approach was the Atorva_TReCS approach. Here, we used the MGM features for 

the atorva-statin data as the original features for T-ReCS. Then, we ran our T-ReCS 

algorithm to produce clusters on these features. We then choose the final selected features 

for prediction, by simply taking a single gene from each cluster that had the highest 

correlation to the statin sensitivity variable. In total, seventeen genes were selected using this 

approach (Table 1) (Fig. S1c) (as some genes from the original MGM selection appeared in 

the same cluster), with a cross validation error rate of 0.0285.

For each of these approaches, we used the corresponding gene expression signature to train a 

predictive linear regression model (an SVM regression model trained via MATLAB's 

“fitrsvm” library) on the NCI-60 gene expression data. To validate the predictive power of 

this model, we obtained gene expression data from the Broad Institute's Cancer Cell Line 

Encyclopedia (CCLE) [19], and this data was used to predict an Atorvastatin sensitivity 

score for each of the cell lines in the CCLE database. We utilized the predictions from each 

of the three genetic signature selection approaches in the following manner. First, using the 

genes selected from each of the methods the top ten statin resistant cell lines were predicted 

using the model trained on the NCI-60 database. Then, each of these cell line sets were 

combined and duplicates were removed resulting in 26 resistant cell lines. The same 

approach was employed on the set of 23 predicted statin sensitive cell lines.It is evident that 

the predictions by the three methods yielded a partial overlap for both the most statin 

sensitive and statin resistant cell lines (see Supplementary Table 5 [excel sheet] in the 

Supplement).

Experimental validation of biomarker predictions

Next, we assessed the fidelity of the predicted biomarkers by experimentally testing the 

statin sensitivity of yet untested cell lines. To reduce the number of cell lines to be 

experimentally tested, we clustered the predicted 23 statin sensitive and 26 statin resistant 

cell lines based on their whole transcriptome profiles, since cells displaying highly similar 

transcriptome profiles are likely to have similar biologic behavior. We performed principal 

component analysis on the full gene expression data for the predicted 26 statin resistant cell 
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lines, and the cell lines were clustered according to their first two principal components 

using a k-means clustering with k = 10 (Fig. S2a). The same approach was employed on the 

set of 23 predicted statin sensitive cell lines (Fig. S2b).

To test the atorvastatin sensitivity of representative cell lines from the predicted sensitive and 

resistant groups, we selected the NCI-H2170 (lung cancer-derived) and BT-474 (breast 

cancer-derived) predicted statin resistant; and the SK-MES-1 (lung cancer-derived) and SK-

MEL-24 (melanoma-derived) predicted statin sensitive cell lines. To determine the IC50 of 

atorvastatin, we treated the cell lines with half log doses of atorvastatin, between 100nM and 

100uM. As shown in Figure 2, cell lines predicted to be sensitive (SK-MES-1 and SK-

MEL-24) were more sensitive to atorvastatin than the cell lines predicted to be resistant 

(NCI-H2170 and BT-474) to it (Fig. 2a, b), confirming the fidelity of the predicted statin-

sensitivity gene expression signature.

Statin resistance correlates with cell membrane E-cadherin expression in cancer cell lines 

[15]. To determine the expression of E-cadherin in BT-474, NCI-H2170, SK-MES-1, and 

SK-MEL-24 cell lines we immunostained these cell lines for E-cadherin, as previously 

described [15]. We find that statin resistant cells with high mRNA for E-cad (BT-474 and 

NCI-H2170) have high membrane E-cadherin expression. In contrast, statin-sensitive cells 

with low mRNA for E-cad (SK-MES-1 and SK-MEL-24) have no detectable E-cadherin 

staining (Fig. 2c-f). The uncovered E-cadherin expression pattern agrees with E-cadherin 

mRNA expression data deposited for these cell lines in Oncomine [20] and demonstrates 

that membrane E-cadherin is a marker of statin-resistant cells.

Determination of potential combination statin therapies

To determine if there was potential for combination therapies with statins across cell lines, 

we analyzed publicly available pharmacological profiles from the Cancer Cell Line 

Encyclopedia (CCLE) and the Sanger Center Genomics of Drug Sensitivity project. The 

CCLE data profiled 24 molecules across 504 cell lines [19], and the Sanger Center profiled 

250 molecules across 549 cell lines [21]. Cell line sensitivity measurements for each 

molecule on each profiled cell line was computed using the IC50 value and the area under 

the dose response curve (AUC) for the CCLE data and the Sanger center data, respectively. 

These sensitivity measurements were compared to predicted statin sensitivity on only those 

cell lines appearing in both the CCLE baseline gene expression dataset as well as the 

pharmacological profiling datasets, and correlation scores were produced (Table 2). Further 

discussion on these results can be found in the Supplement.

Discussion

Despite many advances in the treatment of local and advanced cancers, metastatic disease 

still exhibits high mortality and its management remains complex. The genomic instability 

of cancers that have undergone or are prone to metastasis promotes the development of drug 

resistance, hindering monotherapy for these advanced cancers. As such, combination 

therapies are needed to combat tumor progression by preventing cellular compensation to a 

single drug treatment. In order to thoughtfully design new drug combinations, models that 

incorporate genomic information and provide drug sensitivity predictions are invaluable.
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In this work, we have utilized several feature selection approaches to identify a predictive 

genetic signature of statin sensitivity from RNA-Seq data from TCGA. We applied this 

signature to several cancer cell lines from the NCI-60 database and externally validated the 

sensitivity predictions, confirming all four of our experimental predictions. We then applied 

our predictive signature to the TCGA-Breast Invasive Carcinoma project and found a subset 

of tumor samples predicted to be sensitive to statins (Supplementary Figures 3A-3I, and we 

further validated our predictive signature through an ontological analysis for relevance of the 

selected genes (Supplementary Tables 1-3).

Since the advent of high-throughput gene sequencing technology, genetic biomarker 

discovery on large datasets has been extensively studied [22, 23]. Several methods have been 

developed for biomarker identification to predict sensitivity to anticancer drugs. Most of 

these methods use penalized regression techniques (Lasso, Elastic Net, Ridge, etc.) along 

with unsupervised approaches (clustering) on gene expression measurements to directly 

predict anticancer drug sensitivity across cell lines [24-27]. Though these penalized 

regression techniques identify relevant genes and are suitable for many prediction tasks, they 

can be insufficient to identify a mechanistic biomarker signature. Signature identification 

requires separating indirect associations from direct associations, which is difficult through a 

single penalized regression alone, and high degrees of multi-colinearity in gene expression 

data further complicate these searches. However, real biological signature identification has 

much greater impact than a predictive model alone, as a signature has the potential to 

provide mechanistic insight alongside accurate predictions. Here we have utilized a 

signature identification methodology that is able to avoid these issues through the framework 

of graphical modeling and clustering. Further, we have increased the stability of our results 

to small changes in the data by incorporating the results from multiple analysis methods. We 

have demonstrated that this paradigm for signature identification produces viable biological 

results along with accurate predictions.

However, our approach is limited by the data upon which it was built. First, the vast majority 

of available large datasets (e.g., TCGA) are derived from primary tumors; this skews the 

analysis towards relatively well differentiated (epithelial, E-cadherin-positive) cells that are 

not epidemiologically linked to reduction in mortality from cancer, which is more related to 

disseminated/metastatic disease (usually mesenchymal, E-cadherin low/absent). Thus, the 

tumor selection is not enriched in the tumor cells that are postulated as the direct targets for 

statins. Second, since the gene expression data are derived from whole tumors, tumor 

heterogeneity is expected to further obscure the statin sensitivity/resistance signal. Third, 

gene expression data is inherently limited by high dimensionality (i.e., few cell lines per 

tumor type compared to the large number of genes/variables), which reduces statistical 

power. Moreover, predicted sensitivity genes were not examined at the genetic level to 

determine whether altered expression influences statin efficacy. Finally, predicted synergistic 

drug combinations with statins were not tested experimentally in these cell lines, although 

some have been already confirmed in the literature. These limitations are outside of the 

scope of the current work and will be addressed in subsequent studies.

In summary, we have developed a combined algorithm-experiment blueprint that is able to 

generate biomarker sensitivity signatures for anticancer therapies, as exemplified here by 
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identifying an initial biomarker signature for statin sensitivity in human cancer cell lines and 

tumors. This signature was validated both in terms of biological sensibility and by 

experimental validation, and it confirms many recent physiological effects of statins as 

shown through our ontological analyses. Future studies will be aimed at experimentally 

testing many more cancer cell lines for their statin sensitivity and better characterizing the 

genetic factors that impact cancer cell response to statin mono- and combination therapy and 

experimental verification of these findings in sophisticated ex vivo and in vivo models of 

metastatic cancer.

Data Availability

All data generated or analyzed during this study are included in this published article (and its 

Supplementary Information files).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Growth rate of atorvastatin and rosuvastatin treated NCI-60 cancer cell lines
Colon cancer- (A. HCT-116 and B. KM-12), ovarian cancer- (C. IGROV1 and D. 

OVCAR3), breast cancer- (E. HS578T and F. T47D), lung cancer- (G. HOP-92 and H. NCI-

H322M), prostate cancer- (I. PC-3 and J. DU-145), melanoma- (K. SK-MEL-5 and L. 

MDA-MB-435), and brain cancer- (M. SF-295 and N. SF-539) cell lines from the NCI-60 

cancer cell line collection were treated with 10 μM atorvastatin (pink line), 10 μM 

rosuvastatin (blue line), or DMSO vehicle control (black line) and cell growth was 

quantified at 2, 4, and 6 days through direct cell counting. The results are representative of 

three independent experiments. Error bars represent the standard deviation (n=3).
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Figure 2. Empirical statin sensitivity data correlates with predictions and membrane E-cadherin 
expression
(A.) Dose response curves for Atorvastatin in predicted resistant (BT-474 and NCI-H2170) 

and predicted sensitive (SK-MES-1 and SK-MEL-24) cell lines. (B) Predicted resistant cell 

lines exhibited higher IC50 values to atorvastatin than predicted sensitive cell lines. Data are 

representative of three independent experiments. All experiments were carried out in 

triplicate (N=3). Error bars represent the standard error of the mean. [19] Atorvastatin 

resistant cell lines BT-474 (C) and NCI-H2170 (D) display strong membrane E-cadherin 

(green) staining. In contrast, atorvastatin sensitive cell lines SK-MES-1 (E) and SK-MEL-24 

(F) exhibited no E-cadherin staining. DAPI (blue) was used to counterstain the cell nuclei. 

Scale bar = 50μm.
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Table 1
Selected biomarker for each identification method

Overlapping genes from all three methods are shown in red, and overlapping genes from two methods are 

shown in bold.

Atorva-MGM Combined-MGM Atorva-TReCS

GABRA3 GABRA3 GABRA3

TM4SF18 TM4SF18 TM4SF18

ATP8B1 ATP8B1

CKAP4 CKAP4

IL13RA2 IL13RA2

KRT7 KRT7

LAMA4 LAMA4

MACC1 MACC1

MISP MISP

MMP14 MMP14

NFKBIZ NFKBIZ

SCNN1A SCNN1A

SLC16A4 SLC16A4

SLC27A2 SLC27A2

SLC6A8 SLC6A8

SPINT2 SPINT2

TNFRSF10D TNFRSF10D

HIST1H1A ANPEP CD70

SRPX GFPT2 CTSK

PTGFRN IFITM2

RGS4
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Table 2
Molecules with similar pharmacological profiles to predicted statin sensitivity across cell 
lines

Pharmacological profiles from CCLE and Sanger Center drug sensitivity data were used to predict 

combination therapy with statins. Molecules with positive correlation and FDR Q-Value < .05 were included. 

For CCLE profiles, IC50 was used as a proxy for sensitivity, and for Sanger center profiles, the area under the 

dose-response curve (AUC) was used.

Drug Name Target Correlation P Value

Dabrafenib BRAF 0.456976009 2.38E-18

PLX-4720 BRAF 0.376159659 4.97E-13

(5Z)-7-Oxozeaenol TAK1 0.376014976 8.61E-13

SB590885 BRAF 0.340372121 4.32E-09

TW 37 BCL2, BCL-XL, MCL1 0.27305505 1.89E-06

Piperlongumine NF-κB 0.226445462 0.000199099

Cisplatin DNA crosslinker 0.233847531 0.000250235

Lestauritinib FLT3, JAK2, NTRK1, NTRK2, NTRK3 0.218300548 0.000905096

Elesclomol HSP90 0.206861021 0.002058482

Refametinib MEK1, MEK2 0.183970201 0.004239963

Bleomycin dsDNA break induction 0.183339449 0.004370418

Temsirolimus MTOR 0.182232337 0.01021699

Nutlin-3a (-) MDM2 0.176424024 0.010924768

Selumetinib MEK1, MEK2 0.165658468 0.010924768

AZ628 BRAF 0.296949736 0.011550955

PD0325901 MEK1, MEK2 0.173101761 0.011550955

Serdemetan MDM2 0.164726002 0.011550955

Trametinib MEK1, MEK2 0.166312205 0.011550955

Docetaxel Microtubule stabilizer 0.169092858 0.013420485

BX796 TBK1, PDK1 (PDPK1), IKK, AURKB, AURKC 0.167710541 0.013718152

Embelin XIAP 0.157305764 0.016974867

FH535 PPARγ, PPARΔ 0.154672573 0.02034349

YK-4-279 RNA helicase A 0.158950401 0.026108609

Rucaparib PARP1, PARP2 0.147699505 0.027477555

CI-1040 MEK1, MEK2 0.152967932 0.032836113

SN-38 TOP1 0.140036378 0.040080871

CHIR-99021 GSK3A, GSK3B 0.135343422 0.041404418
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