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Abstract

λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In 

traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable 

ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the 

present paper, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs 

sampler framework which we call Gibbs Sampler λ-dynamics (GSLD). GSLD, like traditional λ-

dynamics, can be readily extended to calculate free energy differences between multiple ligands in 

one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator 

(RBE) for use in conjunction with GSLD. Compared with the current empirical estimator, the 

advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the 

current empirical estimator. We also show that the multistate Bennett acceptance ratio (MBAR) 

equation or the unbinned weighted histogram analysis method (UWHAM) equation can be derived 

using the RBE. We illustrate the use and performance of this new free energy computational 

framework by application to a simple harmonic system as well as relevant calculations of small 

molecule relative free energies of solvation and binding to a protein receptor. Our findings 

demonstrate consistent and improved performance compared with conventional alchemical free 

energy methods.
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1 Introduction

Free energy calculation is fundamental for understanding many important biophysical 

processes, such as protein conformational changes, protein-protein interactions, and protein-

ligand binding processes.1,2 Calculating protein-ligand binding free energy has important 

applications in drug discovery, especially in the lead compound generation and optimization 

stages.3–5 These stages only require calculating protein-ligand relative binding free energy, 

which has been shown to be easier than calculating protein-ligand absolute binding free 

energy.3,4

One widely used methodology for calculating protein-ligand relative binding free energy is 

the alchemical free energy approach.3–5 This approach utilizes the thermodynamic cycle 

shown in Figure 1.2 This thermodynamic cycle specifies that 

. In order to calculate the 

relative binding free energy between ligand L0 and L1 with receptor R, i.e, , the 

alchemical free energy method calculates  and  by employing 

alchemical transformations morphing ligand L0 into ligand L1 in both unbound and bound 

environments, respectively.

Several alchemical free energy calculation methods have been developed over the last 

several decades, such as free energy perturbation,6,7 thermodynamic integration,2,8 

enveloping distribution sampling9,10 and λ-dynamics.11–17 λ-dynamics is a generalized 

ensemble method in which the alchemical transformation variable λ is a continuous variable 

ranging from 0 to 1, with λ = 0, 0 < λ < 1, and λ = 1 corresponding to the ligand being in 

L0 state, intermediate hybrid states, and L1 state, respectively. The potential energy 

corresponding to λ is

(1)

where X, x0 and x1 are atomic coordinates associated with the environment, the ligand L0 

and the ligand L1, respectively. Vi(xi, X) is the potential energy between ligand Li and the 

environment and Venv(X) is the potential energy of the environment.  is a biasing potential 

to ensure that the two physical states, corresponding to λ = 0 and λ = 1, are both sampled in 

the simulation. The biasing potential  is determined iteratively by running multiple short 

simulations.14,15,18,19 The dynamics of the system (λ, , X) is generated from the 

extended Hamiltonian:

(2)
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where Tx, X and Tλ are the kinetic energy associated with coordinates ( , X) and λ, 

respectively. The free energy difference between ligand L0 and L1, with the biasing potential 

, is

(3)

where β is the inverse temperature; P(λ = 0) and P(λ = 1) are probability denisties of λ at 

points 0 and 1, respectively. In practice, this free energy difference ΔG is estimated using the 

following empirical estimator based on the trajectory of λ:

(4)

where λcutoff (0 < λcutoff < 1) is a cutoff value which is chosen to be close to 1.14

Although the empirical estimator is straightforward to evaluate based on the λ trajectory, it 

is not necessarily optimal. One issue is that the empirical estimator is systematically biased 

as it uses P(λ < 1 – λcutoff) and P(λ > λcutoff) to approximate P(λ = 0) and P(λ = 1), 

respectively. Additionally, the bias depends on the cutoff value λcutoff, which is chosen 

empirically and is difficult to quantify as it may vary among different systems.

In the current work, we present a novel form of λ-dynamics called the Gibbs sampler based 

λ-dynamics (GSLD) with the Rao-Blackwell estimator (RBE). The Gibbs sampler 

framework for calculating free energy differences between two ligands was first suggested 

by Chodera and Shirts.20 In their work, λ was treated as a discrete variable and MBAR21 

was used to estimate the free energy change. In this study, we show that GSLD and RBE can 

treat λ as either a discrete variable or a continuous variable when calculating free energy 

differences between two ligands. When λ is treated as a continuous variable, GSLD and 

RBE can be generalized to simultaneously calculate free energies of multiple ligands in one 

simulation, as in the generalization of λ-dynamics.14 We explore these new methods through 

applications to three model systems in this paper. This paper is organized as follows. In 

section 2, we describe GSLD and its generalization to multiple ligands. Then we introduce 

the RBE and show that the MBAR/UWHAM equations21–23 can be derived from the RBE. 

In section 3, we give detailed setup information for the setup and simulation of the three 

systems with which we tested the methods. Our results for these three systems are presented 

in section 4. We conclude with a discussion of how the GSLD and RBE can be used for 

other applications.

Ding et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2018 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Methods

2.1 Gibbs Sampler Based λ-Dynamics

As a generalized ensemble method, GSLD samples from the joint distribution of λ and the 

atomic coordinates of the system using the Gibbs sampler. In this section, we first briefly 

introduce the Gibbs sampler. We then use the Gibbs sampler to formulate pairwise GSLD. 

We conclude by showing how the GSLD can be generalized to work for multiple ligands.

2.1.1 The Gibbs Sampler—The Gibbs sampler, which is widely used in both statistics 

and machine learning, is a Markov Chain Monte Carlo (MCMC) method for sampling from 

multivariate distributions.24,25 To sample (X, Y ) from the joint distribution: (X, Y ) ~ P(X, 
Y ), the Gibbs sampler generates a Markov chain of states {(Xt, Yt), t = 0, 1, 2, …, N} using 

the following procedure:

• Step 0: initialize the starting state (X0, Y0).

• Step t: sample from the conditional distribution

– Updating X: given the state (Xt−1, Yt−1) from step t − 1, sample Xt 

from the conditional distribution of Xt ~ P(Xt|Yt−1).

– Updating Y: given Xt from the above update step, sample Yt from the 

conditional distribution of Yt ~ P(Yt|Xt). The resulting sample (Xt, Yt) 

is the state for step t.

Because the above procedure satisfies the detailed balance condition with respect to the joint 

distribution: (X, Y ) ~ P(X, Y ), the sampled states {(Xt, Yt), t = 0, 1, 2, …, N} converge to 

the joint distribution.24,25 The update steps require sampling from both conditional 

distributions: Xt ~ P(Xt|Yt−1) and Yt ~ P(Yt|Xt). If direct sampling from the conditional 

distribution is possible, independent samples can be directly drawn using numerical 

pseudorandom number generators. Otherwise, samples can be drawn using other Monte 

Carlo methods or Hamiltonian dynamics, as long as the method satisfies the detailed balance 

condition with respect to the corresponding conditional distribution.25,26 This property of 

the Gibbs sampler makes it quite flexible on choosing appropriate sampling methods based 

on the conditional distributions.

2.1.2 Pairwise GSLD—Pairwise GSLD calculates the free energy difference between two 

ligands: ligand L0 and ligand L1. In pairwise GSLD, λ can be treated as either a continuous 

variable or a discrete variable.

Continuous λ: When λ is treated as a continuous variable, pairwise GSLD samples from 

the joint distribution of (λ, , X):

(5)
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where Z is the partition function of the generalized ensemble and  is a biasing potential. 

 is determined automatically in the current simulations using a Wang-Landau like 

algorithm27 which is described in Appendix A. The Gibbs sampler for sampling from the 

above joint distribution is as follows:

• Step 0: initialize the starting state (λ0, , X0).

Step t: sample from the conditional distributions:

– Updating ( , X): given the state (λt−1, , Xt−1) from 

step t − 1, sample ( , Xt) from the conditional distribution: 

, which is the canonical ensemble distribution at the inverse temperature 

β. A sample can be drawn from this distribution using molecular 

dynamics simulation.

– Updating λ: given the atomic coordinates ( , Xt) sampled from 

the above update step, sample λt directly from the conditional 

distribution  using numerical pseudo-random number 

generator. The conditional distribution  is:

(6)

where . This is an exponential 

distribution of λt restricted on the interval of [0, 1]. Therefore, 

sampling λt directly from this distribution can be done using the inverse 

transformation method:

(7)

where u is a random sample from the uniform distribution on [0, 1]. The 

resulting sample (λt, , Xt) is the state for step t.

Discrete λ: When λ is a discrete variable specified by the set {l1, l2, … lM}, GSLD samples 

from the joint distribution
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(8)

where  is the biasing potential added to the state corresponding to λ = lj. Sampling from 

this distribution is done in the same way as the case where λ is continuous except that the 

conditional distribution becomes a multinomial distribution:

(9)

from which samples can also be drawn directly using numerical methods. The biasing 

potentials  are determined similarly as the case when λ is continuous. We note that 

equation 9 is similar to the distribution calculated using the infinite swap limit in replica 

exchange methods.28–31

The advantage of using λ as a discrete variable is that the pairwise GSLD still works when 

the potential energy Vi(xi, X, λ) is λ dependent, such as when a soft-core Lennard-Jones 

potential32 is employed to facilitate sampling. When λ is continuous, using λ dependent 

Vi(xi, X, λ) will make the normalization constant of the conditional distribution 

 not analytically integrable and prevent direct sampling from the conditional 

distribution . However, as shown below, the advantage of using λ as a 

continuous variable is that the GSLD can be generalized for multiple ligands.

2.1.3 Generalizing GSLD for Multiple Ligands—Like λ-dynamics, GSLD can be 

generalized to calculate the free energies for multiple ligands in one simulation. Assuming 

there are n ligands, the fraction of the ith ligand in the hybrid state is represented by λi, for i 
= 1, 2, …, n. The hybrid state is specified by the value of (λ1, λ2, …, λn) which satisfies the 

conditions  and 0 ≤ λi ≤ 1, i = 1, 2, …, n. The hybrid state’s potential energy is 

defined as: , where xi and X are 

atomic coordinates associated with the ith ligand and environment, respectively;  is the 

biasing potential added for the ith ligand and can be determined similarly as in the pairwise 

GSLD. Sampling from the generalized ensemble distribution: 

 can be done using the 

following Gibbs sampler procedure:

• Step 0: initialize the starting state ( , X0).

• Step t: sample from the conditional distributions.
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– Updating ( , X): given the state ( , Xt−1) 

from step t − 1, sample ( , Xt) from the conditional distribution 

 using molecular dynamics simulation.

– Updating : given the sample ( , Xt) from the above 

update step, the conditional distribution of  in the set 

 is given by

(10)

where

(11)

and dmS(λ) is the infinitesimal volume element of the simplex S. 

Because , the conditional distribution 

 has only n − 1 degrees of freedom. Sampling 

from this conditional distribution is equivalent to sampling from the n 
− 1 dimensional distribution:

(12)

where , and . The environment atom energy 

term, Venv(Xt), does not appear in equation (12) because it is part of 

both the numerator and denominator of equation (10) and can be 

canceled out as a constant when ( , Xt) is fixed. Sampling from 

this n − 1 dimensional distribution  is done 

Ding et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2018 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using the rejection method. In the rejection method, each  is 

sampled independently from the distribution: 

, where 

. If the sample  satisfies the condition 

, it is accepted, otherwise the sample  is 

rejected. This procedure is repeated until a sample  is accepted. 

Set  and the resulting sample ( , Xt) is 

the state for step t.

2.2 Rao-Blackwell Estimator (RBE)

Although the empirical estimator used in λ-dynamics can also be utilized in GSLD to 

estimate the free energy, it is not an optimal estimator and may contain a system dependent 

bias. RBE is introduced here to eliminate these potential issues. RBE is the estimator derived 

by applying the Rao-Blackwellization transformation to the empirical estimator. Rao-

Blackwellization is a statistical method, inspired by the Rao-Blackwell theorem,33,34 to 

transform a crude estimator into a better estimator that has smaller mean squared error for 

estimating the quantity of interest.35

For pairwise GSLD with continuous λ, the quantity of interest is the free energy ΔG = –β−1 

ln [P(λ = 1)/P(λ = 0)]. To estimate ΔG, the empirical estimator approximates P(λ = 1) and 

P(λ = 0) directly by calculating the fraction of λs which are close to 1 and 0, respectively, 

based on the λ trajectory. In contrast, the RBE ignores the λ trajectory and only uses the 

atomic coordinate trajectory. It is based on the fact that P(λ = 1) and P(λ = 0) are equal to 

the expectation of the conditional probability of λ with respect to the atomic coordinates, i.e, 

 and 

. Therefore, RBE uses the following formula to 

estimate the free energy ΔG:

(13)

where
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(14)

and N is the number of samples.

For the generalized GSLD with multiple ligands, the RBE can be derived similarly. To 

estimate the free energy of the ith ligand given by G(λi = 1, λj≠i = 0) = –β−1 ln P(λi = 1, 

λj≠i = 0), the RBE uses the following formula:

(15)

where Z is given in equation 11 in section 2.1.3.

As shown in the above formulas, the RBE estimator ΔGRBE does not depend on the 

empirical cutoff value of λcutoff. Based on the Rao-Blackwell theorem, ΔGRBE is an 

unbiased estimator. In addition, if the samples from GSLD are independent, the mean 

squared error of RBE is guaranteed to be smaller than or equal to that of the empirical 

estimator. Although the samples from GSLD are usually not truly independent, the 

advantage of RBE can often be justified empirically.36

2.3 Derivation of the MBAR/UWHAM equations using RBE

Although RBE is originally introduced to estimate free energies based on sampling from 

GSLD, RBE can also be used when multiple equilibrium states are sampled independently. 

When RBE is applied to this case, it generates the MBAR/UWHAM equations,21–23 which 

are widely used in current alchemical free energy methods.

Let us assume there are M equilibrium states with potential energy function of Vi, i = 1, 2, 

…, M. Each equilibrium state is sampled independently. The conformations sampled from 

state i are represented as , k = 1, 2, …, ni, where ni is the number of conformations from 

state i. The total number of conformations is . The free energy of state i is 

represented as . We use λ ∈ {1, 2, …, M} as an index variable to represent the M 
equilibrium states, with λ = i corresponding to state i. To calculate the free energies for all 

the equilibrium states, all the conformations { , i = 1, 2, …, M, k = 1, 2, …, ni} are pooled 
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together and viewed as samples from the generalized ensemble , 

where  is the biasing energy added to state i to adjust the relative weight of state i to be 

proportional to ni, i.e,  needs to satisfy the condition:

(16)

where Gi is the free energy of state i with the biasing potential of  and  is the unbiased 

free energy of state i. We note that the biasing potentials  in equation 16 are unknown 

variables. They are introduced to make the equation 16 valid, which is the requirement for 

applying the RBE. These unknown biasing potentials  can be calculated after the values of 

 are solved. The RBE for this generalized ensemble is:

(17)

Combining equation 16 with equation 17, we have:

(18)

which is the same as the MBAR/UWHAM equations.21–23 Previously, the MBAR/UWHAM 

equations were derived as either a result of the maximum likelihood principle or an 

unbinned extension of the weighted histogram analysis method (WHAM).21–23 Here we 

have shown that the MBAR/UWHAM equations can also be derived using RBE.

3 Model Systems and Computational Details

To illustrate how GSLD works and the advantage of RBE over the empirical estimator 

typically used in λ-dynamics, we applied GSLD and RBE to three test cases: (a) calculation 

of the free energy difference between two states of a harmonic oscillator system, (b) 
calculation of the relative hydration free energies of three benzene derivatives, and (c) 
calculation of the binding free energy difference between benzene and p-xylene bound to the 

L99A mutant of the protein T4 lysozyme.37,38 The simulations in these calculations were 

run using CHARMM39 compiled with OpenMM.40 Each calculation was repeated 10 times. 

Error bars were calculated as the standard variation of the results from these 10 independent 

repeats.
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3.1 Harmonic System

The harmonic system consists of a one dimensional particle that switches between two 

states: state 0 and state 1. Each state has a harmonic potential energy. The purpose is to 

calculate the free energy difference of the particle when it changes from state 0 to state 1, i.e, 

ΔG = G1 – G0. Specifically, state 0 has a potential energy given by , and state 1 

has a potential energy given by . In order to prevent the particle from moving too 

far from the equilibrium position, a restraining potential is added for each state. This 

restraining potential is not scaled by λ. The resulting hybrid potential energy is:

where 𝟙;{condition} is equal to 1 if the condition is true, otherwise it is equal to 0. GSLD is 

used to sample from the joint distribution of 

. Given the value of λ, sampling the 

coordinates ( ) is accomplished by running Langevin dynamics for 1 ps with a step 

size of 1 fs, temperature of 300 K, and friction coefficient of 10 ps−1. The total simulation 

time is 10 ns. The parameters used for and kenv are −2.0 Å, 2.0 Å, 4.0 Å, and 2.5 

kcal/mol · Å−2, respectively. Two variations of the model system that correspond to setting 

different values for k0 and k1 are used: a symmetrical system with k0 = k1 = 0.75 kcal/mol·Å
−2, and an asymmetrical system with k0 = 0.75 kcal/mol · Å−2 and k1 = 0.075 kcal/mol · Å
−2.

3.2 Relative Hydration Free Energies for Three Benzene Derivatives

Relative hydration free energies for three benzene derivatives: benzene, phenol, and 

benzaldehyde were calculated from the difference between alchemical free energy changes 

computed in vacuum and in water. The topology and parameter files for the hybrid ligand 

were generated using MATCH41 and in-house developed scripts based on the CHARMM 

General Force Field (CGenFF).42 The simulation in water was done in a water box 

consisting of 800 TIP3P43 water molecules with cubic periodic boundary conditions. The 

water box had a size of 30.0 Å × 30.0 Å × 30.0 Å. A nonbonded cutoff of 14 Å was used, 

and the van der Waals switching function and electrostatic force switching function44 were 

used between 12 Å and 14 Å. Sampling from the conditional distribution P(x, X|λ) was 

accomplished by running Langevin dynamics at 298.15 K for 0.2 ps. The time step size was 

2 fs and the friction coefficient was 10 ps−1. The length of all bonds involving hydrogen 

atoms was fixed during the simulation using the SHAKE algorithm.45 The three relative 

hydration free energies were first calculated by three independent pairwise GSLDs. Then 

they were calculated simultaneously using the generalized GSLD for multiple ligands. For 

comparison, the three relative hydration free energies were also calculated using the FEP/
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MBAR method, in which 11 states corresponding to λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1 were used.

3.3 Relative Binding Free Energy between Benzene and p-Xylene with T4 Lysozyme

The L99A mutant of T4 lysozyme has been a model protein system for testing free energy 

calculation methods.46–48 It has experimental binding free energy data for a series of 

benzene derivatives including benzene and p-xylene.37,38 The relative binding free energy 

between benzene and p-xylene was calculated using the difference between the alchemical 

free energy change in water and in the protein environment. The alchemical free energy 

change in water was calculated using pairwise GSLD with continuous λ. Calculating the 

alchemical free energy in the protein environment is challenging, even though the binding 

site of T4 lysozyme is a relatively simple non-polar pocket and the alchemical change from 

benzene to p-xylene is small. This challenge arises from the fact that T4 lysozyme has a 

conformational change for the side-chain dihedral angle χ (N-CA-CB-CG1) of residue 

Val111, which accompanies the alchemical transformation from benzene to p-xylene.46 

When T4 lysozyme binds with benzene (PDB ID: 181L), the dihedral angle stays in the 

trans conformation (χ ≈ −180°). When it binds with p-xylene (PDB ID: 187L), the dihedral 

angle changes into the gauche conformation (χ ≈ −60°). Failing to sample these two 

relevant conformations in a free energy calculation would cause a quasi-nonergodicity 

problem, i.e, the calculated free energy will depend on which conformation is used as the 

starting conformation.46,48 To address the problem, several methods have been developed. 

These methods include enhanced sampling methods such as the 2-dimensional replica 

exchange method (REM)47 and the free energy perturbation/replica exchange with solute 

tempering (FEP/REST) method,48 and the potential of mean force (PMF) method, which 

was first introduced by Tobias and Brooks for addressing a similar problem in 198949 and 

rediscovered as the “confine-and-release” method by Mobley et al. in 2007.46 Here we 

combined the PMF method with GSLD to calculate the alchemical free energy changes 

between benzene and p-xylene in the protein environment.

To make our computational protocol clear, we reformulated the PMF method46,49 using 

conditional probability as shown in Appendix B. The free energy change ΔG(χ*) was 

calculated using pairwise GSLD with a harmonic restraint potential on χ to keep it near χ* 

during the pairwise GSLD simulation. The force constant of the harmonic restraint potential 

was 1195.3 kcal/mol · radius−2. In our calculations, we chose χ* to be −180° and −60°, 

although the final calculated result ΔG did not depend on the choice of χ*. In the pairwise 

GSLD, λ was chosen to be a discrete variable specified by the set {l1, l2, …, l16}. λ = l1 

corresponds to the physical state that the ligand is benzene and λ = l16 corresponds to the 

physical state that the ligand is p-xylene. When λ was changed from l1 to l16, the ligand was 

alchemically transformed from benzene into p-xylene. During the alchemical 

transformation, the partial charges on benzene atoms were turned off first. Then the benzene 

atoms were transformed into p-xylene atoms before the partial charges on p-xylene atoms 

were turned on. A soft-core Lennard-Jones potential was used during the transformation.50 

The formula used for both electrostatic potential and the soft-core Lennard-Jones potential is 

shown in Table S1. The potential energy scaling factors used for each state λ = li are also 

shown in Table S1. The free energy –β−1lnP(χ*|λ = l1) and the free energy –β−1lnP(χ*|λ = 
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l16) were computed by calculating the potential of mean force (PMF) with respect to χ when 

T4 lysozyme binds with benzene (λ = l1) and with p-xylene (λ = l16), respectively. The 

simulations was run inside a TIP3P water box with a size of 79.0Å × 56.4Å × 55.4Å and 

rectangular periodic boundary conditions were used. The water box had 7112 water 

molecules in total. The CHARMM36 force field51 was used for T4 lysozyme and the 

CHARMM General Force Field (CGenFF)42 was used for the ligands. The nonbonded 

interaction options were the same as that used in the relative hydration free energy 

calculations.

4 Results

4.1 The Harmonic System

As shown in Figure 2(A), GSLD is able to sample the continuous λ well for both 

symmetrical and asymmetrical systems. Figure 2(B) shows the estimated free energy 

changes ΔG using the Rao-Blackwell estimator and two empirical estimators with cutoff 

values of 0.9 and 0.99. For the symmetrical system, the true value for the free energy 

changes is equal to 0 kcal/mol because of the symmetry. The RBE and the empirical 

estimator with cutoff of 0.9 converge to 0 kcal/mol within 2 ns, whereas the empirical 

estimator with cutoff of 0.99 needs 10 ns of simulation to converge to 0 kcal/mol. Moreover 

the RBE has the smallest variance among the three estimators. For the asymmetrical system, 

the empirical estimator with a cutoff of 0.9 converges to −0.41 ± 0.03 kcal/mol and the 

empirical estimator with a cutoff of 0.99 converges to −0.50 ± 0.06 kcal/mol, whereas the 

result from numerical integration is −0.56 kcal/mol. This shows that the results of empirical 

estimators can be biased and the bias depends on the value of the cutoff. Increasing the 

cutoff value decreases the estimation bias, but it increases the estimation variance because a 

higher cutoff decreases the number of valid samples used by the empirical estimator. In 

contrast, the result of RBE converges to −0.56 ± 0.02 kcal/mol, which is closest to the true 

value and also has the smallest variance. The detailed numerical results can be found in the 

Table S2. Overall, the results suggest that, for this harmonic system, the GSLD is able to 

extensively sample the alchemical states and the RBE is better than the empirical estimator 

in terms of both bias and variance.

4.2 Relative Hydration Free Energies for Three Benzene Derivatives

Results of pairwise GSLD simulations in vacuum and in water are shown in Figure S1 and 

Figure 3, respectively. The pairwise GSLD is able to sample the alchemical states very well 

for both the simulations in vacuum and the simulations in water. For the simulation in 

vacuum, the RBE outperforms empirical estimators in terms of both bias and variance, as in 

the harmonic system. For the simulation in water, the RBE has a similar variance to that of 

the empirical estimators, because samples from the simulation in water are more correlated 

than those from the simulations in vacuum. Nevertheless, the RBE is still better than the 

empirical estimators in terms of the bias. As shown in Figure 3(B), the empirical estimator 

depends on the cutoff. As the cutoff increases from 0.9 to 0.99, the empirical estimator 

results move towards to the RBE results. As an example, for the alchemical change from 

benzene to benzaldehyde, when the cutoff increases from 0.9 to 0.99, the empirical estimator 

result changes from 2.20 ± 0.08 kcal/mol to 2.60 ± .08 kcal/mol. The RBE result is 3.04 
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± 0.09 kcal/mol, which is indistinguishable from the FEP/MBAR result 3.01 ± 0.02 kcal/

mol. The detailed numerical values from pairwise GSLD and FEP/MBAR can be found in 

the Table S3 and S4.

The simulation results in vacuum and in water from generalized GSLD for multiple ligands 

are shown in Figure S2 and Figure 4, respectively. The ternary plots52 of (λ1, λ2, λ3) 

trajectories show that the generalized GSLD is able to explore the hybrid ligand 

configuration space of (λ1, λ2, λ3): the unit simplex { , 0 ≤ λi ≤ 1 

for i = 1, 2, 3}, in both vacuum and water. In vacuum, the configuration space (λ1, λ2, λ3) is 

sampled rather uniformly, while in water, the configuration space is sampled mostly close to 

the physical states, i.e. the corners of the ternary plot in Figure 4. This difference is because 

the biasing potential energy used in this study is a linear biasing potential . With the 

linear biasing potential, the biased free energy landscape over the configuration space (λ1, 

λ2, λ3) in vacuum is almost flat. In water, the corresponding biased free energy landscape is 

not flat due to the polarization energy of the solvent interacting with reactant and product 

states, and the biased free energies of the physical states is lower than the intermediate non-

physical states, which explains why the sampled (λ1, λ2, λ3) are mostly around the physical 

states. Based on the trajectory from the generalized GSLD simulation, the calculated free 

energy using RBE and empirical estimators are shown in Figure S2 (B) and Figure 4(B). 

These results suggests again that, compared with the empirical estimators, the RBE is a 

better estimator as it has no bias and a smaller variance. The detailed numerical results from 

the generalized GSLD for multiple ligands is shown in the Table S5.

The calculated relative hydration free energies for the three benzene derivatives using 

pairwise GSLD, generalized GSLD for multiple ligands and FEP/MBAR methods are 

combined in Table 1. The results from all three methods agree well with each other. The 

total simulation time in water for calculating all three relative hydration free energies is 9 ns 

for pairwise GSLD, 3 ns for generalized GSLD for multiple ligands and 33 ns for FEP/

MBAR methods, which suggests the efficacy of the generalized GSLD for multiple ligands.

4.3 Relative Binding Free Energy of Benzene and p-Xylene with T4 Lysozyme

The λ trajectories from the simulation with T4 lysozyme using pairwise GSLD and the free 

energy estimations using RBE are shown in Figure 5. For both the case where χ is restricted 

to the trans conformation (χ* = −180°) and the case where χ is restricted to the gauche (χ* 

= −60°) conformation, the pairwise GSLD is able to sample the alchemical switching 

variable λ well and the RBE estimations converge in 10 ns of simulation. When χ is 

restricted to the trans conformation, the estimated free energy converges to −8.40 ± 0.46 

kcal/mol. When χ is restricted in the gauche conformation, the estimated free energy 

converges to −10.60 ± 0.36 kcal/mol. These two free energy estimations are different by 

2.20 kcal/mol because the dihedral angle χ is restricted to different conformations. Based on 

the PMF method, in order to get the free energy corresponding to the case where χ is not 

restricted, the restricting free energies (−β−1 ln P(χ*|λ = l1) and –β−1 ln P(χ*|λ = l16)) need 

to be considered and used to correct the free energy ΔG(χ*) using equation 21 in Appendix 

B. These corrections are shown in Table 2. After the corrections, the estimated free energy 

ΔG is −9.27 ± 0.50 kcal/mol when χ* = −180° and −9.01 ± 0.40 kcal/mol when χ* = −60°. 
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Therefore, after the corrections, the estimated free energy differences (ΔG) agree very well 

within statistical uncertainty. Based on the these corrected values, the relative binding free 

energies (ΔΔG) are 0.27 ± 0.56 kcal/mol and 0.43 ± 0.46 kcal/mol when χ* = −180° and χ* 

= −60°, respectively. These results are close to the relative binding free energy from 

experiment, which is 0.52 ± 0.22 kcal/mol.37,38

5 Discussion and Conclusion

Although the GSLD and RBE are applied only for calculating relative hydration free energy 

and relative binding free energy in this study, they could also be used for other purposes. 

One of the applications would be for calculating the pKa value of protein amino acids by 

combining with the constant pH molecular dynamics methods (CPHMD),18,53,54 as several 

CPHMD methods are based on λ-dynamics. Furthermore, the GSLD framework presented 

here is not limited to alchemical free energy calculations. The λ variable could be replaced 

by the pH values, which would correspond to pH generalized ensemble simulations. In these 

cases, we can also derive the corresponding RBE similarly.

In this study, we have presented the formalism for the Gibbs sampler based λ-dynamics 

(GSLD) and the Rao-Blackwell estimator (RBE) for alchemical free energy calculations. 

These methods were successfully demonstrated for three test cases of increasing complexity. 

The GSLD, a generalized ensemble sampling method, works for the case where λ is a 

discrete variable and for the case where λ is considered to be continuous. When λ is 

continuous, the GSLD can be generalized to calculate free energies for multiple ligands 

simultaneously in one simulation. The RBE not only eliminates the bias problem of the 

empirical estimator used in the original λ-dynamics, but also has smaller estimation 

variance than the empirical estimator. Moreover, we have also shown that the RBE can be 

used to derive the MBAR/UWHAM equations, which provides new understanding for the 

MBAR/UWHAM method.21–23
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Appendix

A. A Wang-Landau like algorithm to automatically determine the biasing 

potential G1b used in pairwise GSLD when λ is continuous

The purpose of the biasing potential  used in the pairwise GSLD when λ is continuous is 

to make the biased free energy landscape over the λ space flat, i.e. to make the simulation 

spend about equal time at all λ values between 0 and 1. In current study, a linear biasing 

potential  is utilized, because with the linear biasing potential the biased free energy 

landscape over λ space is quite flat, i.e. the energy barrier between the two physical states λ 
= 0 and λ = 1 is small enough that the λ is well sampled across the interval [0, 1]. If the 

linear biasing potential energy cannot make the biased free energy landscape over the λ 
space flat enough, a quadratic form of biasing potential can be utilized as in Hayes et al.’s 

flattening method.19 The biasing potential  is determined automatically using the 

following Wang-Landau like algorithm:

• Set the initial biasing potential , the decay parameter α such that 

0 < α < 1 (α = 0.998 in this study), the biasing potential increment Δ in each step 

(Δ = 2.0 kcal/mol in this study) and the number of steps R (R = 3000 in this 

study). Initialize the starting state (λ0, , X0).

• For t = 1 to R:

Sample ( , Xt) from the conditional distribution:  by 

running molecular dynamics simulations and then sample λt from the 
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conditional distribution . Set 

 and Δ(t) = α * Δ(t − 1).

• The final value of  from the above step is fixed and used as the biasing 

potential in following simulations.

B. Reformulation of the PMF method using conditional probability

The PMF method requires prior knowledge of which slow degree of freedom is affecting the 

free energy calculation. In the context of T4 lysozyme, the slow degree of freedom is the 

side-chain dihedral angle N-CA-CB-CG1 (χ) of residue Val111. The joint distribution of (χ, 
λ) : P(χ, λ) is of most interest, as it encapsulates all the relevant information required to 

calculate the free energy ΔG = –β−1ln(P(λ = l16)/P(λ = l1)). Based on the chain rule of 

conditional probability, we have the following equations:

(19)

Combining the above two equation gives us:

(20)

Therefore, we can calculate the free energy ΔG as

(21)

where ΔG(χ = χ*) is alchemical free energy change when χ is fixed at the value χ*; –β
−1lnP(χ = χ*|λ = l1) is the free energy required to restrict the dihedral angle χ at the value 

χ* when T4 lysozyme binds with benzene, i.e, λ = l1; –β−1lnP(χ = χ*|λ = l16) is the 

corresponding free energy required when T4 lysozyme binds with p-xylene, i.e, λ = l16. The 

above equation holds regardless of the value of χ*.
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Figure 1. 
The thermodynamic cycle used for calculating a relative binding free energy between ligand 

L0 and L1 with a receptor R.
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Figure 2. 
(A) λ trajectories for the symmetrical harmonic system (top) and the asymmetrical harmonic 

system (bottom); (B) Free energy estimations for the symmetrical system (top) and the 

asymmetrical system (bottom) using the empirical estimators with a cutoff of 0.9 and 0.99 

and the Rao-Blackwell estimator. The horizontal black line is the calculated free energy 

change using numerical integration.
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Figure 3. 
(A) λ trajectories from simulations in water using GSLD for alchemical changes benzene to 

phenol (top), benzene to benzaldehyde (middle), and phenol to benzaldehyde (bottom). (B) 
Estimated alchemical free energy changes in water using empirical estimators with different 

cutoff values and the Rao-Blackwell estimator for alchemical changes benzene to phenol 

(top), benzene to benzaldehyde (middle), and phenol to benzaldehyde (bottom).
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Figure 4. 
(A) Ternary plot of (λ1, λ2, λ3) sampled using GSLD for multiple ligands in water. (B) 
Estimated free energy changes in water for alchemical changes: benzene to benzaldehyde 

(top) and phenol to benzaldehyde (bottom) using empirical estimator with different cutoff 

values and RBE.
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Figure 5. 
(A) λ trajectories for simulations with T4 lysozyme using pairwise GSLD for the χ* = 

−180° (top) and χ* = −60° (bottom); (B) Free energy estimation using RBE for χ* = −180° 

(top) and χ* = −60° (bottom).
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Table 1

Comparison of Relative Hydration Free Energies (ΔΔG in kcal/mol) for The Three Benzene Derivatives. The 

total simulation time in water for each method is shown in parenthesis.

substituents change ΔΔGexp Pairwise GSLD ΔΔG(9ns) GSLD for Multiple Ligands ΔΔG(3ns) FEP/MBAR ΔΔG(33ns)

Benzene → Phenol −5.77 −4.46 ± 0.08 −4.53 ± 0.15 −4.46 ± 0.03

Benzene → Benzaldehyde −3.18 −3.11 ± 0.11 −3.22 ± 0.11 −3.13 ± 0.03

Phenol → Benzaldehyde 2.59 1.39 ± 0.17 1.31 ± 0.10 1.34 ± 0.14
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