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The S100 protein family is involved in cancer cell invasion and metastasis, but its prognostic value in non-small-cell lung cancer
(NSCLC) has not been elucidated. In the present study we investigated the prognostic role of mRNA expression of each individual
S100 in NSCLC patients through the Kaplan–Meier plotter (KM plotter) database. Expression of 14 members of the S100 family
correlated with overall survival (OS) for all NSCLC patients; 18 members were associated with OS in adenocarcinoma, but none
were associated with OS in squamous cell carcinoma. In particular, high mRNA expression level of S100B was associated with
better OS in NSCLC patients. The prognostic value of S100 according to smoking status, pathological grades, clinical stages, and
chemotherapeutic treatment of NSCLC was further assessed. Although the results should be further verified in clinical trials our
findings provide new insights into the prognostic roles of S100 proteins inNSCLC andmight promote development of S100-targeted
inhibitors for the treatment of NSCLC.

1. Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide and is generally classified as small-cell lung cancer
and non-small-cell lung cancer (NSCLC), which is mainly
composed of lung adenocarcinoma and lung squamous cell
carcinoma. With early and aggressive treatment, the 5-year
survival of lung cancer patients is greater than 50%, but
once metastatic disease occurs the survival rate drops to 5%
[1, 2]. Most patients with NSCLC die due to recurrent disease.
Therefore, identification of potential prognostic markers is a
matter of great clinical urgency for patients with NSCLC.

The S100 calcium binding protein family, including more
than 25 known members the first of which was reported by
Moore in 1965, is only expressed in vertebrates and plays a
key role in modulating the transmission of various cellular
signals [3]. Many studies suggest that the expression of S100

family members is altered in numerous human cancers [4–
7] and recent studies have reported that S100 protein may be
associated with tumor metastasis [8–10].

In NSCLC, several S100 family members (S100A2,
S100A4, S100A7, S100A10, S100A11, and S100A16) have been
shown to be related to poor prognosis in different studies
[5, 11–13], although the role of the majority of S100 proteins
in NSCLC has not been reported.

The Kaplan–Meier (KM) plotter database was gener-
ated using gene expression data and survival information
downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). The database contains
overall survival (OS) data for 1,926 NSCLC patients [14].
To date, several potential cancer-associated genes have been
reported using the KM plotter for breast cancer [15–17],
ovarian cancer [18], and gastric cancer [19, 20] in addition
to NSCLC. In this study, we assessed the prognostic role of
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mRNA expression of each individual member of the S100
family in NSCLC patients using the KM plotter database.

2. Materials and Methods

The correlation of individual S100mRNA expression with OS
was analyzed using an online database that was established
using gene expression data and survival information of lung
cancer patients downloaded from the GEO [14]. Currently,
breast cancer [21], ovarian cancer [22], gastric cancer [23],
and lung cancer [14] databases have been generated. The
database contains a collection of clinical data including
histology, stage, grade, gender, and smoking history, and
treatment groups include surgery, chemotherapy, and radio-
therapy. Briefly, 20 individual members of the S100 family
were entered into the database (http://kmplot.com/analysis/
index.php?p=service&cancer=lung) to obtain KM survival
plots. The requested mRNA expression above or below the
median classified the cases into a high expression group
and low expression group. These cohorts were compared
with a Kaplan–Meier survival plot, and hazard ratio (HR),
95% confidence interval (CI), and log rank 𝑝 value were
determined and displayed on the webpage. A 𝑝 value < 0.01
was considered statistically significant to reduce the false-
positive rate.

3. Results

3.1. Prognostic Value of S100 Members in All NSCLC Patients.
Twenty S100 family members present in NSCLC patients
were found in the database (http://kmplot.com), and we
determined the prognostic value ofmRNA expression of each
one individually. Among these 20 S100 members, 14 were
significantly associatedwith prognosis for all NSCLCpatients
(Figure 1). The survival curves (Figures 1(a)–1(n)) revealed
that high mRNA expression of S100B was associated with
better prognosis (Figure 1(n), HR = 0.73, 95% CI: 0.64–0.83,
and 𝑝 = 0.0000). The other 13 members were associated with
worse prognosis (Figures 1(a)–1(m)). S100A4 (HR = 1.17, 95%
CI: 1.03–1.33, and 𝑝 = 0.0130), S100A13 (HR = 1.17, 95% CI:
1.03–1.33, and 𝑝 = 0.0130), S100A14 (HR = 1.17, 95% CI:
1.03–1.33, and 𝑝 = 0.0130), and S100P (HR = 1.16, 95% CI:
1.02–1.32, and 𝑝 = 0.0210) were modestly associated with
poor survival (Figures 2(a)–2(d)), whereas S100A5 (HR= 1.12,
95% CI: 0.98–1.27, and 𝑝 = 0.0850) and S100Z (HR = 0.90,
95% CI: 0.76–1.06, and 𝑝 = 0.2100) were not correlated with
OS.

3.2. Prognostic Values of S100 Members in Different NSCLC
Subtypes. The prognostic value of S100 family members was
assessed in different intrinsic subtypes of NSCLC, including
squamous cell carcinoma and adenocarcinoma. In squamous
cell carcinoma, none of high mRNA expression levels of the
S100 family members correlated with OS.

In adenocarcinoma patients, S100B mRNA expression
level was associated with better OS. S100G (HR = 1.29, 95%
CI: 1.03–1.63, and 𝑝 = 0.0290) and S100Z (HR = 0.91, 95%
CI: 0.71–1.16, and 𝑝 = 0.4300) were not significantly related

to prognosis in adenocarcinoma and expression of the other
17 S100 members correlated with worse OS.

3.3. Prognostic Values of S100 Members in NSCLC Patients
according to Clinicopathological Features and Treatment.
Next, we determined the correlation of S100 with the patients’
smoking status, pathological grades, clinical stages, and
different chemotherapeutic treatments. As shown in Table 1,
high mRNA expression of S100A14 (HR = 1.31, 95% CI:
1.07–1.62, and 𝑝 = 0.0098) and S100P (HR = 1.38, 95% CI:
1.12–1.7, and 𝑝 = 0.0022) correlated with worse OS in patients
with a history of smoking. HighmRNA expression of S100A5
(HR = 2.73, 95% CI: 1.47–5.07, and 𝑝 = 0.0004), S100A6 (HR
= 3.53, 95% CI: 1.87–6.65, and 𝑝 = 0.0000), S100A13 (HR =
3.32, 95% CI: 1.79–6.16, and 𝑝 = 0.0001), S100A16 (HR = 5.12,
95% CI: 1.75–14.99, and 𝑝 = 0.0009), and S100G (HR = 2.93,
95% CI: 1.62–5.31, and 𝑝 = 0.0002) correlated with worse OS
in patients without smoking history. High S100A2, S100A7,
S100A8, S100A9, S100A11, and S100A12 mRNA expression
was linked to worse OS in patients with and without smoking
history. However, only S100B mRNA expression level was
associated with better OS in patients with smoking history
(HR = 0.71, 95% CI: 0.58–0.87, and 𝑝 = 0.0012).

None of high mRNA expression levels of the S100 family
members correlated with OS. The expression of S100P (HR
= 1.4, 95% CI: 1.02–1.93, and 𝑝 = 0.0340) and S100B (HR
= 0.47, 95% CI: 0.24–0.93, and 𝑝 = 0.025) was modestly
associated with OS in patients with grade II and III lung
cancer, respectively.

High mRNA expression of most of the S100 family
members was associated with OS in clinical stage I patients
except for S100A14, S100G, and S100Z. Only high RNA
expression of S100B was linked to better prognosis (HR =
0.59, 95% CI: 0.45–0.78, and 𝑝 = 0.0001). High mRNA
expression of S100A1 (HR = 1.65, 95% CI: 1.14–2.38, and
𝑝 = 0.0068), S100A6 (HR = 1.69, 95% CI: 1.16–2.45, and
𝑝 = 0.0053), and S100B (HR = 0.58, 95% CI: 0.40–0.84,
and 𝑝 = 0.0032) was associated with OS in clinical stage
II, and high S100B mRNA expression still correlated with
better prognosis in this subgroup. However, none of the S100
mRNAs correlated with OS in clinical stage III patients.

Only S100A11 (HR = 1.89, 95% CI: 1.26–2.84, and 𝑝 =
0.0018) significantly correlated with survival in patients
treated with chemotherapy. High S100A12 (HR = 1.55, 95%
CI: 1.11–2.17, and 𝑝 = 0.0095) and S100G (HR = 1.72, 95%
CI: 1.23–2.41, and 𝑝 = 0.0013) mRNA expression were
linked with worse OS in patients who did not undergo
chemotherapy.

4. Discussion

In this study, we investigated the expression level of each
individual S100 family member and its prognostic value
in NSCLC. Among them, 14 members were significantly
associated with prognosis, but only S100B was significantly
associated with better prognosis. However, the molecular
mechanisms by which S100 proteins contribute to disease
aggression are not understood. Many studies have suggested

http://kmplot.com/analysis/index.php?p=service&cancer=lung
http://kmplot.com/analysis/index.php?p=service&cancer=lung
http://kmplot.com
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: Prognostic value of S100mRNAexpression from the database. (a–n) Survival curves of S100A1 (Affymetrix IDs are valid: 205334 at),
S100A2 (204268 at), S100A3 (206027 at), S100A6 (217728 at), S100A7 (205916 at), S100A7A (232170 at), S100A8 (202917 s at), S100A9
(203535 at), S100A10 (200872 at), S100A11 (200660 at), S100A12 (205863 at), S100A16 (227998 at), S100G (207885 at), and S100B (209686 at)
are plotted for all NSCLC patients (𝑛 = 1,926). Among them, only S100B mRNA expression was associated with better OS; the other S100
members were associated with worse OS.

that the expression of S100 protein in NSCLC is related to
prognosis. High expression of S100A4 has been observed in
NSCLC and was associated with differentiation and metas-
tasis of tumor cells [11]; however, our results showed that
S100A4 was not significantly related to OS in NSCLC.

Among the 14 S100 family members mentioned above,
S100A1, S100A3, S100A7A, S100A12, and S100G display
increased expression in several cancers [8, 24–26].Our results
suggested that high mRNA expression of these members was
significantly associated with worse prognosis in all NSCLC
patients. However, the roles of S100A1, S100A3, S100A7A,
S100A12, S10016, and S100G proteins in lung cancer are rarely
reported. In this study, we selectively discuss the other eight
members.

High protein expression of S100A2 has been confirmed
in the early stage of NSCLC [27] and is a prognostic marker
associated with poor survival and a high risk of metastasis
[4, 28]. Furthermore, S100A2 is considered a novel transcrip-
tional target of p53 homologues, playing a pivotal role in reg-
ulating the cell cycle and triggering apoptotic programmed
cell death in response to DNA damage or stress [29–31].
Epidermal growth factor receptor (EGFR) signaling is the
main regulatory pathway for S100A2 transcription in human
keratinocytes and other epithelial cells [32]. In addition,
S100A2 induced epithelial-mesenchymal transition (EMT),
increased invasive capability, loosened colony morphology
in soft agar, and enhanced Akt phosphorylation in A549
lung cancer cells to promote tumorigenic actions and tumor
growth [33]. Our data suggested that high mRNA expression
of S100A2was associatedwithworseOS in patients with stage
I NSCLC.

The expression and prognostic role of S100A6 have been
identified in thyroid [34], colorectal [35], and osteosarcoma
[36] cancers. In NSCLC, S100A6 is associated with cell
proliferation [37, 38]. Furthermore, high S100A6 protein level
could lead to cell apoptosis by facilitating the apoptotic action
of p53 [39]. Consistent with these findings, increased mRNA
expression of S100A6 was significantly associated with poor
prognosis in NSCLC patients in our study.

Expression of S100A7 mRNA and protein is increased
mainly in squamous cell carcinoma tissues and breast can-
cer [40–42]. S100A7 was demonstrated to be involved in
cancer growth and metastasis through modulation of the
tumor microenvironment [43, 44]. Knockdown of S100A7
attenuated lung cancer growth by disruption of nuclear
factor-𝜅B activity, and S100A7 was reported as a potential
diagnostic marker in lung squamous cell carcinoma [45].
Overexpression of S100A7 was associated with poor survival
in SCC cells [45]. In this study, high mRNA expression of
S100A7was associatedwithworseOS in adenocarcinoma, but
not in squamous cell carcinoma.

S100A10 forms a heterotetramer with annexin A2, which
acts as a receptor of plasminogen and is involved in the
conversion of plasminogen to plasmin [46]. Plasmin con-
tributes to degradation of the basement membrane and ECM
[46, 47]. S100A10 was overexpressed in renal cell carcinoma,
anaplastic thyroid carcinoma, gallbladder, and colorectal
cancer [48–51]. Decreased expression of S100A10 in HT1080
fibrosarcoma cells and colorectal cancer cells weakened
their invasiveness and metastatic potential, suggesting that
S100A10 contributes to cancer cell invasiveness [52, 53].
Katono et al. reported that S100A10 was highly expressed
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Figure 2: Survival curves for (a) S100A4 (Affymetrix ID is valid: 203186 s at), (b) S100A13 (202598 at), (c) S10014 (218677 at), and (d) S100P
(204351 at) plotted for all NSCLC patients (𝑛 = 1,926). All were modestly associated with worse OS.

in lung adenocarcinomas and suggested that S100A10 may
enhance the invasiveness of tumor cells by increasing plasmin
production [13]. We reported a similar result, with high
S100A10 expression related to poorer prognosis in NSCLC
patients.

Upregulation of S100A11 plays a major role in lung
cancer progression [54]. S100A11 protein was selectively
expressed in NSCLC and displayed a particularly prominent
effect in KRAS-mutated lung adenocarcinomas [5, 54]. It
was reported that the A549 and LTEP-a-2 cell lines, which
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Table 1: Correlation of S100 member expression with smoking status of NSCLC patients. Expression of S100A2, S100A7, S100A8, S100A9,
S100A11, and S100A12 correlated with smoking status of NSCLC patients; S100A5, S100A6, S100A13, S100A16, and S100G were associated
worse survival in nonsmoking NSCLC patients; and only S100B, but S100A14 and S100P, was associated with better survival in smoking
NSCLC patients.

S100 family Affymetrix IDs Smoking status HR 95% CI 𝑝 value

S100A1 205334 at Never smoked 2.1 (1.17, 3.77) 0.0110
Smoked 1.21 (0.98, 1.48) 0.0750

S100A2 204268 at Never smoked 4.1 (2.1, 8) 0.0000
Smoked 1.47 (1.19, 1.81) 0.0003

S100A3 206027 at Never smoked 1.91 (1.07, 3.38) 0.0250
Smoked 1.15 (0.93, 1.41) 0.2000

S100A4 203186 s at Never smoked 2.06 (1.14, 3.7) 0.0140
Smoked 1.23 (1, 1.51) 0.0500

S100A5 207763 at Never smoked 2.73 (1.47, 5.07) 0.0009
Smoked 1.13 (0.92, 1.39) 0.2400

S100A6 217728 at Never smoked 3.53 (1.87, 6.65) 0.0000
Smoked 1.29 (1.05, 1.59) 0.0160

S100A7 205916 at Never smoked 4.37 (2.35, 8.11) 0.0000
Smoked 1.34 (1.09, 1.65) 0.0053

S100A7A 232170 at Never smoked 1.12 (0.5, 2.5) 0.7800
Smoked 1.55 (1.03, 2.34) 0.0330

S100A8 202917 s at Never smoked 2.86 (1.54, 5.3) 0.0005
Smoked 1.76 (1.42, 2.17) 0.0000

S100A9 203535 at Never smoked 3.18 (1.71, 5.9) 0.0001
Smoked 1.55 (1.26, 1.91) 0.0000

S100A10 200872 at Never smoked 1.66 (0.93, 2.94) 0.0810
Smoked 1.22 (0.99, 1.5) 0.0620

S100A11 200660 at Never smoked 4 (2.09, 7.67) 0.0000
Smoked 1.36 (1.11, 1.68) 0.0033

S100A12 205863 at Never smoked 2.76 (1.5, 5.05) 0.0006
Smoked 1.37 (1.11, 1.69) 0.0028

S100A13 202598 at Never smoked 3.32 (1.79, 6.16) 0.0001
Smoked 1.16 (0.94, 1.43) 0.1600

S100A14 218677 at Never smoked 1.8 (1.02, 3.2) 0.0410
Smoked 1.31 (1.07, 1.62) 0.0098

S100A16 227998 at Never smoked 5.12 (1.75, 14.99) 0.0009
Smoked 1.29 (0.85, 1.95) 0.2300

S100B 209686 at Never smoked 0.77 (0.44, 1.35) 0.3700
Smoked 0.71 (0.58, 0.87) 0.0012

S100G 207885 at Never smoked 2.93 (1.62, 5.31) 0.0002
Smoked 1.25 (1.02, 1.54) 0.0340

S100P 204351 at Never smoked 1.22 (0.7, 2.15) 0.4800
Smoked 1.38 (1.12, 1.7) 0.0022

S100Z 1554876 a at Never smoked 0.82 (0.37, 1.83) 0.6300
Smoked 1.21 (0.81, 1.82) 0.3500

have lost S100A11 expression, show a marked suppression
in tumor growth, and S100A11 knockdown also significantly
inhibited tumor growth in vivo [54]. Zagryazhskaya et al.
reported that S100A11 might be involved in regulation of
chemoresistance of NSCLC cells [55]. We showed that high
mRNA expression of S100A11 was associated with worse OS

inNSCLCpatients treatedwith chemotherapy and thosewith
early-stage disease.

The protein heterodimer of S100A8 and S100A9 has
been implicated in tumor development and progression [56].
The S100A8/A9 heterodimer has been shown to promote
accumulation of myeloid-derived suppressor cells (MDSCs)
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in the primary tumor and their recruitment to premetastatic
lungs [57, 58]. MDSCs function to induce expansion and
local accumulation of regulatory T cells and suppress the
antitumor immune response of natural killer cells [58, 59].
Eisenblaetter et al. reported increased S100A8/A9 levels in
premetastatic lung tissue and accumulation of MDSC-like
monocytes [60].The authors proposed S100A8/A9 as a potent
imaging biomarker for tumor-mediated immune remodeling
[60]. In the present study, high expression levels of S100A8
and S100A9 were negative prognostic markers in NSCLC
patients.

S100B is mainly found in Schwann cells of the periph-
eral nervous system and extraneuronally in melanocytes,
adipocytes, and chondrocytes [61, 62] and is implicated in
regulating enzyme activities, cell growth, and differentiation
[63, 64]. S100B plays a prognostic role in the majority of
brain metastases of melanoma [65]. Similarly, elevated serum
S100B levels in NSCLC might be associated with the devel-
opment of brain metastasis [66, 67]. S100B overexpression
could contribute to cancer progression by interfering with
p53 activity [64, 66]. These results imply that S100B may
be a predictor of poor prognosis in lung cancer. However,
contrary to our expectation, high expression of S100B in lung
cancer was associated with better OS in this study. There
are two possible reasons for this discrepant result: first, we
obtained this result using the retrospective Kaplan–Meier
plotter database and second study of S100B has mainly
focused on in vitro systems and a future clinical trial is needed
to validate the findings.

Tobacco smoke contains many classes of carcinogens.
Nicotine, one of the carcinogens, is the addictive and most
active component of tobacco smoke. Although it is not
directly involved in tumorigenesis, it has been shown to pro-
mote tumor growth and metastasis [68, 69]. In vivo, nicotine
can be converted to cotinine, which has tumor-promoting
effects in the lung such as inducing abnormal cell formation
and proliferation, promoting tumor growth, and inhibiting
apoptosis [68, 70]. Furthermore, nicotine genotoxicity was
described through activation of cell surface nicotinic acetyl-
choline receptors (nAChRs), which led to increased levels of
reactive oxygen species (ROS) [71, 72]. At present, there are
no reports suggesting a direct correlation between nicotine
and S100 proteins in NSCLC. Recently, nicotine was reported
to promote NSCLC growth and metastasis by inducing the
secretion of stem cell factor [73]. Cigarette smoke induces
airway inflammation by downregulating S100A8/A9 [74]. In
our study, expression of S100A2, S100A7, S100A8, S100A9,
S100A11, and S100A12 but not that of S100A1, S100A3, S100A4,
S100A7A, S100A10, and S100Z correlated with smoking status
of NSCLC patients; S100A5, S100A6, S100A13, S100A16, and
S100G were associated with worse survival in nonsmoking
NSCLC patients; and only S100B, but S100A14 and S100P, was
associated with better survival in smoking NSCLC patients.

5. Conclusions

In the present study, the prognostic value of mRNA expres-
sion of 20 members of the S100 family in NSCLC patients
was assessed using the KM plotter database. Among them,

14 members were associated with prognosis in all NSCLC
patients. However, only increased S100B mRNA expression
was significantly associated with better OS in all NSCLC
patients. The prognostic value of the S100 protein should be
further evaluated in clinical studies.These resultswill be help-
ful for investigating the relationship between proteins and
disease and their roles in different signaling pathways. Our
study provides new insights into the prognostic functions of
S100 proteins in NSCLC and might promote development of
S100 targeted inhibitors for the treatment of NSCLC.
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online tool for genomewide validation of survival-associated
biomarkers in ovarian-cancer using microarray data from 1287
patients,” Endocrine-Related Cancer, vol. 19, no. 2, pp. 197–208,
2012.
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