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Gel layers bound to a rigid substrate are used in cell culture to
control differentiation and migration and to lower the friction
and tailor the wetting of solids. Their thickness, often considered
a negligible parameter, affects cell mechanosensing or the shape
of sessile droplets. Here, we show that the adjustment of coat-
ing thickness provides control over energy dissipation during the
spreading of flowing matter on a gel layer. We combine exper-
iments and theory to provide an analytical description of both
the statics and the dynamics of the contact line between the gel,
the liquid, and the surrounding atmosphere. We extract from this
analysis a hitherto-unknown scaling law that predicts the dynamic
contact angle between the three phases as a function of the prop-
erties of the coating and the velocity of the contact line. Finally,
we show that droplets moving on vertical substrates coated with
gel layers having linear thickness gradients drift toward regions
of higher energy dissipation. Thus, thickness control opens the
opportunity to design a priori the path followed by large droplets
moving on gel-coated substrates. Our study shows that thick-
ness is another parameter, besides surface energy and substrate
mechanics, to tune the dynamics of liquid spreading and wetting
on a compliant coating, with potential applications in dew collec-
tion and free-surface flow control.
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Gels are soft complex materials made of a polymeric scaf-
fold in which a liquid may be embedded (1). They can be

obtained from a broad catalog of macromolecules and solvents
such as poly(dimethylsiloxane) (PDMS) or water-based solutions
of poly(vinyl alcohol). In turn, gels offer great flexibility with
respect to the tuning of their mechanical and physicochemical
properties. These materials find uses in a diverse range of appli-
cations, such as cell culture (2), regenerative medicine, drug
delivery (3), or the modification of solid surfaces to control fric-
tion, wetting, and heterogeneous nucleation (4–6). Finally, gels
as coatings have attracted renewed interest in recent years due
to the opportunity they offer to generalize existing descriptions
of the wetting of solids to arbitrary materials (7–19).

Most of the reports dealing with wetting involve a sessile
droplet sitting on a solid with a large shear modulus µ0'
O(GPa) (20, 21). In this context, the normal component ~F⊥cap
of the resulting capillary force at the contact line between the
droplet, the rigid substrate, and the atmosphere deforms the
interfacial region of the solid on molecular scales. As a result,
this contribution is neglected in the rationalization of wetting
on solids, and the problem is usually described with the Young–
Dupré equation. In contrast, gels can be soft enough (1≤µ0≤
104 Pa) that ~F⊥cap deforms their surface on micrometer scales,
much larger than the size of the polymers and of the solvent
molecules. Due to progress in experimental methods, many
recent studies have investigated how the presence of this defor-
mation, known as a ridge, may alter the force balance at the

contact line and modify the shape of both the sessile drop and
the substrate (13, 14, 16–18, 22).

The presence of a soft coating also modifies wetting dynamics.
The velocity V at which a contact line between a solid, a liq-
uid, and a gas moves on a rigid substrate coated with a soft elas-
tomeric layer is smaller than the velocity of the contact line on
the bare substrate. This velocity reduction, known as viscoelastic
braking (23), results from an additional mechanism of energy dis-
sipation due to the viscoelasticity of the gel. As a consequence,
the spreading of liquids and the motion of droplets are slowed
down. Nonetheless, this description of the problem is incom-
plete: Fig. 1 B and C demonstrate that the velocity of a water
droplet moving down a vertical glass slide coated with a soft vis-
coelastic silicone layer (µ0 = 1.1 kPa, used for all experiments
in this study; see Materials and Methods for a rheological char-
acterization) also decreases as the elastomer thickness increases.
The purpose of this work is to uncover the link between substrate
thickness and the motion of a contact line.

Results
As we want to understand a dynamic wetting observation, we
must characterize the reference state, that is, the statics of wet-
ting. We investigate the properties of the region surrounding the
contact line between a sessile droplet and a silicone elastomer
layer using both side-view microscopy to measure the apparent
contact angle at equilibrium θeq and a noninvasive optical
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Fig. 1. Sliding of a droplet on a soft layer. (A) A water droplet is deposited
on the surface of a glass slide covered with a PDMS layer of thickness h0.
The glass slide is inclined to the vertical at t = 0. (B and C) Motion of 2-µL
droplets on glass slides covered with PDMS layers 9 and 270 µm thick. Labels:
time in minutes elapsed since inclination. (Scale bar: 1 mm.)

method based on Schlieren photography (24) (Fig. 2A). We find
that θeq depends on the contact radius R of the droplet on the
elastomer at constant sample thickness h0, but it is independent
of h0 for constant R (Fig. 2 B and C), accounting for measure-
ment uncertainties. For large droplets, θeq tends toward a sat-
uration at a value θ∞' 106◦. The Schlieren results show that
the connection between the ridge and the flat elastomer sur-
face far from the droplet is monotonically decreasing for large
thicknesses, while the surface profile shows a submicrometer sur-
face depression in the vicinity of the ridge at small thicknesses,
known as a microtrough (13, 14). The microtrough results from
the incompressibility of the gel, which has to accommodate the
Poisson effect at small thicknesses under the zero-motion con-
straint at its basis due to its bonding to a rigid substrate. Its depth
ζ increases with a decrease of h0 and an increase of the droplet
radius R (SI Appendix).

We interpret these observations with an analytical theoreti-
cal description of the statics of elastowetting in the limit of lin-
ear elasticity developed recently by Dervaux and Limat (25) that
we extend to account for finite-depth effects (SI Appendix). The
model (and the model used in the dynamic context later) con-
siders a rivulet, that is, a column of liquid whose axis of sym-
metry is parallel to the surface of the gel, sitting on the surface
of the coating. As the angles that we measure are close to π

2
,

we assume that the interfacial tensions of the solid with the liq-
uid and the gas are identical, γSL = γSV = γs , and this quantity
is the only fitting parameter. The model is able to capture the
surface profiles of the elastomer for all of the thicknesses that
we investigate (Fig. 2D), as well as the evolution of ζ as a func-
tion of h0 and R (SI Appendix). The model indicates that γs =
40 mN·m−1, a value comparable to those reported earlier (17,
26). To sum up, the surface profile of the elastomer layer in the
vicinity of the contact line depends on layer thickness. In con-
trast, the apparent equilibrium contact angle θeq is independent
of the geometry of the gel layer; it depends only on the surface
energies of the materials, a feature that is predicted by the model
(SI Appendix). The analysis of the statics of wetting allows us to
define the reference state of the study of wetting dynamics as
a function of the thickness of the elastomer layer, to which we
now turn.

Wetting dynamics are characterized by the measurement of
the dependence of the difference ∆θ= θeq − θdyn , the latter
being the dynamic contact angle, on the velocity of the con-
tact line V (21). As θeq >

π
2

, we study a receding contact
line surrounding a droplet with an initial contact radius R>>
1 mm that we deflate at a constant flow rate. We recall that
θeq reaches its saturation value θ∞ for such large droplets. For
all thicknesses, ∆θ increases with an increase of V (Fig. 3A).
The dynamic contact angle differs by almost 30◦ from the static

equilibrium contact angle for the largest velocities we investi-
gated. The two curves show that ∆θ is also a function of thick-
ness: It grows by 30% with an augmentation of h0 from 10
to ∼100 µm (Fig. 3B). ∆θ saturates to its velocity-dependent
value when h0> 100 µm. To interpret these observations, we
recall that, in general, large energy dissipation induces large
values for ∆θ at fixed contact line velocity (21). In this con-
text, our results show that the thinner the elastomer is, the
more energy dissipation is reduced. Voué et al. (27) reported
a similar observation for a silicone oil wetting a silicone elas-
tomer. As the liquid can permeate through the gel in their sys-
tem, the wetting dynamics they report are difficult to inter-
pret, especially since the thickness of their elastomer layers is
of the order of 10 µm. Permeation does not occur in our sys-
tem. We now unveil how thickness and dissipation are related in
elastowetting.

To identify the mechanism relating dissipation to the thick-
ness of the coating, we develop an analytical model based on
linear viscoelasticity that is a generalization to large velocities
and arbitrary rheology of a framework proposed by Long et al.
(10). In this model, dissipation in the solid balances the energy
that sets the contact line in motion. We assume that the shear
relaxation modulus of the soft layer is described by the Chasset–
Thirion model, µ(ω) =G ′(ω) + iG ′′(ω) =µ0(1 + (iωτ)m) (10).
We find this assumption to be valid for our material with µ0 =
1085± 124 Pa, m = 0.66± 0.04 and τ = 15.4± 0.4 ms (Mate-
rials and Methods). We also use the surface tension of the
solid γs = 40 mN·m−1 obtained from the statics. The model
predicts that the function describing the dependence of the
dynamic contact angle on the properties of the substrate and
the velocity of the contact line G(θdyn) =

cos(θeq )−cos(θdyn )

sin2(θdyn )
is

proportional to Vm , in excellent agreement with the data
(Fig. 3A), with an adjusted exponent madj = 0.62± 0.02 close
to the experimental value of m = 0.66± 0.04 we obtain from
rheology (Fig. 3 A, Inset). The full model also captures the
dependence of G(θdyn) on h0 at constant velocity of the con-
tact line (Fig. 3B). Finally, we note that we do not observe
effects related to the Laplace pressure inside the droplet. Thus,
the 2D results we obtain with the model are valid in 3D
(SI Appendix).

We can extract from the model scaling laws that describe the
asymptotic behavior of G(θdyn) for thick and thin coatings. We
assume that the problem is invariant with a translation along the
contact line. Our considerations are based on the Fourier trans-
form of the problem. The power per unit length of the contact
line injected by the driving capillary force is:

Pin ∝ γV (cos(θdyn)− cos(θeq)) [1]

where γ is the interfacial tension of the liquid–gas interface.
Power Pin is balanced by dissipation in the gel. Using the
Chasset–Thirion model, we estimate the power dissipated in the
gel per unit volume:

pdis ∝µ0(ωτ)mε2ω [2]

where ω is a typical frequency that we assume to be of the order
of V

`
, with ` a length scale to be determined. The dissipated

power per unit length of the contact line is obtained by integrat-
ing Eq. 2 over `2, as this length scale also corresponds to the typ-
ical vertical displacement experienced by the solid as well as the
horizontal extent of the moving ridge. Taking ε= γ

γs
sin(θdyn) as

a typical scale for strains:

Pdis ∝µ0

(
V τ

`

)m

V `

(
γ

γs
sin(θdyn)

)2

[3]
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Fig. 2. Experimental setup and characterization of the static three-phase contact line. (A) The region surrounding the contact line between water, the
elastomer, and the atmosphere is visualized simultaneously from the side with camera C1 and from the bottom with camera C2 that captures the output of
a Schlieren photography setup. The former allows us to measure the contact angle θ and the contact radius between the droplet and the solid R. The latter
is used as a surface profilometer along the yellow dashed line. (Scale bars: 0.5 mm.) (B and C) Dependence of the equilibrium value of the contact angle
θeq on R for four different layer thicknesses and on the thickness h0 of the soft layer for submillimetric and supramillimetric droplets. In C, the dashed lines
represent a spread of 1 standard deviation around the average value of θeq over all thicknesses. (D) Dependence of the surface position ζ on the distance
to the contact line for two different thicknesses. The origin of the x axis is arbitrary; we use it to note that part of the contact line is hidden to the Schlieren
setup by the droplet as θeq >π/2. Dashed lines: predictions of our model.

Equating Eqs. 1 and 3, we find that:

G(θdyn)∝
γ

γ2
s

µ0`

(
V τ

`

)m

[4]

The length ` is related to the balance between capillarity and
elasticity in the system. Its expression depends on whether the
coating has a finite thickness or not. We can express ` in the limit
of thin and thick samples by investigating the asymptotics of the
amplitude A of the Fourier transform of the surface vertical dis-
placement field ζ̃(k) (SI Appendix, Eq. S20):

A(k) =
1

γsk2 +µ0K (k)−1 [5]

where k is the wavenumber and:

K (k) = (2k)−1 sinh(2h0k)− 2h0k

2h2
0k

2 + cosh(2h0k) + 1
. [6]

For large thicknesses, h0→∞, and we obtain that K (k)→
(2k)−1. Then:

A(k)→ 1

γsk2

1

1 + 2 µ0
γsk

. [7]

The characteristic length scale in Eq. 7 is `= γs
µ0

, that is, the elas-
tocapillary length. Injecting this value of ` in Eq. 4, we find the
scaling predicted 20 y ago by Long et al. (10):

G(θdyn)∝
γ

γs

(
µ0V τ

γs

)m

. [8]

In the limit of thin coatings, we carry out the Taylor expansion of
K (k) around h0 = 0, and we keep the first nonvanishing term:

K (k)∼ h3
0k

2 [9]

We find that the characteristic length scale is `=
(
γsh

3
0

µ0

)1/4
in

this case. Injecting ` in Eq. 3, we obtain the following expression
for the dissipated power:
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Pdiss ∝µ0ε
2V (V τ)m

(
γsh

3
0

µ0

)(1−m)/4

[10]

and we obtain a scaling law reflecting thickness effects on the
dynamic contact angle for thin coatings:

G(θdyn)∝
γLV
γs

(
V τµ0

γs

)m(
h0µ0

γs

)3(1−m)/4

[11]

Eq. 11 can be tested by rescaling the experimental data as in
Fig. 3C. We see that the data follow Eq. 11 when h0<<`s =
γs
µ0

. When h0>>`s , the data are independent of h0, and they
follow Eq. 8, thus validating Long et al.’s model (10). Thus,
our results show that dissipation during the wetting of a soft
coating by a liquid can be engineered in a predictable way by
adjusting the thickness of the layer. Finally, the range of thick-
nesses over which we observe a dependence of dissipation on
h0 corresponds to the typical range of coating thicknesses in
applications.

Discussion
The prediction that the dynamic contact angle at a contact line
moving on a soft coating is closer to the value of the static contact
angle as the thickness of the coating decreases may seem coun-

terintuitive at first. To gain more insight, we shall now compare
contact line motion for a rivulet on a gel layer and on a liquid
substrate of similar thickness hl . In the latter case, continuity of
stresses and velocities is enforced at all of the interfaces. Momen-
tum diffuses from the droplet to the bulk of the liquid substrate
through the droplet–substrate interface, and stresses and dissipa-
tion do not diverge at the contact line. Energy dissipation occurs
in the bulk of both the droplet and the substrate. In the lat-
ter, the dissipation power per unit length along the contact line
between the rivulet and the gel scales as Pvis ∝ ηV 2 R0(t)

hl
(28),

where R0(t) is the radius of the spreading rivulet; we assume that
hl remains constant over time. Thus, dissipation increases with a
decrease of hl (29, 30). In contrast, at the interface between a
gel coating and a liquid, we enforce the no-slip boundary con-
dition. Thus, velocities are zero everywhere along this inter-
face, and the contact line is the locus of most dissipation. In
this context, we show that dissipation follows Eq. 10. As m <
1, dissipation decreases with a decrease of the thickness h0 of
the sample.

We also compute the prediction for the dependence of G
(θdyn) using another model proposed recently by Karpitschka et
al. (26). This model captures well the data for ∆θ(V ) at large
thickness, provided we adjust the surface tension of the solid
to a value different from the one we obtain in our study of the

A B

C

Fig. 3. Characterization of the dynamics of the receding three-phase contact line on soft elastic layers. (A) Dependence of the contact angle difference
θeq− θdyn on the velocity of the receding contact line on two layers of thickness h0 = 15 and 900 µm. Dashed lines: predictions based on our model. (A,
Inset) Log–log plot of the function G(θdyn) as a function of the contact-line velocity for the same systems. Dashed line: power-law fit with an exponent
m = 0.62± 0.02. (B) Dependence of θeq− θdyn on h0 at constant receding velocity V = 0.1 mm·s−1. Dashed lines: predictions of our model for two values
of the solid surface tension γs. (C) Test of Eq. 11, relating the dynamic contact angle to the velocity of the contact line and the thickness of the sample
in the small-thickness regime against experimental data. Dashed line: Eq. 11, with m = 0.62± 0.02 and a slope of 2. The horizontal line is a guide for
the eyes.
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statics of wetting. Nonetheless, it does not capture the decreasing
trend of ∆θ at small thicknesses (SI Appendix). In their model,
Karpitschka et al. impose that capillary forces are at equilibrium
at the moving contact line at all times. The failure of their model
to capture our data suggests that this constraint is not true any-
more for droplets moving on thin coatings. The question of the
validity of this assumption at all thicknesses remains open, as its
answer lies in a second-order analysis of the dynamics of elas-
towetting that has yet to be performed.

We take advantage of our findings to control the trajectory of
liquids moving at the surface of solid substrates. We coat a glass
slide with a soft elastomeric layer with a thickness gradient (Fig.
4A). We place a water droplet at one extremity of the glass slide
above the thinnest part of the coating. Then, we incline the glass
slide to the vertical, the thickness gradient being perpendicular to
gravity. The droplet slides down, and it drifts from the thinnest
regions toward the thickest ones. Drift results from the depen-
dence of dissipation in the gel on h0: the droplet experiences a
larger braking over the thick part of the coating than over the
thin region (Fig. 4B). Thus, the droplet is subject to a torque
that leads to a global drift toward the thick region. In our system,
drift will be observed if the gradient starts from h0< 100 µm. If
the thin part of the thickness gradient is thicker than 100 µm,
we expect no drift, as is observed in the experiments. Finally, we
observe no spontaneous motion of droplets when the glass slide
remains horizontal for a long time. This fact highlights the differ-
ence between our results, whose origin lies in the variation of the
dynamic contact angle around the droplet, and those reported by
Style et al. (31) concerning droplet durotaxis, which occurs due to
changes of the static contact angle along the droplet perimeter.

Our findings open the possibility to design soft coatings whose
mechanical dissipation can be adjusted not only by formula-
tion but also by an appropriate choice of thickness. We envi-
sion improvements in applications such as dew collection, where
the use of soft layers has been shown to improve the nucle-
ation rate of condensation droplets (5); the use of thin layers will
help increase the up-time of the condensation cell. We also antic-
ipate the use of our results to control free-surface flows such
as droplet impact or gravity currents passively with thickness-
gradient coatings.
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Fig. 4. Drifting of a droplet moving down a vertical glass slide covered
with a soft layer of increasing thickness. (A) A 2-µL droplet moving over a
coating with a thickness gradient ∇h∼ 70 µm·mm−1. (Scale bar: 1 mm.)
(B) Schematic explaining the mechanism leading to droplet drift during
forced motion. The black dashed line is the trajectory of the droplet; the
white dashed line is the vertical. The orange arrow represents the rotation
of the droplet as it moves down the coating and experiences differences in
dissipation along its contour, in a fashion analogous to a car experiencing
braking only on one of its sides.

Fig. 5. Small-amplitude oscillatory shear measurement of the mechanical
properties of the Sylgard 527 elastomer with a strain-controlled rheometer
(Physica MCR 500; Anton Paar). Dashed line: best fit of the Chasset–Thirion
model, µ(ω) = G′(ω) + iG′′(ω) =µ0(1 + (iωτ )m), to the experimental data.
µ0 = 1085± 124 Pa, m = 0.66± 0.04 and τ = 15.4± 0.4 ms.

Materials and Methods
Gel Preparation and Characterization. All of the experiments are performed
with Millipore-Q purified water (γ = 72 mN/m) on PDMS substrates made
from the commercial elastomer Sylgard 527 (Dow Corning). Sylgard 527 is
a two-component elastomer kit composed of a base and a cross-linker. The
two liquids are mixed at a manufacturer-recommended 1:1 ratio, to respect
cross-linking stoichiometry, with a magnetic stirrer for∼30 min. The mixture
is then left to degas under vacuum (P' 50 mbar) for at least 1 h. We obtain
thin flat PDMS gel films (thickness h0 < 100µm) by spin-coating directly the
degassed mixture on glass slides. Thickness is controlled by tuning the spin-
ning speed from 100 to 3,400 rpm. For thick flat films (thickness > 100µm),
the thickness is tuned by changing the elastomer volume poured onto the
glass slide mounted with movable walls.

For the thickness gradient experiment, the Sylgard mixture is poured into
a mold containing a titled glass slide. Next, the elastomer is cross-linked at
65 ◦C in an oven for 24 h. This protocol produces transparent PDMS films
strongly bound to glass slides. The thickness of the films is measured with
a 3D Profiler (FOCAL 3D Pilot; FOCAL Nanotech) operating in white light
scanning mode with a precision of the order of a nanometer.

Fig. 5 shows the rheological data we obtain for Sylgard 527 measured
with a strain-controlled rheometer (Physica MCR 500; Anton Paar). The elas-
tomer is cross-linked directly between the Peltier plate and the plate tool
(PP20-MRD, d = 20 mm; Anton Paar) at T = 65◦ C for 4 h. The sample is then
left to cool down to 25± 0.2◦ C before running the test. The gap is set at
0.6 mm, and the strain is fixed at 1%. A fit of the Chasset–Thirion model,
µ(ω) = G′(ω) + iG′′(ω) =µ0(1 + (iωτ )m), to the experimental data provides
the parameters for the frequency-dependent mechanical response of the
gel. We also characterize the contact angle hysteresis of water on Sylgard
527, and we find it to be of the order of 3–4◦.

Quantitative Schlieren Optics. We build an observation platform for the
measurements of out-of-plane deformations of the soft film based on
Schlieren optics. A white LED light source (Luxeon; Lumileds) is focused on
a mechanical slit (VA100/M; Thor Labs; size 1× 13.6 mm) by a condenser
L1. The light beam from the slit is then collimated by a lens L2 (diameter
dL2 = 25.4 mm; focal length f = 101.6 mm; MPD 149-P01; Thor Labs). The
parallel light beam goes through the sample between mirror prisms M1
and M2. It is then collected by a third lens L3 (LB1374-B; Thor Labs). To
obtain a Schlieren setup, a knife blade is placed at the focal point of lens
L3 and hides part of the focal region. The blade filters those light beams
that are deviated because of surface deformations of the gel sample due
to the presence of the droplet. Images of the filtered focal point are cap-
tured with a digital camera (DFK 23UX174; Imaging Source) equipped with
a lens (Avenir TV Zoom Lens F1.8). The CCD sensor of the camera has a
dimension of 1280× 960 pixels, resulting in a lateral spatial resolution of
10.2 µm·px−1.

In principle, the slit light source is perfectly refocused on the knife blade
plane as illustrated by the green light beam drawn in Fig. 2A, as long as
there is no disturbance on the light path. However, changes in the surface
slope of the gel film deflect the light beam, and the conjugated image
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is thus shifted by a distance ∆a in the focal plane, as illustrated by the
red beam shown in Fig. 2A. Under the small angle approximation, this dis-
tance is related to the deflection ε of the light beam through the Schlieren
object by the formula ∆a = fε, where f is the focal length of L3. For an
accurate quantification of the surface profile, we carry out a three-step
measurement. First, a sequence of pictures is recorded at different vertical
blade positions, and a map relating the pixel grayscale value to the deflec-
tion by the knife cutoff is built. During this step, the Schlieren object is
absent. Second, all of the camera parameters are kept identical, and pic-
tures are taken 5 min after the drop fully relaxes on the soft substrate
(for the static deformation measurement). Then, the grayscale value of the
Schlieren picture is compared with the calibration map, and we obtain a
deflection map. Finally, by combining the deflection relation and Snell’s
law, the map of the surface slope is reconstructed. Our system has a deflec-
tion angle sensitivity of 0.0007 rad, and we could measure angles up to
0.05 rad.

Data Acquisition. To study the statics of wetting, we enclose the sample
in a transparent glass chamber (75× 50× 8 mm) to control humidity and
avoid evaporation. Its lid could easily be removed to place drops. For exper-
iments, a reservoir of water is enclosed together with the PDMS slides to
saturate the atmosphere of the glass chamber. All of the measurements
are performed 5 min after deposition. For the spreading dynamic experi-
ments, a side view camera (DMK 23UV024; Imaging Source; C1 in Fig. 2A)
equipped with a lens (TV Lens 50 mm, f1:2.8; Ricoh) and two tube sets
(C Mount TV Lens Extension Tube Set; 40 mm) is used. The spatial reso-
lution of C1 is 5.5 µm·px−1. By using a Gaussian subpixel detection tech-
nique, the error in the contact line velocity determination is ∼10 µm·s−1.
All of the drops are deposited by using a syringe which is connected to a
pump (PUMP 33; Harvard Apparatus) at room temperature. For the sliding
and drifting experiments on tilted slides, droplets are deposited by using
a micropipette (0.5–10 µL; FinnPipette) at ambient temperature. A front
view camera (DFK 23UX174; Imaging Source) equipped with a lens (TV Lens;
50 mm f1:2.8; Ricoh) and one tube set (C Mount TV Lens Extension Tube Set;

20 mm), with a spatial resolution of 15.9 µm·px−1 is used to track the sliding
droplets.

Model. We use two models, one for the statics and one for the dynamics.
The model describing the statics is built in the framework of linear elastic-
ity, and we account for the surface tension of the solid. We assume that the
system is translation-invariant, and we describe an x–y slice of the substrate
subjected to the capillary force of a liquid. We model the latter as a con-
centrated load on an elastic half-space of depth h0. We are interested in
two situations, the single contact line and the rivulet, that is, a column of
liquid that has two straight contact lines with the substrates. We focus on
the far-field vertical displacement, for which possible divergences in the dis-
placements at the contact line do not matter (25). We use Fourier transforms
to solve the biharmonic equation that describes the problem, and we com-
pare the data with the outcomes of the description of the rivulet. The static
model also accounts for the small hysteresis that we measure in experiments
in the form of a force tangential to the surface.

The model for the dynamics is built in the framework of linear viscoelas-
ticity. We use the surface tension of the solid deduced from the study of the
statics as an input to the model. As experiments indicate that the properties
of the motion of the contact line are independent of the size of the droplet,
we focus on the case of a single contact line. We compute the dependence
of the vertical displacement on the velocity of the contact line using a similar
procedure to the statics resorting to Fourier transforms. We then compare
the power injected in the system due to capillarity with the dissipated power
in the substrate due to its viscoelasticity.
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