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Abstract

Anhedonia is a severe condition that describes a near-complete absence of enjoyment, motivation, 

and interest. A core feature of depression, clinical manifestations of anhedonia can include deficits 

in experiencing pleasure, approach-related motivated behavior, and learning how to match 

expectations to the environment. To date, the precise neurobiological mechanisms of anhedonia in 

major depression are still poorly understood. We have previously argued that contradictory 

findings and the inability to identify specific neurobiological substrates for anhedonic symptoms 

may result from sample heterogeneity, suboptimal methods of assessment, and the challenge of 

dissociating between different components of anhedonia. Recently, however, computational 

advances to the operationalization of psychiatric symptoms have enhanced the ability to evaluate 

the neurobiology of constituent elements of this symptom domain. In this paper, we review (1) 

advances in behavioral and computational methods of assessing reward processing and motivation 

and (2) the development of new self-report, neurological, and biological methods of subtyping that 

may be useful in future pursuits to expand our understanding of the neurobiology of anhedonia in 

depression.

Anhedonia, a core feature of depression, is a multi-faceted symptom that includes deficits in 

the experience of pleasure, reduced approach-related motivated behavior, and/or impaired 

learning about rewards in the environment (see Box 1). [1]. We have previously argued that 

the elusiveness of neurobiological substrates for anhedonia in depression results from the 

use of suboptimal methods of assessment, which fail to dissociate between these different 
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components of anhedonia and result in pathophysiological heterogeneity. Anhedonia in 

mood disorders has long been hypothesized to be related to a reduction in dopamine (DA) 

transmission [2–4]. While neuroimaging and pharmacological manipulations have provided 

some support for the hypothesis that DA may be affected in at least some individuals with 

major depression [5–7], findings remain mixed (For a review, see [1]), and more work is 

needed to understand the neurobiology of anhedonia in depression.

Box 1

Anhedonia – What's in a name?

Despite significant progress in the study of reward-related symptoms, there remains 

considerable disagreement regarding the precise definition of anhedonia and its degree of 

conceptual overlap with other commonly used terms (e.g., avolition, anergia, apathy, 

alexithymia, etc.). This lack of clarity is likely due at least in part to the DSM, which 

offers two distinct definitions for anhedonia depending on whether the diagnostic context 

is depression or schizophrenia. In the case of the schizophrenia spectrum, anhedonia is 

defined narrowly as “the decreased ability to experience pleasure from positive stimuli or 

a degradation in the recollection of pleasure previously experienced” (DSM V p. 88), and 

is included among 4 other symptoms (alogia, avolition, asociality, and diminished 

emotional expression) that together comprise the broader “negative symptom” domain. In 

other words, anhedonia is a subordinate construct within the negative symptom criterion 

for schizophrenia spectrum disorders. In the context of major depression, however, 

anhedonia is a supraordinate construct; here it is used as a general criterion that may be 

satisfied through different clinical presentations, such as the loss of motivation or interest 

in hobbies (‘wanting’), or the ability to enjoy activities (‘liking’) and so on (DSM V p. 

163). Consequently, the term “anhedonia” in depression is more akin to the term 

“negative symptoms” in the schizophrenia spectrum in that both are the supraordinate 

labels for a general domain. These competing definitions for anhedonia have caused 

confusion in the literature, especially for the translation of preclinical models [33]. 

Moreover, the use of anhedonia as an “umbrella term” in the nosology of major 

depression is inconsistent with its greek etymology implying a specific deficit related to 

the “absence of pleasure”. We have previously suggested that new clinical terminology be 

introduced in subsequent versions of the DSM to facilitate transdiagnostic definitions of 

symptoms in the anhedonia domain of depression [1]. Until such changes are enacted, 

however, we have chosen to remain aligned to the current nomenclature defining 

anhedonia as a supraordinate construct that is comprised of distinct features related to 

both motivation and pleasure that may satisfy the A2 anhedonia criterion in the diagnosis 

of depression.

Within the last five years the field of psychiatry has moved in several new directions that 

hold promise for improving methods of assessment and increasing our understanding of the 

underlying neurobiology, including the possible role of DAergic deficits. In this review, we 

outline two new lines of research: First, the emergence of computational psychiatry [8] has 

encouraged the application of computational methods to improve our understanding of 

mental illness, including the use of computational modeling for making inferences regarding 
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the underlying mechanisms that generate observed behavior in psychiatric groups [9,10] 

(Figure 1). This includes the use of behavioral paradigms and computational models that 

have been previously linked to DAergic signaling in animal models and human subjects, 

providing opportunities to evaluate the prevalence of DA-related deficits in patients with 

depression and anhedonia. Here we focus on advances in the use of reinforcement learning 

and effort-based choice to evaluate reward processing and motivational deficits.

Second, recent work has also encouraged the identification of subgroups within 

heterogeneous disorders for which individualized treatments can be developed [9], and has 

resulted in increased efforts to identify behaviorally, neurologically, or biologically distinct 

subgroups within and across diagnostic categories. One candidate sub-group with growing 

empirical support is the so-called “inflammatory sub-type” [11], which may be driven by 

immune-induced alterations in DAergic tone and basal ganglia function. In the sections that 

follow, we outline recent work in these domains and advocate for further integration of these 

lines of research to extend our understanding of neurobiological mechanisms associated with 

anhedonia in depression.

Computational Psychiatry in Depression: Reinforcement Learning

A fundamental premise of computational psychiatry is the idea that behavioral 

manifestations of clinical symptoms may be best conceptualized in terms of computational 

components that can be used to infer underlying mechanisms [1,8] (See Figure 1). In the 

case of depression, anhedonic symptoms have long been viewed in terms of failure within 

reinforcement systems (e.g. a fundamental deficit in response to positive reinforcement 

[12]). This idea, coupled with the early advances linking reinforcement learning (RL) 

models to midbrain DA neurons [13], presented an initial opportunity for the study of 

anhedonia using computational approaches. This body of research has focused primarily on 

the role of DAergic mesocorticolimbic pathways, including ventral and dorsal striatal targets 

for midbrain DA neurons, in the signaling of reward prediction errors (RPEs). More recently, 

an important direction in computational assessment has been to link behaviorally or 

computationally-derived measures of reward reactivity, learning, and decision-making to 

emotional experience and mood states that may be disrupted in mood disorders [14,15]. 

Specifically, Rutledge et al. (2014) modeled subjective feelings of happiness in healthy 

volunteers from the combined influence of recent reward expectations and associated 

(plausibly DAergic) prediction errors during a risky decision task [16] and showed that 

pharmacologically manipulating dopamine affected both choices and happiness ratings [17]. 

Thus, mechanisms of reinforcement learning provide a potential means of linking DAergic 

response to rewards to disrupted mood regulation as well as a mechanism of examining 

aberrant reinforcement processing in depression (See [18], for a review).

To date, however, evidence supporting the link between anhedonic symptoms and failures 

within reward learning has been mixed. One widely-used paradigm, the probabilistic reward 

task (PRT), employs a signal-detection methodology to test the development of an implicit 

bias towards rewarding stimuli. Patients with major depression exhibit reduced ability to 

modulate behavior in response to rewards [19,20]—a pattern that persists even after reported 

remission [21]. Further, depressed patients with high symptoms of anhedonia show 
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diminished reward learning on the PRT relative to those with low symptoms [19,20]. A 

recent re-analysis of these data using an RL framework [22] compared healthy controls to 

both individuals with high symptoms of anhedonia and patients with MDD and found that 

the primary difference in behavior for both groups was related to reductions in reward 

sensitivity, and not reductions in learning from rewards per se [22]. This distinction is 

significant, as it is learning behavior in this task that has been clearly linked to both 

manipulations of and individual differences within the mesolimbic DA system [23]. 

Consequently, the question of whether associations between anhedonic symptoms and PRT 

performance in patients with depression are exclusively linked to a DAergic deficit remains 

unresolved.

A parallel body of work has suggested that depression-related differences in reinforcement 

learning may be driven by disruptions in goal-directed reasoning that depend on formulating 

a model of the reward environment (often referred to as “model-based” valuation) rather 

than prediction error signaling (also known as “model free”) [15,24]. In support of this idea, 

Rutledge et al. (2017) used a mixed gambles task designed to elicit RPEs in the absence of 

learning and found that patients with moderate depression showed no difference from 

healthy controls in striatal reward prediction error signaling, and that symptoms of 

anhedonia were not related to striatal RPE signaling. Moreover, an analysis using a similar 

task in a large community sample of individuals with varying self-reported symptoms of 

depression as measured by the Beck Depression Inventory [25] found no effect of depressive 

or anhedonic severity on the relationship between momentary mood and outcome, though 

baseline mood did correspond to depression severity [15]. These results were interpreted as 

suggesting that the integrity of DAergic reward prediction error signaling is intact in 

depressive anhedonia, and that the previously-observed attenuations in ventral-striatal 

signaling during reinforcement learning in patients with depression may be related to 

impaired model-based valuation (For a review of model-based vs. model-free decision-

making in depression, see [25]).

While this hypothesis is certainly plausible and worthy of pursuit in future studies, an 

alternative explanation for these null findings is that deficits in DAergic model-free signaling 

may be a marker of particular sub-types of depression. Consequently, the ability to detect 

alterations in RL signaling may depend on symptom severity of the sample populations, 

sample inclusion criteria, and symptom heterogeneity. These paradigms will be critical for 

evaluating and quantifying reward processing and reward learning in heterogeneous samples 

with anhedonia or motivational impairments that are thought to be related to DAergic 

functioning, ideally among individuals with similar behavioral manifestations.

Computational Psychiatry in Depression: Motivation and Effort-based 

Decision-Making

In addition to reinforcement learning, another common behavioral manifestation of 

anhedonia in depression is reduced motivation [26]. In depressed patients, several laboratory 

paradigms have thus been developed to explore reward motivation and its relationship with 

anhedonia. One such paradigm developed by our group, the Effort-Expenditure for Rewards 
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Task (EEfRT) [27], has shown reduced willingness to expend effort for reward in patients 

with subsyndromal depression, first-episode depression, and remitted depression compared 

to controls [28,29]. Additionally, self-reported symptoms of anhedonia have been found to 

correlate with willingness to exert effort in patients [29] and in undergraduates with a wide 

range of trait anhedonia [27]. Other effort-based decision-making paradigms have shown 

similar associations between willingness to exert effort for rewards among patients with 

unipolar depression [30] and in correlation with measures of apathy among otherwise 

healthy participants [31]. Taken together, studies using these measures in depressed patients 

are consistent with clinical observations of reduced motivation as a core feature of the 

disorder. Like measures of RL, effort-based decision-making paradigms can be readily 

analyzed using computational models [32] that may provide objective methods of 

quantifying reduced motivation associated with anhedonia.

As with RL processes, studies of the willingness to expend greater effort in order to obtain 

larger or preferred rewards have repeatedly implicated disruption of corticostriatal DA as a 

critical substrate [33,34]. In both humans and animals, potentiation or attenuation of DA 

signaling respectively increases or decreases effort expenditure for rewards [35–38], and 

intra-individual variation in striatal DA availability predicts individual differences in effort-

based discounting [39,40]. In addition to striatal DA, human and animal studies suggest 

several potential regions of interest for future studies examining the neurobiology of reduced 

motivation in anhedonia. Specifically, functional magnetic resonance imaging (fMRI) 

studies in humans have identified a role for the dorsal anterior cingulate cortex (dACC) and 

anterior insula (aI) in the subjective discounting of rewards as a function of required effort 

[41], as well as activity in ventromedial prefrontal cortex (vmPFC) and supplementary motor 

area (SMA) that drive behavior toward reward maximization or effort minimization, 

respectively [42]. Finally, the dorsomedial and dorsolateral prefrontal cortices have been 

shown to play a role in encoding both effort devaluation [41] and effort learning signals [43]. 

Further, these studies have also indicated that reduced motivation may be linked to decreased 

connectivity between SMA and ACC [44] as well as decreased striatal activation. Taken 

together, these studies highlight the importance of cortical networks in guiding effortful 

behavior. Future studies are needed to test this corticostriatal network as a substrate for 

reductions in effortful behavior associated with anhedonic symptoms in depression.

Evidence for pathophysiologically distinct anhedonic sub-types

As noted in the prior sections, a clear role for DAergic impairments as a primary cause for 

deficits in reinforcement learning or effort expenditure in anhedonia in depression has yet to 

be established. One explanation for this body of inconsistent findings is the presence of 

distinct subtypes. Indeed, growing appreciation for the multi-faceted nature of individual 

symptoms and diagnostic categories (see Box 1) has spurred the development of 

increasingly sophisticated methods of assessment. Self-report measures of anhedonia have 

expanded to separately capture aspects of motivation and pleasure [45], and anticipatory and 

consummatory aspects of pleasure [46]. The development of assessment methods has also 

advanced to include the application of computational methods to identify different profiles 

within a heterogeneous symptom domain. For example, the newly developed Apathy 

Motivation Index was created and validated using factor analysis and latent profile analysis 
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to distinguish aspects of apathy associated with behavioral, social, and emotional domains 

and profiles associated with depression, anhedonia, and fatigue [47]. These methods may be 

useful in identifying specific components of anhedonia and associating them with comorbid 

symptoms and diagnoses. Additionally, subtyping efforts have also benefitted from the use 

of machine learning techniques. Applied to resting fMRI data of patients with depression, 

these techniques have been used to identify anhedonia-related patterns of connectivity and 

have potential to aid in the identification of subgroups that may benefit from targeted 

treatments (see [48]).

While innovative self-report methods and neurologically-based classification efforts show 

great promise in identifying subtypes of patients within and across diagnostic categories, 

recent studies of brain-immune interactions in depression have also highlighted the existence 

of heterogeneous pathophysiologies for anhedonic symptoms in depression. Peripheral 

markers of inflammation are frequently increased in depressed patients [49–51]. Moreover, a 

wealth of data has established that in both humans and laboratory animals, chronic 

administration of cytokines or cytokine-inducers is associated with decreased striatal 

dopamine release and blunted striatal responsivity to reward [52–54] as well as reports of 

anhedonic symptoms [55,56]. Indeed, it is increasingly understood that DA acts as major 

regulator of immune cell function within the brain [57] and conversely, the elevation of 

cytokines has been found to down-regulate processes that govern pre-synaptic DA 

availability and function [52,54].

Interestingly, the possible contribution of inflammation to the etiopathophysiology of 

depression may help resolve some of the inconsistencies in detection of DAergic alterations 

in depressed samples. While administration of cytokine inducers like interferon-alpha (IFN) 

therapy can produce severe depressive episodes in individuals with no prior history of 

depression, this response only occurs in approximately 30%–50% of drug recipients [58]. In 

a further study, IFN therapy was found to blunt DA synthesis capacity as well as striatal 

BOLD responses to reward [53]. Importantly, the magnitude of this effect varied across 

patients, and IFN-induced change correlated with change in motivational symptoms as 

measured by the Multidimensional Fatigue Inventory [53]. Given that substantial increases 

in inflammation occur in almost everyone receiving interferon-alpha therapy, this finding 

suggests that the onset of depressive symptoms may reflect a particular vulnerability to the 

down-stream effects of increased immune signaling.

Intriguingly, a recent study by Menard and colleagues found direct evidence for such a 

vulnerability. Following exposure to chronic social stress, mice that went on to develop a 

depressive phenotype–but not stress resilient mice–were found to have developed a “leaky” 

blood-brain barrier (BBB) in the NAcc that permitted increased trafficking of the 

inflammatory cytokine interleukin-6 (IL-6) from the periphery into the CNS [59]. Critically, 

this enhanced permeability was detected around the NAcc, but not prefrontal cortex or 

hypothalamus, providing a possible explanation for the potential selectivity of the 

“inflammatory subtype” and DA-linked anhedonia symptoms (See Figure 2). Given that 

periods of significant life stress are one of the major risk factors for the development of a 

first depressive episode [60], sensitivity to stress-induced vulnerability of the BBB may be a 

critical moderating variable in determining whether markers of abnormal striatal DA 
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function will be present. Moreover, the importance of BBB permeability as a potential 

mediator for vulnerability to inflammation may help explain inconsistencies in the effects of 

inflammatory challenges on reward behavior in healthy individuals (e.g [61]).

Consistent with the results of Menard et al., a recent study by our group also observed that 

individual differences in the effects of an acute stressor on NAcc prediction error signals 

measured with fMRI were dependent on the magnitude of change in IL-6 following acute 

stress [62]. Finally, blockade of inflammation using the tumor necrosis factor (TNF-alpha) 

antagonist infliximab was found to relieve reward-related symptoms in depressed patients 

with high–but not low–inflammation [63]. Taken together, these data suggest the possibility 

that neurobiological sensitivity to inflammatory stimuli–possibly mediated by BBB integrity 

around the NAcc–may drive the link between stress and anhedonic symptoms for a subset of 

patients, thereby forming the basis for an “inflammatory subtype”. While this tantalizing 

model needs to be translated to further clinical studies, it suggests the possibility that 

patients with depression in the context of high inflammation may show selective benefit 

from treatments aimed at reducing inflammation or increasing DAergic tone [64,65].

Summary and Future Directions

We have highlighted several recent advances in the assessment of reward processing and 

motivational deficits in depression and anhedonia through behavioral and computational 

methodology, and have reviewed recent efforts to identify neurologically and biologically 

distinct subtypes within the diagnostic construct of depression. We are optimistic that this 

work will progress toward the identification of neurobiology associated with subtypes within 

anhedonia and lead to targeted treatment approaches. While both of these fields have led to 

novel and informative work, we advocate that further integration of these research 

trajectories will be critical for increasing our understanding of the neurobiology of 

anhedonia and depression, specifically regarding reward processing and motivational 

deficits, and for developing targeted treatment strategies.
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Highlights

• Discrete cognitive processes underlying anhedonia can be computationally 

operationalized

• Approaches include models of reinforcement learning and effort-based 

decision-making

• Mixed findings in both domains may reflect the presence of 

pathophysiological subtypes

• One candidate sub-type is the presence of chronic inflammation
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Figure 1. 
The computational approach to assessing anhedonia and related symptoms. This conceptual 

diagram outlines the hypothetical operationalization of behavioral manifestations of 

anhedonia and related symptoms within a computational psychiatry framework. Clinically 

defined facets of anhedonia have typically been associated with behavioral manifestations 

that are difficult to quantify or measure directly and are often confused with other related 

symptoms. However, computational approaches allow for objective assessment through 

association with computational parameters. To date, there is insufficient data to support 

specific mapping between behavioral and computational terms, but we present this 

hypothetical example as a representation of the potential to operationalize clinical behaviors 

using computational approaches.
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Figure 2. 
Potential signaling pathways linking peripheral inflammation to disruption of dopaminergic 

function. Adapted from [66]. As suggested by one recent study [59], individuals who go on 

to develop a depressive phenotype following stress show increased permeability of the blood 

brain barrier (BBB) to peripheral cytokines such as IL-6. The peripheral cytokines that cross 

the blood brain barrier, as well as central cytokines produced by activated microglia, may 

contribute to oxidative stress and reactive oxygen species (ROS) generation. This, in turn, 

may increase the oxidation of tetrahydrobiopterin (BH4), a cofactor required for the 

conversion of phenylalanine to tyrosine and tyrosine to L-3,4-dihydroxyphenylalanine (L-

DOPA), thereby impeding DA synthesis. Additionally, central inflammatory cytokines may 

decrease the expression or function of the vesicular monoamine transporter 2 (VMAT2) as 

well as increase the expression or function of the dopamine transporter (DAT), increasing 

DA and leading to increased generation of ROS. Finally, inflammatory cytokines may also 

decrease DA signaling by reducing DA D2 receptors. D1, dopamine 1 receptor 1; D2, 

dopamine 2 receptor; DDC, dopamine decarboxylase; NOS, nitric oxide synthase; PAH, 

phenylalanine hydroxylase; ROS, reactive oxygen species; SN; substantia nigra; TH, 

tyrosine hydroxylase; VTA, ventral tegmental area.
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