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Correcting for 16S rRNA gene copy
numbers in microbiome surveys remains an
unsolved problem
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Abstract

The 16S ribosomal RNA gene is the most widely used marker gene in microbial ecology. Counts of 16S sequence
variants, often in PCR amplicons, are used to estimate proportions of bacterial and archaeal taxa in microbial
communities. Because different organisms contain different 16S gene copy numbers (GCNs), sequence variant counts
are biased towards clades with greater GCNs. Several tools have recently been developed for predicting GCNs using
phylogenetic methods and based on sequenced genomes, in order to correct for these biases. However, the accuracy
of those predictions has not been independently assessed. Here, we systematically evaluate the predictability of 16S
GCNs across bacterial and archaeal clades, based on ∼ 6,800 public sequenced genomes and using several
phylogenetic methods. Further, we assess the accuracy of GCNs predicted by three recently published tools (PICRUSt,
CopyRighter, and PAPRICA) over a wide range of taxa and for 635 microbial communities from varied environments.
We find that regardless of the phylogenetic method tested, 16S GCNs could only be accurately predicted for a limited
fraction of taxa, namely taxa with closely to moderately related representatives (�15% divergence in the 16S rRNA
gene). Consistent with this observation, we find that all considered tools exhibit low predictive accuracy when
evaluated against completely sequenced genomes, in some cases explaining less than 10% of the variance.
Substantial disagreement was also observed between tools

(
R2 < 0.5

)
for the majority of tested microbial communities.

The nearest sequenced taxon index (NSTI) of microbial communities, i.e., the average distance to a sequenced
genome, was a strong predictor for the agreement between GCN prediction tools on non-animal-associated samples,
but only a moderate predictor for animal-associated samples. We recommend against correcting for 16S GCNs in
microbiome surveys by default, unless OTUs are sufficiently closely related to sequenced genomes or unless a need
for true OTU proportions warrants the additional noise introduced, so that community profiles remain interpretable
and comparable between studies.

Keywords: 16S rRNA, Gene copy number, Microbiome surveys, Phylogenetic reconstruction

Introduction
Amplicon sequencing of the 16S ribosomal RNA (rRNA)
gene is widely used for estimating the composition of
bacterial and archaeal communities. Global microbial
diversity initiatives, including the Human Microbiome
Project [1], the EarthMicrobiome Project [2], and the Tara
Oceans global ocean survey [3], use the 16S rRNA gene
to determine which microbes are present by matching 16S
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rRNA sequence variants to reference databases like SILVA
[4] and estimate the proportions of taxa based on rel-
ative read counts. Many bacteria and archaea, however,
have more than one copy of the 16S gene, which leads to
biased cell count estimates when the latter are estimated
solely based on 16S rRNA read counts [5]. This has led to
efforts to predict the distribution of 16S gene copy num-
bers (GCNs) across clades based on available sequenced
genomes, in order to then correct 16S rRNA read counts
to account for variable 16SGCNs in cells [5–8]. These cor-
rections can substantially affect community profiles and
diversity patterns, since some clades have over 10 copies of
the 16S rRNA gene [5, 7]. It is thus important to carefully
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evaluate the accuracy [9] of predicted 16S GCNs across
the wide range of microbial clades encountered in micro-
biome surveys. Inaccurate prediction of 16S GCNs can
introduce substantial noise to community profiles, which
can be worse than the original GCN-related biases, par-
ticularly when prediction methods differ between studies.
An accurate prediction of 16S GCNs relies heavily

on the assumption that 16S GCNs are sufficiently phy-
logenetically conserved. That is, 16S GCNs must be
autocorrelated among related taxa at least across phylo-
genetic distances typically covered by available sequenced
genomes [10]. Kembel et al. [5] found that 16S GCN
exhibits a strong phylogenetic signal, as measured by
Blomberg’s K statistic [11], and concluded that 16S GCNs
may be predictable based on phylogenetic placement with
respect to genomes with known 16S GCN. A similar con-
clusion was reached independently by Angly et al. [7],
based on a strong phylogenetic signal as measured by
Pagel’s λ [12]. However, neither Blomberg’s K nor Pagel’s
λ make any statement about time scales (nor phylogenetic
scales) over which traits vary. While 16S GCN variation
is relatively rare within species, variation increases with
taxonomic distance [13] and this may lead to inaccurate
predictions for the many clades which are distant from
sequenced genomes. To date, no independent evaluation
of existing 16S GCN prediction tools has been published.
To resolve these uncertainties, we assessed the phy-

logenetic autocorrelation of 16S GCNs across bacteria
and archaea (prokaryota) in a phylogenetic tree com-
prising ∼ 570,000 OTUs (99% similarity in 16S rRNA),
based on ∼ 6800 quality-checked complete sequenced
genomes. The tree was constructed from sequences in
SILVA and partly constrained using SILVA’s taxonomic
annotations. We predicted 16S GCNs using several com-
mon phylogenetic reconstruction methods and exam-
ined the accuracy achieved by each method for OTUs
in the SILVA-derived tree. We assessed the predictive
accuracy as a function of an OTU’s nearest-sequenced-
taxon-distance (NSTD), that is, the minimum phyloge-
netic distance (mean nucleotide substitutions per site) of
the OTU to the nearest sequenced genome. We note that
the average NSTD for a particular microbial community,
weighted by OTU frequencies, is known as its nearest
sequenced taxon index (NSTI; [6]). Further, we system-
atically assessed the predictive accuracy of three recent
tools for correcting 16S GCNs in microbiome surveys,
PICRUSt [6], CopyRighter [7], and PAPRICA [8], which
together have been cited over 1000 times. While PICRUSt
and PAPRICA were mainly designed to predict commu-
nity gene content based on 16S amplicon sequences, they
automatically include an intermediate step for predicting
and correcting for 16S GCNs. We evaluate the accuracy
of these tools using the known GCNs of the aforemen-
tioned sequenced genomes, as a function of a genome’s

NSTD. To further evaluate these tools under more real-
istic scenarios, we also compare all tools to each other
for OTUs in 635 prokaryotic communities sampled from
diverse natural environments, including the ocean, lakes,
hot springs, soil, bioreactors, and animal guts. We find
that 16S GCNs are moderately phylogenetically conserved
and that prediction of 16S GCNs for the large number
of clades without sequenced genomes from close relatives
will generally be inaccurate. This conclusion is verified by
our finding of low predictive accuracies by CopyRighter,
PICRUSt, and PAPRICA, both for the sequenced genomes
as well as when compared to each other on microbiomes.
Using phylogenetically predicted 16SGCNs to correct 16S
read counts in microbiome surveys, as previously sug-
gested [5–7], worked well only for a small number of
microbiomes.

Results and discussion
How predictable are 16S GCNs from phylogeny?
We found that the autocorrelation function of 16S
GCNs, that is the correlation between the GCNs of two
randomly picked OTUs at a certain phylogenetic dis-
tance, decays moderately with increasing phylogenetic
distance (Fig. 1a), dropping below 0.5 at a phylogenetic
distance of ∼ 15% and to zero at a phylogenetic dis-
tance of ∼ 30% (nucleotide substitutions per site in the
16S gene). Hence, predictions of 16S GCNs are expected
to be inaccurate for clades with an NSTD greater than
about 15% and close to random for clades with an NSTD
greater than about 30%. To explicitly test this conclu-
sion, we predicted 16S GCNs for randomly chosen tips of
our SILVA-derived tree and compared these predictions
to the GCNs known from complete sequenced genomes,
where possible. We considered the following common
ancestral state reconstruction algorithms for predicting
GCNs: Sankoff ’s maximum-parsimony with various tran-
sition costs [14], maximum-likelihood of Mk models with
rerooting (equal rates model), weighted-squared-change
parsimony [15], phylogenetic independent contrasts (PIC)
[16], and subtree averaging (arithmetic average of GCNs
across descending tips). CopyRighter and PICRUSt use
PIC, while PAPRICA uses subtree averaging. We mea-
sured the accuracy of each method using the cross-
validated coefficient of determination

(
R2
cv

)
[17]. The R2

cv
corresponds to the fraction of variance explained by a
reconstruction algorithm, when tested against a sepa-
rate set of randomly chosen sequenced genomes (“test
set”) than those used for state reconstruction (“training
set”). We assessed the R2

cv depending on the NSTD of
the test set, that is, the phylogenetic distance between
the test set and the training set. We observed that all
prediction methods only achieved high accuracies (R2 �
0.6) for NSTDs below about 15–30% depending on the
method (Fig. 1c), consistent with our expectations based
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Fig. 1 Phylogenetic signal of 16S gene copy numbers (SILVA-derived tree). a Pearson autocorrelation function of 16S GCNs depending on
phylogenetic distance between tip pairs, estimated based on ∼ 6,800 sequenced genomes. b Distances of tips in the SILVA-derived tree to the
nearest sequenced genome. Each bar spans an NSTD interval of 2%. c Cross-validated coefficients of determination (R2cv) for 16S GCNs predicted on
the SILVA-derived tree and depending on the minimum NSTD of the tips tested, for various ancestral state reconstruction algorithms (PIC:
phylogenetic independent contrasts, WSCP: weighted squared-change parsimony, SA: subtree averaging, MPR: maximum parsimony
reconstruction, Mk: continuous-time Markov chain model with equal-rates transition matrix). MPR transition costs either increased exponentially
with transition size (“exp”), proportionally to transition size (“pr”), or were equal for all transitions (“ae”). For analogous results using the original SILVA
tree, see Additional file 1: Figure S1

on the autocorrelation function. At NSTDs greater than
∼ 40%, the R2

cv drops below zero for all methods. Max-
imum parsimony with exponentially weighted transition
costs (“MPR.exp”) was generally the best performing
method, while Mk model maximum-likelihood was the
worst method (Fig. 1c).
Within the SILVA-derived tree, about 49% of OTUs have

an NSTD greater than 15% and about 30% of OTUs have
an NSTD greater than 30% (Fig. 1b). We note that natural
microbial communities are generally not a purely random
subsample of SILVA, since SILVA overrepresents organ-
isms of clinical or industrial interest, and these organisms
are generally expected to have low NSTDs. Further, it
is likely that a much larger number of prokaryotes not
yet included in SILVA, such as from recently discovered
or yet undiscovered phyla [18, 19], has NSTDs greater
than 30%. Consequently, predictions of 16S GCNs based
on sequenced genomes alone are expected to be inaccurate
for themajority of extant prokaryotic clades in natural envi-
ronments. We note that, in principle, errors in tree topol-
ogy and branch lengths could contribute to a reduced
predictive accuracy of phylogenetic reconstruction tools
(Fig. 1c). As we show below, however, our expectations on
the limited predictability of GCNs are verified in several
additional and independent analyses, as well as using the
original SILVA tree (Additional file 1: Figure S1).

Assessment of 3rd party prediction tools
The preceding analysis suggests that phylogenetic predic-
tion of 16S GCNs based on available sequenced genomes
is bound to be inaccurate for a substantial number
of prokaryotic clades, especially those with only a few
sequenced representatives. This finding casts doubts over

claims that 16S GCNs can be accurately predicted for
typical environmental 16S sequences [5] and that 16S
GCN corrections should be applied systematically to
every microbiome survey [7]. We thus tested the predic-
tive accuracy of three recently published tools, PICRUSt
v1.1.1 [6], CopyRighter v0.46 [7], and PAPRICA v0.4.0b
[8]. We performed two types of tests. In the first test,
we compared the GCNs of the aforementioned sequenced
genomes to the GCNs predicted by each tool based on a
genome’s 16S sequence. Because many of these genomes
were also used as input to CopyRighter, PICRUSt, and
PAPRICA for model calibration in the original publica-
tions (“calibration genomes”), or are closely related to
those calibration genomes, we evaluate the predictive
accuracy of each tool depending on a genome’s distance
(NSTD) from the tool’s calibration genomes. In the sec-
ond test, we compared the predictions of each tool to
those of the other two tools, for all OTUs in the Green-
genes 16S rRNA database [20] as well as for prokaryotic
OTUs found in 635 microbiomes from a diverse range of
environments. For each tool, a slightly different approach
was taken depending on the tool’s particular design. For
PICRUSt and CopyRighter, we used their precomputed
lookup tables listing predicted 16S GCNs for entries in
Greengenes and mapped genomes (first test) as well as
OTUs (second test) to Greengenes entries (at ≥ 99% sim-
ilarity) to obtain the corresponding GCN predictions.
For PAPRICA, we used the 16S rRNA sequences of the
genomes or OTUs as input to predict their GCNs through
the PAPRICA pipeline.
We find that the predictive accuracy of all three tools,

evaluated on the sequenced genomes and measured in
terms of the fraction of explained variance of true GCNs
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(
R2), generally decreases with a genome’s NSTD (Fig. 2).
Specifically, while accuracy is moderate to high at low
NSTDs (R2 > 0.6 for NSTDs < 10%), the R2 drops below 0.5
for genomes with NSTDs above 30%. In fact, for PICRUSt
and PAPRICA, the R2 even becomes negative for NSTDs
above 30%, which is worse than if the average GCN over
all genomes had been used as prediction. We also find
poor agreement between the predictions of different tools,
when compared to each other across entries in the Green-
genes database. When evaluated over the entire Green-
genes database, GCNs predicted by any tool explained
at most 25% of the variance in the predictions of other
tools (R2 < 0.25; Fig. 3a–c). It is noteworthy that Copy-
Righter and PICRUSt use the same set of input genomes
(∼ 3000 genomes from the IntegratedMicrobial Genomes
database; [21]) and similar reference trees (Greengenes
releases October 2012 and May 2013, respectively), and
yet, GCN predictions differ substantially between Copy-
Righter and PICRUSt (R2 = 0.23; Fig. 3a). When we con-
sidered the agreement between tools depending on an
OTU’s NSTD (Fig. 3d–f), we found that the R2 decreases
rapidly with increasing NSTD and becomes negative at
NSTDs below 20%. We also found that the frequency
distributions of 16S GCNs predicted across Greengenes
(Additional file 1: Figure S1) as well as across the genomes
(Additional file 1: Figure S4) differ substantially between
tools. For example, CopyRighter, PICRUSt, and PAPRICA
predict that the most common GCN across genomes is 1,
3, and 2, respectively. As seen in Fig. 3a, c, CopyRighter
indeed appears to underestimate GCNs when compared
to PICRUSt and PAPRICA.
When we compared CopyRighter, PICRUSt, and

PAPRICA for OTUs detected in any of the 635 samples,

we found that the tools only agreed moderately to poorly
with each other for the majority of the samples. Specifi-
cally, for any given pair of tools (CopyRighter vs. PICRUSt,
PICRUSt vs. PAPRICA, or CopyRighter vs. PAPRICA),
the fraction of variance in predictions of the 1st tool that
was explained by predictions of the 2nd tool (R2) was
below 0.5 for over 84% of the samples and below 0.1 for
over 55% of the samples (Fig. 4). In many cases, the agree-
ment between tools was even worse than if predictions
were uncorrelated between tools

(
R2 < 0

)
. A negative R2

may be indicative of “overfitting” during extrapolation
of GCNs to OTUs with large NSTDs. The worst agree-
ment was found between PICRUSt and PAPRICA (mean
R2 = − 0.70), while the best (but still bad) agreement was
found between CopyRighter and PICRUSt (mean R2 =
− 0.41). Even when we only considered animal-associated
samples (e.g., from human guts or skin), which are consid-
ered better studied than other environments and generally
have lower NSTIs (weighted mean NSTD of considered
OTUs), we found frequent bad agreements between tools.
One explanation is that even in human-associated micro-
biomes, many OTUs had large NSTDs and were driving
overall predictive accuracy down. In fact, we find that
the poor agreement between tools in most samples is not
driven solely by a few outlier OTUs but is a reflection
of moderate to poor agreement for a large number of
OTUs in each sample (Additional file 1: Figures S5, S8,
and S9). The agreement between tools generally decreased
for larger NSTIs, although this trend became much more
pronounced when we considered animal-associated sam-
ples separately from non-animal-associated samples. The
strongest trend was observed in non-animal-associated
samples, where the R2 and NSTI exhibited significant

CopyRighter

NSTD (% subst. per site)

a
PICRUSt

NSTD (% subst. per site)

b
PAPRICA

c

NSTD (% subst. per site)

Fig. 2 Evaluation of GCN prediction tools on genomes with known GCNs. Accuracy of GCN predictions by CopyRighter (a; [7]), PICRUSt (b; [6]), and
PAPRICA (c; [8]) for sequenced genomes, as a function of the genome’s NSTD. NSTDs were calculated separately for each tool, based on the set of
genomes used to calibrate the tool by its authors. Accuracy was measured in terms of the coefficient of determination, i.e. the fraction of variance in
true GCNs explained by each tool (R2). Genomes were binned into equally sized NSTD intervals (i.e., 0–10%, 10–20% etc.), and the R2 was calculated
separately for genomes in each bin (one plotted point per bin). Only bins with at least 10 genomes are shown
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Fig. 3 Comparisons of 16S GCN predictions between tools across Greengenes. a 16S GCNs predicted by CopyRighter (vertical axis; [7]) and PICRUSt
(horizontal axis; [6]) across OTUs (99% similarity) in the Greengenes 16S rRNA reference database (release May 2013; [20]). One point per OTU.
b Comparison of predicted 16S GCNs by PICRUSt and PAPRICA, similarly to (a). c Comparison of predicted 16S GCNs by CopyRighter and PAPRICA,
similarly to (a). Diagonal lines are shown for reference. Fractions of explained variance (R2, X-axis explaining Y-axis) and the number of considered
OTUs (n) are written in each figure. d–f Fractions of explained variance (R2) as a function of an OTU’s NSTD, for each compared pair of tools in a–c.
OTUs were binned into equally sized NSTD intervals (i.e., 0–5%, 5–10% etc.), and the R2 was calculated separately for OTUs in each bin (one plotted
point per bin). Only bins with at least 10 OTUs are shown

(P < 0.05) Pearson correlations between − 0.35 and
− 0.52, depending on the tools compared (Fig. 4a–c).
In animal-associated samples, the R2 and NSTI exhib-
ited significant Pearson correlations between − 0.17 and
− 0.32 (Fig. 4d–f). The above observations are consistent
with our expectation that GCN predictions will only be
accurate for a small fraction of naturally occurring micro-
biomes, namely microbiomes with low NSTIs (� 15%
for the samples examined here), although tools occasion-
ally disagreed substantially even on samples with low
NSTIs. We note that here, we recovered OTUs by closed-
reference clustering to SILVA, thereby omitting clades
not represented in SILVA at all. It is likely that many of
these omitted clades, especially those from poorly stud-
ied phyla, had even greater NSTDs than typical closed-
reference OTUs. This realization further strengthens our
conclusions that existing GCN prediction tools perform
poorly for many of those samples.

Previous studies have used mock communities to
test the predictability of 16S GCNs, demonstrating that
correcting for GCNs improves estimates of microbial
community composition, provided that corrections are
accurate [6, 7, 22]. While mock communities using cul-
tured and sequenced strains are convenient test cases
(since GCNs are known for each member), they lead to a
biased assessment of predictive accuracy because strains
used in mock communities are likely to be found among
(or closely related to) sequenced genomes. In other words,
use of mock communities — instead of natural com-
munities as in the present study — can yield the false
impression that GCNs can be well predicted for typical
natural microbial communities.

Implications
Accurate correction of 16S sequence variant counts for
GCNs in microbiome surveys would undoubtedly reduce
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Fig. 4 Agreement of GCN prediction tools in microbial communities, depending on the NSTI. a Agreement between 16S GCNs predicted by
CopyRighter and PICRUSt (in terms of the fraction of variance in the former explained by the latter, R2) for non-animal-associated microbial
communities, compared to the nearest sequenced taxon index (NSTI) of each community. Each point represents the R2 and the NSTI of one
microbial community sample. b, c Similar to a, but comparing PICRUSt to PAPRICA (b) and CopyRighter to PAPRICA (c). d–f Similar to a–c, but
showing animal-associated samples. In all figures, linear regression lines are shown for reference. Pearson correlations between R2 and NSTI (r2,
written in each figure) were statistically significant (P < 0.05) in all cases. Points are shaped and colored according to the original study, as listed in
the legend. Note the negative relationship between a community’s NSTI and the pairwise agreement of GCN prediction tools for that community.
For a similar figure showing the spread of NSTDs in each sample, see Additional file 1: Figures S5. For detailed comparisons between tools on
individual samples see Additional file 1: Figures S6 and S7

biases in cell-count estimates. As we have shown, how-
ever, predicting 16S GCNs can come at a cost of sub-
stantial additional errors (“noise”) when affected clades do
not have close relatives with sequenced genomes. These
errors can even vary strongly between tools (Figs. 3 and 4).
In principle, GCN corrections may be applied selec-
tively to only those taxa with a sufficiently low NSTD,
although this complicates the interpretation of micro-
bial community profiles that include taxa with no GCN
correction. Adoption of GCN corrections, dependent or
independent of NSTDs, as suggested by other authors
[5, 7], could thus compromise the comparability between
studies. We recommend a careful consideration of these
caveats before correcting for GCNs in typical microbiome
studies, until coverage by sequenced genomes is substan-
tially improved. A similar conclusion was recently reached
by Edgar [22], based on tests of a specific GCN correction
algorithm on mock microbial communities. For example,
if the detection of spatiotemporal variation in commu-
nity composition is the sole objective in a study, then this
variation could be described merely in terms of 16S gene
variants without the need for normalizing by GCNs. A

notable exception are cases that necessitate knowledge of
trueOTUproportions in a community, such as for biogeo-
chemical modeling or for estimating gene proportions in a
community using tools such as PICRUSt [6] or PAPRICA
[8]. In these cases, it may be reasonable to correct for
16S GCNs despite the high additional noise, although the
effects of this noise on estimated gene abundances remain
to be investigated. Recent tools such as “16Stimator” could
help extend coverage to de novo assembled draft genomes
[23], for which GCN counts have been hard to estimate
in the past due to misassembly of ribosomal genes. Our
findings also point to the need to explore alternative
genes with more conserved copy numbers for phyloge-
netic community profiling, such as recA or rpoB [24, 25].
Larger reference databases for phylogenetic identification
of sequence variants of these genes are needed, however,
to make these genes a more widely adopted alternative to
16S rRNA.
More generally, our work demonstrates the importance

of a cautious interpretation of evolutionary statistics (in
this case, Blomberg’s K and Pagel’s λ [5, 7]) to avoid
hasty conclusions about the predictability of a trait using
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phylogenetic methods. Indeed, two of the most important
factors influencing the predictability of a trait is the phy-
logenetic distance to the nearest clade with known trait
value (in our case, a sequenced genome) and the typical
depth at which the trait is conserved [10, 26]. Unitless
statistics such as K and λ indicate that a phylogenetic
signal exists but say little about the two factors that are
crucial for accurately predicting traits based on phylogeny
in practice. Similar considerations are warranted when
phylogenetic extrapolation tools such as PICRUSt [6] or
PAPRICA [8] and interpolation tools such as FAPROTAX
[27] are used to estimate metabolic traits from phylogeny.
Indeed, Langille et al. [6] emphasize that the accuracy of
PICRUSt depends on the availability of closely sequenced
relatives. We point out that phylogenetic conservatism
varies strongly across traits [28, 29], and thus, our abil-
ity to accurately predict these traits using phylogenetic
methods also varies considerably.

Conclusions
Here, we have assessed the phylogenetic conservatism of
16S GCNs and examined the predictability of GCNs using
several common phylogenetic reconstruction algorithms,
as a function of a clade’s nearest sequenced taxon distance.
Our findings suggest that GCNsmay currently not be pre-
dictable for a substantial fraction of extant prokaryotic
clades. Further, we independently evaluated the accuracy
of available 16S GCN prediction tools [6–8] on a set of
completely sequenced genomes, as well as for OTUs in
the Greengenes 16S database and in microbial commu-
nities from a wide range of environments. Our analysis
revealed that existing tools perform poorly for a large
fraction of the genomes and OTUs tested. For over 85%
of the examined microbial communities, GCN predic-
tions differed strongly between any two tools compared
(R2 < 0.5). Thus, contrary to common assumption, 16S
GCN predictions are currently bound to be inaccurate for
a substantial fraction of extant prokaryotic diversity due
to insufficient coverage by sequenced genomes. We there-
fore recommend that 16S GCNs should only be corrected
for in surveys of microbial communities with a low NSTI
(� 15%), unless the high additional noise introduced is
justified by a need to estimate true cell proportions.

Materials andmethods
Construction of SILVA-derived tree
While the original SILVA tree is well curated taxonom-
ically, it is mostly meant to be used as a guide tree, and
re-calculation of branch lengths is generally advised
for downstream phylogenetic analyses [30]. Here, to
construct a phylogenetic tree with more meaningful
branch lengths using OTUs in the SILVA non-redundant
(NR99) 16S database (release 128; [4]), we proceeded as
follows. Aligned representative SSU sequences in SILVA

were reduced by first removing nucleotide positions
with > 95% gaps and then removing the top 5% most
entropic nucleotide positions. Taxonomic identities
provided by SILVA for OTUs at the domain, phylum,
and class level were used to create split constraints for
FastTree [31], by constraining each taxon to be on a
single side of a split and monophyletic. Taxa with fewer
than 10 OTUs were omitted from the constraints. A
total of 354 constraints were thus defined. Using the
taxonomically generated constraints and taking the
original SILVA tree as a starting tree, we constructed
a phylogenetic tree from the reduced alignments
with FastTree v2.1.10 (options “-spr 4 -gamma
-fastest -no2nd -constraintWeight 100”).
The phylogenetic tree was rerooted so that bacteria and
Archaea are split at the root. Our SILVA-derived tree is
provided as Additional file 2. For all downstream anal-
yses, chloroplasts, mitochondria, and Eukaryota were
omitted from the tree. In the main article, we describe
our analyses using this SILVA-derived tree (Fig. 1); anal-
ogous results for the original SILVA tree are shown in
Additional file 1: Figure S1.

Phylogenetic distribution of 16S GCNs
To examine how 16S GCNs are distributed phyloge-
netically and to assess their general predictability using
various phylogenetic methods, we proceeded as fol-
lows. A total of 8,767 annotated bacterial and archaeal
genomes with completion status “Complete Genome”
were downloaded from the NCBI RefSeq database on
January 4, 2018. Downloaded genomes were checked for
potential contamination using checkM 1.0.6 [32] (option
“reduced_tree”), which is based on the detection of
conserved marker genes (assembly and checkM sum-
maries in Additional file 3). Genomes found to exhibit a
contamination level above 1% or a strain heterogeneity
above 1% were discarded, leaving us with 6,868 complete
genomes for downstream analysis (Additional file 4).
For each genome, 16S GCNs were determined using

two approaches: First, we counted the number of
annotated 16S rRNA sequences in the NCBI anno-
tations (files rna_from_genomic.fna). Second, we
used covariance models with the program cmsearch
(as part of INFERNAL version 1.1.2, options “--noali
--cut_nc”) to search for 16S rRNA sequences within
the assembled genomes (files genomic.fna). Separate
covariance models for archaeal and bacterial 16S rRNA
genes were obtained from the Rfam database [33] (acces-
sions RF00177 and RF01959). A table listing GCNs calcu-
lated using both methods is provided as Additional file 5.
Only genomes for which the two methods yielded the
same 16S GCNs were considered for subsequent analy-
sis, yielding 16S GCNs for 6,780 genomes (“high-quality
genomes,” Additional file 6). The accuracy of these GCNs
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was further verified through comparison to the Ribosomal
RNA Operon Copy Number Database (rrnDB, accessed
on June 7, 2017; [34]) whenever a genome assembly acces-
sion was present in the rrnDB (rrnDB attribute “Data
source record id”). Across 5,616 high-quality genomes
tested, we found an almost-perfect agreement with the
rrnDB (R2 > 0.999; Additional file 1: Figure S2). checkM
quality summaries for the high-quality genome set are
provided as Additional file 7.
Tips on the SILVA-derived tree were mapped to

high-quality genomes, whenever possible, as follows:
First, representative 16S sequences of SILVA OTUs
were aligned to the longest 16S rRNA sequence
from each genome using vsearch 2.3.4 [35] at maxi-
mum (100%) similarity (vsearch options “--strand
both --usearch_global --maxaccepts 0 --top_
hits_only --iddef 0 --id 1.0”). If an OTU aligned to
multiple genomes, all genomes were initially kept. Next,
for each aligned OTU-genome pair, we compared the
NCBI taxon ID (“taxid”) of the OTU to that of the genome.
OTU taxids were obtained from a lookup table provided
by SILVA (https://www.arb-silva.de/fileadmin/silva_
databases/release_128/Exports/taxonomy/taxmap_embl_
ssu_ref_128.txt.gz). Genome taxids were obtained from
lookup tables provided by NCBI (ftp://ftp.ncbi.nlm.nih.
gov/genomes/genbank/*/assembly_summary.txt, where
“*” is either “bacteria” or “archaea”). Any aligned
OTU-genome pair with non-identical taxids was omit-
ted. Of the remaining OTU-genome pairs with identical
taxids, we only kept the first aligned genome for each
OTU. A total of 9,395 OTUs could thus be mapped
to one of the genomes. For each mapped OTU, we
assumed a GCN equal to the GCN counted for the cor-
responding genome. For all other OTUs, we assumed an
unknown GCN.
All phylogenetic analyses were performed using the

R package castor [36], available at The Comprehen-
sive R Archive Network (CRAN). NSTDs for all tips
with respect to tips mapped to a sequenced genome
(Fig. 1b) were calculated using the castor function
find_nearest_tips. The phylogenetic autocorrela-
tion function (ACF) of known 16S GCNs across the
SILVA-derived tree (Fig. 1a) was calculated using the
castor function get_trait_acf based on 108 tip
pairs (options “Npairs=1e8, Nbins=100”), chosen
randomly among tips with known GCN. The function
get_trait_acf randomly picks OTU pairs on the
tree, bins them into one of many intervals of phy-
logenetic distance, and calculates the Pearson auto-
correlation between GCNs of the OTU pairs within
each bin. Note that this analysis does not assume that
GCNs scale linearly with phylogenetic distance. Instead,
the ACF merely measures the statistical correlation
between GCNs on distinct tips, conditional upon the tips

being within a certain phylogenetic distance from each
other.
GCNs were reconstructed on the SILVA-derived

tree using Sankoff ’s maximum-parsimony (function hsp_
max_parsimony, with option transition_costs
either set to “exponential,” “proportional,” or
“all_equal”), phylogenetic independent contrasts
(functionhsp_independent_contrasts), weighted-
squared-change parsimony (function hsp_squared_
change_parsimony), subtree averaging (function
hsp_subtree_averaging), and maximum-likelihood
of Mk models with rerooting (function hsp_mk_
model_rerooting with options root_prior=
‘empirical’, optimization_algorithm=‘nlminb’,
Ntrials=5, rate_model=‘ER’).
To calculate the cross-validated fraction of variance pre-

dicted by (aka. cross-validated coefficient of determina-
tion of) each method (R2

cv; [17]) as a function of the NSTD
(Fig. 1c), we proceeded as follows. We randomly chose 2%
of the tips with known 16S GCN to be excluded from the
input to the reconstructions and to be used as an indepen-
dent “test set” afterwards. Depending on the NSTD cutoff
considered (for example 10% substitutions per site), we
also excluded all tips whose phylogenetic distance to the
test set was below the NSTD cutoff. The remaining tips
with known GCNs (“training set”) were used as input to
the reconstructions, and the GCNs predicted for the test
set were then compared to the known GCNs of the test
set. This process was repeated three times and the result-
ing R2 was averaged over all repeats, yielding an R2

cv for
each considered NSTD cutoff. The R script for analyzing
and reconstructing 16S GCNs across the SILVA-derived
tree is available as Additional file 8. For comparison, all of
the above analyses were also performed using the original
SILVA guide tree (Additional file 1: Figure S1).

Evaluation of 3rd party GCN prediction tools on sequenced
genomes
To test the predictive accuracy of CopyRighter [7],
PICRUSt [6], and PAPRICA [8] for genomes with known
GCNs, we compared their predictions with the GCNs
counted in the (high-quality) sequenced genomes. To
evaluate the predictive accuracy of CopyRighter [7]
on the genomes, we proceeded as follows: We first
downloaded the precomputed lookup table listing Copy-
Righter’s predictions for the Greengenes 16S rRNA
database (release October 2012, “GG2012”; [20]), from
the project’s Github on June 6, 2017 (v0.46): https://
github.com/fangly/AmpliCopyRighter (CopyRighter-
0.46/data/201210/ssu_img40_gg201210.txt). We then
aligned the longest 16S rRNA sequence of each
genome to OTUs (clustered at 99% similarity) in
the Greengenes database using vsearch (vsearch
options “--strand both --usearch_global

https://www.arb-silva.de/fileadmin/silva_databases/release_128/Exports/taxonomy/taxmap_embl_ssu_ref_128.txt.gz
https://www.arb-silva.de/fileadmin/silva_databases/release_128/Exports/taxonomy/taxmap_embl_ssu_ref_128.txt.gz
https://www.arb-silva.de/fileadmin/silva_databases/release_128/Exports/taxonomy/taxmap_embl_ssu_ref_128.txt.gz
https://github.com/fangly/AmpliCopyRighter
https://github.com/fangly/AmpliCopyRighter
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--maxhits 1 --maxaccepts 10 --top_hits_
only”), always choosing the best match in Greengenes
and keeping only genomes that mapped to a Greengenes
entry by at least 99% similarity (5688 genomes mapped).
For each mapped genome, we took the GCN predicted by
CopyRighter for the corresponding Greengenes entry as
CopyRighter’s prediction for the genome. This prediction
was then compared to the GCN counted from the genome
sequence. A histogram of CopyRighter’s predictions
across mapped genomes is shown in Additional file 1:
Figure S4B. The predictive accuracy of CopyRighter was
measured in terms of the fraction of explained variance
(R2), as a function of a genome’s NSTD (Fig. 1a). NSTDs
of genomes were calculated as described in a separate
section below.
A similar approach was used for PICRUSt [6]: The

precomputed lookup table listing PICRUSt’s predic-
tions for the Greengenes database (release May 2013;
“GG2013”) was downloaded from the project’s web-
site on June 6, 2017 (v1.1.1): https://picrust.github.
io/picrust/picrust_precalculated_files.html (16S_13_5_
precalculated.tab.gz). A total of 5,708 high-
quality genomes could be mapped to an OTU (99%
similarity) in GG2013. A histogram of PICRUSt’s predic-
tions across all mapped genomes is shown in Additional
file 1: Figure S4C. The predictive accuracy of PICRUSt was
measured in terms of the R2 as a function of a genome’s
NSTD (Fig. 1b), similarly to CopyRighter.
To evaluate the predictive accuracy of PAPRICA [8]

on the genomes, we proceeded as follows: We first
downloaded and installed PAPRICA from the project’s
Github on June 6, 2017 (v0.4.0b): https://github.com/
bowmanjeffs/paprica. This release includes precomputed
reference trees (one for archaea and one for bacteria) and
tables listing 16S GCNs for the tool’s calibration genomes
represented in the reference trees. We used the longest
16S rRNA sequence from each genome as an input to
the PAPRICA pipeline (command “paprica-run.sh”),
separately for archaea and bacteria. The pipeline pro-
duces, among others, a table listing the uncorrected abun-
dance of each unique input sequence (this can be greater
than 1 if multiple genomes share the same 16S rRNA
sequence) and the corresponding corrected abundance
(after dividing by the predicted 16S GCN). We used this
table to obtain the 16S GCNs predicted by PAPRICA
for the unique 16S sequences (representing 3473 16S
sequences), by dividing the uncorrected by the corrected
abundance. We then compared these predicted GCNs to
the GCNs counted in the genome sequences, similarly to
above. A histogram of PAPRICA’s predictions across all
represented genomes is shown in Additional file 1: Figure
S4D. The predictive accuracy of PAPRICA was measured
in terms of the R2 as a function of a genome’s NSTD
(Fig. 1a), similarly to CopyRighter.

Comparison of 3rd party GCN prediction tools across
Greengenes
To compare the predictions by CopyRighter to those
by PICRUSt across all OTUs in Greengenes (Fig. 3a),
we first mapped all OTUs in GG2013 to OTUs in
GG2012 using vsearch (with options “--strand both
--usearch_global”). We only kept matches at 100%
similarity (153,375 out of 203,452 OTUs in GG2013). To
each mapped OTU in GG2013, we compared the corre-
sponding GCN predicted by PICRUSt to the GCN pre-
dicted by CopyRighter for the matched OTU in GG2012.
To calculate the frequency distributions of GCNs pre-
dicted by CopyRighter and PICRUSt across all OTUs
in Greengenes (histograms in Additional file 1: Figure
S3A,B), we used the GCNs listed in their precomputed
lookup tables.
To compare PAPRICA to PICRUSt across Green-

genes (Fig. 3b), we proceeded as follows: Representative
sequences of OTUs in GG2013 were split into archaeal
and bacterial sequences. Each resulting fasta file was used
as input to the PAPRICA pipeline to predict the corre-
sponding 16S GCN, as described above for genomes. This
yielded a predicted GCN for all Greengenes entries. These
predictions were compared to the precomputed GCN val-
ues provided by PICRUSt. These predictions were also
used to calculate the frequency distribution of GCNs
predicted by PAPRICA across Greengenes (Additional
file 1: Figure S3C). To compare CopyRighter to PAPRICA
(Fig. 3c), we proceeded as described above for the com-
parison of CopyRighter to PICRUSt.

Comparison of 3rd party GCN prediction tools across
microbial communities
To compare CopyRighter, PICRUSt, and PAPRICA
across OTUs in various microbial communities, we pro-
ceeded as follows. Publicly available 16S rRNA amplicon
sequence data from various environmental samples were
downloaded from the European Nucleotide Archive
(http://www.ebi.ac.uk/ena). Only Illumina sequence data
from amplicons obtained using bacteria- and/or archaea-
sensitive primers were considered. Samples were chosen
to cover a wide range of environments, including the
ocean, marine and lake sediments, soil, saline and hyper-
saline lakes, hydrothermal vents, hot springs, bioreactors,
and animal-associated microbiomes. All sequencing
data were processed in a similar way, where possible,
as follows. Overlapping paired-end reads were merged
using flash v1.2.11 [37] (options -min-overlap=20
-max-overlap=300 -max-mismatch-density
0.25 -phred-offset=33 -allow-outies), and
non-overlapping paired-end reads were omitted.
Single-end reads were kept unchanged. All single-end
reads and merged paired-end reads were then quality
filtered using vsearch v2.4.3 [35] (options -fastq_

https://picrust.github.io/picrust/picrust_precalculated_files.html
https://picrust.github.io/picrust/picrust_precalculated_files.html
https://github.com/bowmanjeffs/paprica
https://github.com/bowmanjeffs/paprica
http://www.ebi.ac.uk/ena
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ascii 33 -fastq_minlen 120 -fastq_qmin 0
-fastq_maxee 1 -fastq_truncee 1 -fastq_
maxee_rate 0.005 -fastq_stripleft 7). Sam-
ples with more than 20,000 quality-filtered reads were
rarefied down to 20,000 reads to reduce computation
time, by randomly picking reads without replacement.
Quality-filtered sequences were clustered into operational
taxonomic units (OTUs; at 97% similarity) by closed-
reference global aligning against the non-redundant
(NR99) SILVA SSU reference database (release 128; [4]),
using vsearch. Both strands were considered for align-
ment (vsearch option --strand both). Sequences not
matching any database entry at 97% similarity or higher
were discarded. Note that OTUs were thus represented
by SILVA entries, namely the ones used to seed the
clusters. Chloroplasts, mitochondria, and any Eukaryota
were omitted. OTUs represented by fewer than five reads
across all samples were omitted. Finally, any samples
with fewer than 2,000 reads accounted for by OTUs were
omitted. This yielded an OTU table with 635 samples
and 65,673 OTUs represented by 4,827,748 reads (on
average 734 OTUs per sample). Sample accession num-
bers, coordinates, sampling dates, original publications,
sequencing platforms, quality-filtered read lengths, and
read counts and covered primer regions (where available)
are provided in Additional file 9.
To predict GCNs for OTUs in each sample using

CopyRighter, we used the same approach as for
genomes: Representative 16S sequences of OTUs
were aligned to GG2012 using vsearch (options
“--strand both --usearch_global --iddef
0 --id 0.99 --maxhits 1 --maxaccepts 10
--top_hits_only”), omitting any OTUs not matched
to a Greengenes entry by at least 99% similarity. For
each OTU kept, the GCN listed by CopyRighter for the
matched Greengenes entry was taken as CopyRighter’s
prediction. For PICRUSt, we proceeded in an analogous
way, using GG2013 instead of GG2012. For PAPRICA,
we proceeded in an analogous way, using PAPRICA’s
GCN predictions computed previously for GG2013 (see
previous section).
To compare any two given tools (CopyRighter vs.

PICRUSt, PICRUSt vs. PAPRICA, or CopyRighter vs.
PAPRICA) for a specific sample, only OTUs with at least
one read in the sample and having a GCN prediction from
both tools were considered. We measured the agreement
between two tools in terms of the fraction of variance in
predictions of the 1st tool that was explained by predic-
tions of the 2nd tool (R2).We calculated the sample’s NSTI
(nearest sequenced taxon index) according to [6], i.e., as
the arithmetic average NSTD over all OTUs considered in
the comparison and weighted by relative OTU frequen-
cies. Details on how NSTDs were calculated are provided
in the section below. For each pair of tools compared, we

thus obtained 635 NSTIs and 635 R2s across 635 sam-
ples, shown in Fig. 4. Pearson correlation coefficients

(
r2

)

between NSTIs and R2 were calculated for each pair of
tools, separately for animal-associated and non-animal-
associated samples. Statistical significances (P values) of
correlation coefficients were estimated using a permuta-
tion test with 1000 permutations. Additional file 1: Figures
S6 and S7 show GCNs predicted by each tool for various
microbial communities. We also show relative deviations
between tools (|A − B| /((A + B)/2), where A and B are
GCNs predicted by two tools for the same OTU) and
NSTDs for OTUs in various samples (Additional file 1:
Figure S8).

Evaluation and comparison of GCN prediction tools
depending on NSTD
To examine the predictive accuracy of CopyRighter,
PICRUSt, and PAPRICA as a function of an OTU’s
or genome’s NSTD, we proceeded as follows. For
each OTU in SILVA, and separately for each tool,
we calculated the NSTD as the phylogenetic dis-
tance to the nearest sequenced genome used by the
tool to make predictions (“calibration genomes”). For
PAPRICA, a list of 5,628 calibration genomes was
obtained from PAPRICA’s precomputed files (PAPRICA/
ref_genome_database/*/genome_data.final.
csv, where “*” is either bacteria or archaea). Cali-
bration genomes were matched to SILVA OTUs via global
alignment of the 16S gene at a similarity threshold of 99%,
using vsearch. Matched OTUs were assumed to have an
NSTD equal to zero, and for all other SILVA OTUs, the
NSTD was calculated based on the SILVA-derived tree
and using the R package castor [36]. An approximate
matching of genomes to OTUs (i.e., at 99% similarity)
was chosen to ensure that as many of the calibration
genomes are included as possible; note that SILVA OTUs
are themselves clustered at that similarity and that the
error potentially introduced to the NSTDs and NSTIs is
negligible (< 1% nucleotide substitutions per site). For
PICRUSt, a table was downloaded from the project’s web-
site listing IMG (Integrated Microbial Genomes) IDs for
2,887 calibration genomes (https://github.com/picrust/
picrust/tree/master/tutorials/picrust_starting_files.zip,
file GG_to_IMGv350.txt). IMG IDs were translated
to GG2013 sequence IDs using the gg_13_5_img.txt
lookup table downloaded from the Greengenes
website (http://greengenes.secondgenome.com/downloads).
Matched GG2013 IDs were then mapped to SILVA OTUs
via global 16S sequence alignment with vsearch, at a simi-
larity threshold of 99%. NSTDs of SILVA OTUs were then
calculated in the same way as for PAPRICA. For Copy-
Righter, a lookup table was downloaded from the project’s
Github page that maps calibration genomes to GG2012
sequences (https://github.com/fangly/AmpliCopyrighter,

https://github.com/picrust/picrust/tree/master/tutorials/picrust_starting_files.zip
https://github.com/picrust/picrust/tree/master/tutorials/picrust_starting_files.zip
http://greengenes.secondgenome.com/downloads
https://github.com/fangly/AmpliCopyrighter
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file AmpliCopyrighter-0.46/preprocessing/
data/img_to_gg.txt). GG2012 sequences listed in
that table were mapped to SILVA OTUs, and NSTDs were
calculated for all SILVA OTUs, in a similar way as for
PICRUSt. To determine the NSTDs for genomes exam-
ined in this study (separately for CopyRighter, PICRUSt,
and PAPRICA), genomes were mapped to SILVA OTUs
via global alignment of their longest available 16S
sequence at 99% similarity. For each genome, the NSTD
of the most closely matched SILVA OTU was taken as the
genome’s NSTD. To determine NSTDs for all Greengenes
OTUs, we mapped Greengenes OTUs to SILVA OTUs via
global alignment at 99% similarity. To determine NSTDs
for OTUs recovered from the sampled microbial commu-
nities, we directly used the NSTDs of SILVA OTUs used
as seeds during closed-reference OTU picking. When
comparing two GCN prediction tools on an OTU (e.g.,
Figs. 3 and 4 and Additional file 1: Figure S8), in cases
where the two NSTDs differed, we used their arithmetic
average. To calculate the R2 between any two GCN pre-
diction tools, or between a GCN prediction tool and the
“true GCNs,” as a function of the NSTD (Figs. 2 and 3d–f),
we binned the OTUs or genomes used in the comparison
into equally sized NSTD intervals and calculated the R2

separately for each interval. Only NSTD intervals with at
least 10 OTUs or genomes were considered.
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