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Classification and interaction in random forests
Danielle Deniskoa,b and Michael M. Hoffmana,b,c,1

Suppose you are a physician with a patient whose
complaint could arise frommultiple diseases. To attain
a specific diagnosis, you might ask yourself a series of
yes/no questions depending on observed features de-
scribing the patient, such as clinical test results and
reported symptoms. As some questions rule out cer-
tain diagnoses early on, each answer determines
which question you ask next. With about a dozen fea-
tures and extensive medical knowledge, you could
create a simple flow chart to connect and order these
questions. If you had observations of thousands of
features instead, you would probably want to auto-
mate. Machine learning methods can learn which
questions to ask about these features to classify the
entity they describe. Even when we lack prior knowl-
edge, a classifier can tell us which features are most

important and how they relate to, or interact with,
each other. Identifying interactions with large num-
bers of features poses a special challenge. In PNAS,
Basu et al. (1) address this problem with a new classi-
fier based on the widely used random forest tech-
nique. The new method, an iterative random forest
algorithm (iRF), increases the robustness of random
forest classifiers and provides a valuable new way to
identify important feature interactions.

Random forests came into the spotlight in 2001 af-
ter their description by Breiman (2). He was largely
influenced by previous work, especially the similar
“randomized trees” method of Amit and Geman (3),
as well as Ho’s “random decision forests” (4). Random
forests have since proven useful in many fields due to
their high predictive accuracy (5, 6). In biology and
medicine, random forests have successfully tackled a
range of problems, including predicting drug re-
sponse in cancer cell lines (7), identifying DNA-
binding proteins (8), and localizing cancer to par-
ticular tissues from a liquid biopsy (9). Random forests
have also recognized speech (10, 11) and handwritten
digits (12) with high accuracy.

Like their real-world counterparts, random forests
consist of trees. Specifically, random forests are ensem-
bles of decision trees. Morgan and Sonquist (13)
proposed the decision tree methodology in 1963, for-
malizing an intuitive approach to simplifying the anal-
ysis of multiple features during prediction tasks. We
use the decision tree on an input dataset made up of a
collection of samples, each described by features (Fig.
1A). Each sample represents an entity, such as a pro-
tein, that we want to assign to a class, such as “binds
DNA” or “does not bind DNA” (8). The decision tree
classifies samples through a forking path of decision
points (Fig. 1B). Each decision point has a rule deter-
mining which branch to take. As we move down the
tree, we stop at each decision point to apply its rule to
one of the sample’s features. Eventually, we arrive at
the end of the branch, or leaf. The leaf has a class
label, and we conclude our path through the tree by
assigning the sample to that class.
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Fig. 1. Individual decision trees vote for class outcome in a toy example random
forest. (A) This input dataset characterizes three samples, in which five features
(x1, x2, x3, x4, and x5) describe each sample. (B) A decision tree consists of
branches that fork at decision points. Each decision point has a rule that assigns a
sample to one branch or another depending on a feature value. The branches
terminate in leaves belonging to either the red class or the yellow class. This
decision tree classifies sample 1 to the red class. (C) Another decision tree, with
different rules at each decision point. This tree also classifies sample 1 to the red
class. (D) A random forest combines votes from its constituent decision trees, leading
to a final class prediction. (E) The final output prediction is again the red class.
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While we can easily use a decision tree’s rules to classify a
sample, where do those rules come from? We can construct
them using training data in which a known class accompanies
each sample’s features. Our goal is to create a tree that can later
predict classes correctly from the features alone. There are a
variety of algorithms to train decision trees (14–16), but we will
describe one of the simplest methods (17). This method mini-
mizes the heterogeneity, or impurity, of the classes of training
data assigned to each branch. First, we identify the rule that will
split the training data into two branches with the least class
impurity, and establish a decision point with this rule. We then
further subdivide the resulting branches by creating new rules in
the same way. We continue splitting until we can find no rule
that further reduces class impurity. This training process gener-
ates a trained decision tree made up of multiple decision points,
with each possible path through the tree terminating in a
class label.

Despite ease of interpretation, decision trees often per-
form poorly on their own (18). We can improve accuracy by
instead using an ensemble of decision trees (Fig. 1 B and C),
combining votes from each (Fig. 1D). A random forest is such
an ensemble, where we select the best feature for splitting at
each node from a random subset of the available features (5,
18). This random selection causes the individual decision trees
of a random forest to emphasize different features. The result-
ing diversity of trees can capture more complex feature pat-
terns than a single decision tree and reduces the chance of
overfitting to training data. In this way, the random forest im-
proves predictive accuracy.

In addition to high predictive performance, random forest
classifiers can reveal feature importance (5), telling us how much
each feature contributes to class prediction. It is here where the
new method of Basu et al. (1) delivers its most important ad-
vance. By weighting features according to feature importance,
the authors grow more relevant trees to uncover complex inter-
actions. To do this, they iteratively refine a random forest, lead-
ing to iRF. First, they begin with a weighted random forest, one
in which each feature has equal weight, indicating an equal
probability of being chosen. In the initial round, the weighted
random forest behaves in the same way as Breiman’s original
random forest (2). Second, they repeatedly train weighted ran-
dom forests, using the feature importance from one iteration as
the weights in the next. Third, they use the final weights to
generate several weighted random forests, each trained on a
random selection of samples. This is a bootstrap selection,
meaning each sample can appear more than once. Fourth, Basu
et al. (1) use the random intersection trees algorithm (19) to find
subsets of features that often co-occur. Fifth, they assess the
extracted interactions with a stability score averaged over all

bootstrap selections. The stability score describes the fraction
of times a recovered interaction occurs, with stable interactions
having scores greater than 0.5. A higher stability score means it
is less likely that random chance alone caused identification of
the interaction.

To demonstrate iRF’s efficacy, Basu et al. (1) apply it to sev-
eral genomic problems, detecting multiway interactions between
chromatin-interacting proteins, both known and novel. This
moves beyond popular techniques that focus on pairwise in-
teractions. For example, they use iRF to predict genomic en-
hancers in Drosophila melanogaster from quantitative signal
of transcription factor and histone modification presence within

In addition to high predictive performance,
random forest classifiers can reveal feature
importance, telling us how much each feature
contributes to class prediction. It is here where
the new method of Basu et al. delivers its most
important advance.

each genomic region. They identify 20 pairwise transcription
factor interactions, of which 16 are consistent with previously
reported physical interactions. They also identify novel third-
order interactions involving the early regulatory factor Zelda.
This provides an intriguing path to further investigating Zelda, a
link to the past reports of codependency with other factors that
drive enhancer activity.

Of course, iRF provides a flexible method, whose utility extends
past genomics to any classification and feature selection task.
In simulations, iRF successfully detects up to order-8 interac-
tions. At the same time, iRF maintains predictive performance
similar to conventional random forests. To improve further, one
might explore ways to combine iRF with other ensemble methods.
As Basu et al. (1) mention, AdaBoost (20) focuses on the least reli-
able parts of decision trees and could complement iRF’s focus on
the most reliable parts. Building on iRF in this way will prove easier
due to the installable R package the authors provide, making their
methodology accessible to users and extenders alike. iRF holds
much promise as a new and effective way of detecting interactions
in a variety of settings, and its use will help us ensure no branch or
leaf is ever left unturned.
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