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Abstract

Purpose—The purpose of this study was to compare the repeatabilities of the linear and 

nonlinear Tofts and reference region models (RRM) for Dynamic Contrast-Enhanced MRI (DCE-

MRI).

Materials and Methods—Simulated and experimental DCE-MRI data from 12 rats with a flank 

tumor of C6 glioma acquired over three consecutive days were analyzed using four quantitative 

and semi-quantitative DCE-MRI metrics. The quantitative methods used were: 1) Linear Tofts 

model (LTM), 2) Nonlinear Tofts model (NTM), 3) Linear RRM (LRRM), and 4) Non-linear 

RRM (NRRM). The following semi-quantitative metrics were used: 1) Maximum enhancement 

ratio (MER), 2) time to peak (TTP), 3) initial area under the curve (iauc64), and 4) slope. LTM 

and NTM were used to estimate K, while LRRM and NRRM were used to estimate K relative to 

muscle (R). Repeatability was assessed by calculating the within-subject coefficient of variation 

(wSCV) and the percent intra-subject variation (iSV) determined with the Gage R&R analysis.

Results—The iSV for using LRRM was two-fold lower compared to NRRM at all simulated and 

experimental conditions. A similar trend was observed for the Tofts model, where LTM was at 

least 50% more repeatable than the NTM under all experimental and simulated conditions. The 

semi-quantitative metrics iauc64 and MER were as equally repeatable as K and R estimated by 

LTM and LRRM respectively. The iSV for iauc64 and MER were significantly lower than the iSV 
for slope and TTP.

Conclusion—In simulations and experimental results, linearization improves the repeatability of 

quantitative DCE-MRI by at least 30%, making it as repeatable as semi-quantitative metrics.
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1. INTRODUCTION

Dynamic contrast-enhanced MRI (DCE-MRI) involves the serial acquisition of T1-weighted 

images before, during, and after the injection of a contrast agent (CA) that shortens the T1 

relaxation time of water, resulting in an increase of the MRI signal in tissues or voxels where 

the agent accumulates [1]. After application of a proper pharmacokinetic (PK) model, 

parameters related to tissue perfusion [2], blood flow [3], capillary leakage [4], and transit 

time of the CA can be derived from the dynamic MRI signal in a voxel or a tissue of interest 

[5].

The two PK parameters most commonly estimated from DCE-MRI data are the rate of CA 

transfer from blood to tissue (K) and the rate of CA transfer from tissue to blood (kep) [1]. 

Several studies have shown evidence that K can be used to differentiate tumors from normal 

tissue [6, 7], and to monitor anti-cancer treatment in fibrosarcoma [8], breast [9, 10], and 

brain neoplasms [11, 12]. Unfortunately, these results are inconsistent with other studies, 

which showed that K offers little to no utility in monitoring anti-cancer treatment in breast 

and brain cancers [13, 14]. Because of these limitations, quantitative DCE-MRI descriptors 

are not part of the standard of care for clinical DCE-MRI.

These contradictory results may be due to the inherent variability of DCE-MRI that is a 

consequence of a low signal-to-noise ratio (SNR) [15], slow temporal resolution [16, 17], 

variability in the arterial input function (AIF) needed for PK modeling [18, 19], and/or the 

model assumed during data analysis [20, 21]. Some of these limitations have been addressed 

by the introduction of the non-linear reference region model (NRRM) [22, 23] that does not 

require AIF determination, and the linear reference region model (LRRM) that also does not 

require the AIF and gives more accurate parameter estimates than the NRRM under low 

SNR and slow temporal resolution [24, 25]. The standard Tofts model for DCE-MRI has 

also been linearized, and it was recently demonstrated that such linearization improves its 

performance under low SNR and low temporal resolution [26]. We recently demonstrated 

that the relative K (R) estimated by LRRM is a better predictor of response to neoadjuvant 

chemotherapy in breast cancer than the R estimated using NRRM [24]. An analoguous 

behavior was observed for K and kep estimated using the linear (LTM) and non-linear 

(NTM) Tofts models [27]. Based on these results, we hypothesized that linearization should 

improve the repeatability of quantitative DCE-MRI. We performed a retrospective study to 

compare the repeatability of R and kep estimated by NRRM and LRRM. We also compared 

the repeatability of quantitative NRRM and LRRM descriptors with semi-quantitative 

descriptors and quantitative NTM and LTM descriptors of DCE-MRI.

2. METHODS

All of the experimental data was downloaded from DataVerse [21], while the code used to 

simulate and analyze all data are available at https://github.com/JCardenasRdz/Gage-

repeatability-DCE-MRI.
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2.1 Theory of the quantitative analysis of DCE-MRI and its models

The generalized model for DCE-MRI establishes that the differential equation that describes 

the PK behavior of a CA within a voxel is:

(1)

CTOI is the concentration of the CA in the tissue of interest (TOI) as a function of time. Cp(t) 
is the concentration of the CA in plasma as a function of time (also known as the AIF), K is 

the rate transfer constant from the plasma into the TOI and kep is the transfer constant from 

the TOI to plasma. This equation assumes that the fractional plasma volume is equal to zero 

(vp=0). The quantitative analysis of DCE-MRI data requires three steps to estimate K and 

kep for any TOI: 1) solve Eq. 1, 2) transform the observed changes in the MRI signal to 

changes in concentration of the CA, and 3) fit the concentration curves of step 2 to the 

solution obtained in step 1. The first and most common solution to Eq. [1] was developed by 

Tofts, et al. [2]:

(2)

Equation (2) is non-linear in the parameters, and requires a non-linear fitting routine to 

estimate K and kep. We have named this method the Non-linear Tofts Model (NTM). Non-

linear fitting methods are very sensitive to low SNR, while linear fitting methods are more 

robust and significantly faster. Murase addressed these issues by developing a linear 

approximation of the NTM, and we have named this method the Linear Tofts Model (LTM; 

Eq. [3]) [26].

(3)

Experimentally measuring Cp(t) is challenging, which is a major limitation for Eq. 2 and Eq. 

3. The reference region model (RRM) was introduced to remove the need to measure Cp(t), 
and instead uses a reference region (RR) as surrogate for Cp(t) (Eq. [4]) [22].

(4a)

(4b)

CTOI(t) and CRR(t) are the concentrations of the CA at time t in the TOI and RR 

respectively. K and K are the transfer constants between plasma and the extravascular 
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extracellular space (EES) of the TOI and the RR respectively. R = K/K, kep,RR and kep,TOI 

are the transfer rates (min) from the TOI and RR back to the plasma. Estimating R, kep,RR 

and kep,TOI using Eq. 4 requires a nonlinear fitting method. Thus, we have named Eq. 4 the 

Non-linear RRM (NRRM). We obtained a linear solution to the RRM, and demonstrated that 

the Linear RRM (LRRM) is more robust than NRRM to low SNR and low temporal 

resolution (Eq. 5) [24].

(5)

The same definitions used for Eq. 4 apply to Eq. 5. ve,RR is the fractional volume of the 

extravascular extracellular space. The goal of our study was to determine how the model 

used in DCE-MRI analysis affects the repeatability of DCE-MRI.

2.2 Simulations

Thirty simulated tumor enhancement curves were created using K and ve values that were 

randomly selected from a normal distribution (Figure 1). The mean K was set to 0.25 min 

with a standard deviation of 0.1, and the mean ve was set to 0.4 with a standard deviation of 

0.1. A single muscle reference region enhancement curve was created for all subsequent 

analyses using a K of 0.1 min and a ve of 0.1. These values represented reasonable values for 

tumor and muscle tissues from previous reports [30]. All curves were simulated using Eq. 2, 

and Cp(t) was simulated using (Eq. 6):

(6)

where A = 30 mM/min, C = 4.0 min, D = 0.65 mM, E = 5.0 min, and F = 0.04 min. This set 

of parameters simulated an AIF with an injection speed of 0.005 mL/sec, which is similar to 

a previously reported AIF [31].

To simulate potential changes in enhancement curves under the experimental conditions 

used in this study, white Gaussian noise was added to each of the 30 simulated enhancement 

curves 3 separate times at the same SNR. White Gaussian noise was also added to a 

simulated muscle reference region enhancement curve. SNR was defined as the ratio of the 

signal power over the noise power in decibels.

The R value for each of the 30 curves was estimated using LRRM without a non-negative 

constraint; LRRM with a non-negative constraint; and NRRM with a non-negative 

constraint. For NRRM, initial guesses for R were obtained from a gamma distribution with 

coefficient a = 1.40 and b = 0.56, which corresponds to reasonable values from previous 

reports. We also estimated values with NRRM using a non-negative constraint and initial 

guesses for R, kep,TOI, and kep,RR taken from the estimates from LRRM with a non-negative 

constraint, which we labeled as NRRM*. Additionally, we determined the rate of transfer 

from tissue to blood in the tissue of interest (kep,TOI), and the rate of transfer from tissue to 

blood in the reference region (kep,RR).

Jones et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gage Repeatability and Reproducibility (R&R) analysis (described below) was performed to 

measure the repeatability of the R values determined using LRRM with and without a non-

negative constraint, NRRM and NRRM* by calculating the percent intra-group variances 

due to the fitting method. These three values were stored and the process starting from the 

addition of white Gaussian noise was repeated 1000 times. The median Gage R&R percent 

variance values from the 1000 values generated for each of the three fitting methods were 

taken as the true Gage R&R percent variance values for that SNR. The process was repeated 

for SNR values ranging from 5 to 40. Quantitative LTM and NTM analyses and semi-

quantitative analyses were also performed in the same manner.

2.3 In vivo study

2.3.1 Animal model and DCE-MRI acquisition—Twelve rats were injected 

subcutaneously with rat glioma cells and subsequently prepared for imaging [21]. DCE-MRI 

acquisition was performed on 3 consecutive days. The basics of the DCE-MRI acquisition 

protocol were as follows: 8 axial images were acquired using a 10 msec repetition time 

(TR), 1.7 msec echo time (TE), 15 excitation pulse, 16 mm slab thickness (8 slices each 2 

mm thick), 469 x 625 μm in-plane resolution, 128 x 80 matrix size, 60 x 50 mm field of 

view, 50 repetitions, temporal resolution = 6.4 sec, and 1 average. A more detailed 

description of the MRI protocol is provided in reference 21. Two of the twelve rats had 

technical scanning failures on 1 of the 3 days of imaging. Data from these 2 rats were 

excluded from analysis.

2.3.2 Image analysis—A quantitative T1 map was not obtained in this study. Therefore, 

we used the signal enhancement ratio (SER, Eq. 7) to replace contrast agent concentration 

for quantitative DCE-MRI analysis.

(7)

SER(t) is the SER at time t, St is the MR signal at time t, and So is the signal before 

injection of the CA (t=0).

The following semi-quantitative metrics were used in this work: a) maximum enhancement 

ratio (MER), b) time to peak (TTP), c) initial area under the curve (iauc64), and d) slope 
(Fig. 2). The MER was defined as the maximum of each SER(t) curve. The TTP was 

determined by subtracting the time at the final baseline time point (10 image) from the time 

of the MER. iacu64 was determined from the area under the curve from the first post-

baseline time point (11 image) to the time point acquired 64 seconds post-baseline (20 

image). The slope was determined by dividing MER by TTP.

As mentioned earlier, the NTM and NRRM require a non-linear fitting algorithm and an 

initial guess to estimate their respective PK parameters. An initial guess of K = 0.5 and 

kep,TOI = 5.0 were used for the NTM, while the following initial guesses were used for the 

NRRM: R= 2.0, kep,TOI = 5.0, and kep,RR = 5.0. The MATLAB function lsqcurvefit was used 

for all non-linear fittings, while constraining all possible solutions between 0 and 10. The 
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function tolerance was set to 1 x 10 and the maximum number of iterations was set to 

100,000. Estimates for the linear methods were obtained with and without a constraint of 

greater than or equal to zero. This was accomplished using non-negative least squares as 

implemented in the MATLAB function lsqnonneg. Finally, we studied the effect of using the 

parameters estimated with the LTM as the initial guesses for the NTM (NTM*), and the 

parameters estimated by the LRRM as the initial guesses for the NRRM (NRRM*).

Our quantitative analysis of experimental DCE-MRI data using the NTM (Eq. 2) and LTM 

(Eq. 3) assumed a population-based averaged AIF, which was derived from the AIFs for 

individual rats in reference 21 (Eq. 8). The fitting for the NRRM and LRRM used muscle as 

a surrogate for the AIF.

(8)

To analyze the average signal of the tumor, a region of interest (ROI) for each tumor and 

muscle were drawn by a single observer (KMJ) on slices 4, 5, and 6 of the 8 slices imaged 

for each rat. The three slices chosen showed the largest tumor volume. The same ROIs for 

any given rat were used for LTM, NTM, LRRM and NRRM analyses. For each rat, the 

average intensity of the whole tumor ROI and muscle reference region ROI from all time 

points were used to generate the enhancement curve that was fit with LRRM and NRRM 

analyses. The average signal intensity of the population AIF was used for the LTM and 

NTM analyses.

For pixelwise analyses, each pixel within the ROI chosen for the tumor region was used to 

compute R, kep,TOI, and kep,RR. A single enhancement curve for the muscle reference region, 

generated by taking the average signal value of the whole muscle reference region ROI from 

all time points, was used for all tumor pixelwise analyses. Based on the SNR of these data 

sets, pixels within the tumor ROI that showed less than 10% enhancement were excluded 

from analysis. This exclusion criterion was also used in a previous study that used this data 

[21]. Additionally, pixels that showed poor fits based on the R value were excluded from 

analysis. A range of R values from 0 – 0.9 were used as the cutoff point to ensure that 

comparisons between LRRM and NRRM were not affected by the selected R cutoff point. 

After removing the pixels with poor fits, the median value of the remaining pixels was 

determined for R, kep,TOI, and kep,RR.

2.4 Statistical Analysis

A summary of the parameter values generated from quantitative and semi-quantitative DCE-

MRI analyses were provided in the form of mean, range, and within-subject coefficient of 

variation (wSCV). The values were taken on a global scale meaning that values from all rats 

over each of the three time points were included in the calculation. The wSCV was 

calculated as follows: 1) the base-10 logarithm was applied to estimated quantitative and 

semi-quantitative descriptors, 2) the within-subject variance (variance for each row) was 

calculated, 3) the mean within-subject standard deviation (wSD) was calculated by taking 

the square root of the within-subject variance, 4) wSCV= antilog(wSD)-1 [32, 33]. The 
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medians of the estimates of the parameters R and kep,TOI, as determined by the methods 

LRRM and NRRM, were compared using a t-test, with the significance set to the 95% 

confidence level.

The Gage R&R methodology was initially developed to determine the sources of variation in 

a manufacturing system [34]. Gage R&R analysis uses ANOVA to determine the percent of 

the observed variation in a system that is due to the parts (process), measurement protocol 

(repeatability), and the operator (reproducibility). This analysis method is often performed to 

test variations between multiple operators who are measuring a characteristic of multiple 

parts with one measurement protocol. In this study, we compared different measurement 

protocols rather than comparing different operators. One researcher (one operator) analyzed 

DCE-MRI data from multiple rats (multiple parts) to determine the repeatability of fitting 

algorithms used for the analysis of DCE-MRI data (multiple measuring protocols). Each 

fitting algorithm was assigned a unique measurement protocol identification and each rat 

was assigned a unique part identification for Gage R&R analysis. The measured percent 

variance (iSV) represented the variance in the fitting method compared to the total variation. 

This analysis was performed for both the simulations and the experimental data. The Gage 

R&R methodology was implemented using the gagerr function in Matlab R2015a [28].

3. RESULTS

3.1 Simulations

A total of 3.15 million simulated enhancement curves were generated. These curves were 

subsequently analyzed with quantitative and semi-quantitative methods, and then with Gage 

R&R analysis. The use of 30 enhancement curves was sufficient for convergence as 

evidenced by the tight confidence intervals in the Gage R&R plots (Fig. 3). The median 

percent variance due to repeatability was obtained from the 1000 Gage R&R analyses 

performed at each SNR. The median percent variance value and its corresponding 95% 

confidence interval were evaluated over the range of SNRs tested from each DCE-MRI 

fitting method. Comparisons between LRRM with and without non-negative constraints 

showed no difference in percent variance over the range of SNRs tested (data not shown). 

Thus, LRRM with a non-negative constraint was compared with NRRM, which also had a 

non-negative constraint, to avoid erroneous negative R, kep,TOI, and kep,RR values from being 

generated.

LRRM showed a significantly lower Gage R&R percent variance compared to NRRM at all 

SNRs tested (Fig. 3a). A significant difference was defined as non-overlapping 95% 

confidence intervals. Interestingly, when repeating the analysis with NRRM* (NRRM 

initialized using LRRM-derived coefficients as the initial guess), the Gage R&R percent 

variance values were similar between LRRM and NRRM*. This result emphasizes that the 

repeatability of R estimated via the NRRM is highly dependent on a proper initial guess. 

LTM showed a significantly lower Gage R&R percent variance compared to NTM and 

LRRM at low SNRs (Fig. 3b). The significant difference between LTM and NTM at low 

SNRs further emphasizes that linearizing a model improves repeatability. Additionally, when 

repeating analysis with NTM* (NTM initialized using LTM-derived coefficients as initial 

guesses), the Gage R&R percent variance values were similar between LTM and NTM, 
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which was observed with LRRM and NRRM as well. The analysis of semi-quantitative 

descriptors showed the best repeatability measurements with iauc64 and MER (Fig. 3c). The 

variability of these two descriptors was significantly lower than the variability of the slope 
and TTP at all SNRs, and similar to the variability of R values estimated via the LRRM and 

NRRM*. The Gage R&R value of the slope was significantly lower than TTP at all SNRs 

and similar to the variability of NRRM with a random initial guess at mid-range SNRs.

3.2 In vivo Results

Fitting in vivo results with the LRRM correctly described the PK of the agent in the tumor, 

as demonstrated by an excellent goodness-of-fit between the fit and the experimental results 

(R ≥ 0.94; Fig. 4). The semi-quantitative measurements, LTM, and LRRM measurements 

showed lower wSCVs than the NRRM measurements (Table 1). Notably, the wSCVs of R 
measurements were lower with LRRM vs. NRRM in pixelwise analysis. The wSCVs of R 
measurements were also lower with NRRM* vs. NRRM in pixelwise analysis. The R values 

from all rats at all time points were significantly higher with LRRM compared to NRRM in 

pixelwise analysis (p<0.01) and ROI analyses (p<0.01). Also, kep,TOI values were 

significantly lower with LRRM compared to NRRM in both pixelwise analysis (p<0.01) and 

ROI analysis (p < 0.01). Similarly, the R values were significantly higher with NRRM* 

compared to NRRM in pixelwise analysis (p = 0.04) and the kep,TOI values were 

significantly lower with NRRM* compared to NRRM in pixelwise analysis (p < 0.01).

Interestingly, the R and the kep,TOI values from analyzing ROIs were similar when NRRM* 

and NRRM were used. This was also seen in the K and the kep,TOI values when analyzing 

ROIs with NTM* and NTM. Therefore data with high SNR produced the same estimates for 

the quantitative metrics regardless of the initial guess. Conversely, analysis of pixelwise data 

showed different R and kep,TOI values when NRRM* and NRRM were used, while the use 

of NRRM* and LRRM estimated similar values. This similarity is based on median values 

produced by LRRM and NRRM*. This result suggests that data with low SNR requires a 

good initial guess to obtain a good analysis with the NRRM method.

For Gage R&R analysis of the experimental DCE-MRI study, a single percent variance value 

was generated for the dataset for each of the quantitative and semi-quantitative methods and 

these values were compared to each other (Table 2). A student’s t-test could not be 

performed to test for statistical significance because only a single value could be measured 

with Gage R&R analysis for the quantitative and semi-quantitative methods.

For analyses of in vivo results, the median Gage R&R percent variance value was lower with 

LRRM compared to NRRM and lower with LTM compared to NTM in both pixelwise and 

ROI analysis. This difference held true for all thresholds set for pixel inclusion based on the 

R of the fit (Figs. 5a and 5b). An R value of 0.9 was not chosen as a threshold because of the 

high number of pixels that were discarded when doing so. The median Gage R&R percent 

variance value was lower with NRRM* compared to NRRM and NTM* compared to NTM 

for pixelwise analysis but similar for ROI analysis, which matched with wSCV results. The 

Gage R&R percent variance value for R with LRRM was similar to percent variance values 

for LTM, MER, slope, and iauc64 in both pixelwise and ROI analysis (Table 2). The Gage 

R&R percent variance values for R with NRRM, NTM, and TTP were similar, and were also 
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higher than all other Gage R&R percent variance values in both pixelwise and ROI analysis. 

We attribute the lower repeatability of TTP to the stronger dependence of TTP on image 

noise relative to the dependence of MER and iauc64 on image noise (Fig. 2b).

R pixelwise maps from a representative rat over the three days of DCE-MRI showed the 

distribution of R values with LRRM, NRRM, and NRRM* (Fig. 6). The median R values 

from the maps for days 1, 2, and 3 were 3.44, 3.08, and 3.16 min respectively for LRRM; 

3.52, 1.26, and 3.17 min respectively for NRRM; and 3.51, 2.89, and 2.97 min respectively 

for NRRM*. These results indicated a larger variability with NRRM as compared to LRRM 

and NRRM* in measuring R over multiple days. Additionally, the pixelwise distributions for 

NRRM had larger standard deviations and were more highly skewed than the pixelwise 

distributions with LRRM. For the rat shown in Fig. 6, the standard deviations of the pixels 

for days 1, 2, and 3 were 2.0, 2.16, and 2.63 respectively for LRRM; 2.50, 0.84, and 2.97 

respectively for NRRM; and 2.22, 1.87, and 2.31 respectively for NRRM*.

4. DISCUSSION

The results of this study support our hypothesis that linearization can be used to improve the 

repeatability of the reference region model for DCE-MRI, making quantitative DCE-MRI as 

repeatable as LTM and semi-quantitative DCE-MRI. Our Gage R&R analyses of simulations 

showed that a lower percentage of the variability in the measurement system is due to the 

algorithm when the LRRM is used instead of the NRRM, regardless of the SNR of the DCE-

MRI data. This result was consistent with previous reports that concluded that linearization 

improves the accuracy of the Tofts and reference region models for DCE-MRI [24, 26]. In 

addition, our experimental results showed lower wSCV and iSV values for R with LRRM 

compared to NRRM, for pixelwise analyses. This improved repeatability was also evident in 

the pixelwise parametric maps of R. The improvement in the repeatability of the pixelwise 

analyses with LRRM indicated that LRRM is especially useful under conditions of lower 

SNR. We believe our work is a useful contribution to the understanding of the repeatability 

and reproducibility of quantitative DCE-MRI with variations of the Tofts model and the 

reference region model [32, 35–38].

The accuracy and precision of the algorithms most commonly used for non-linear curve 

fitting of DCE data are highly dependent on the initial guess of the true values of K and kep 

(R for the RRM) [24, 26, 36]. This long-standing issue in quantitative DCE-MRI is often 

ignored, causing the results of quantitative DCE-MRI to be highly variable if the wrong 

initial guess is used. As evidence, we demonstrated that the repeatability of NRRM and 

NTM approached the repeatability of LRRM and LTM if the results of LRRM and LTM 

were used as the initial guess for NRRM (NRRM*) and NTM (NTM*). Also, the median 

value and interquartile range of R determined using NRRM* was similar to values 

determined using LRRM for pixelwise analyses. This result indicated that an “ideal” initial 

guess can overcome the variability of NRRM analysis induced by image noise. However, it 

is fundamentally impossible to know the “ideal” initial guess for each pixel in practice, and 

therefore the quality of NRRM analysis is fundamentally limited under practical conditions. 

To address this fundamental problem of the “ideal” initial guess, each voxel could be fit with 

a non-linear algorithm multiple times using different initial guesses [36]. However, 
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hundreds-to-thousands of initial guesses may be needed to properly evaluate this issue of the 

“ideal” initial guess. Therefore this approach is computationally impractical for pixelwise 

analyses, and the improvement in the analysis does not scale linearly with the number of 

initial guesses. Our LRRM completely avoids this fundamental problem because our 

methods use a linear regression that does not require an initial guess [24, 26].

A recently published study concluded that the linear compartmental tissue uptake model 

(similar to the Tofts model) is less robust to low SNR than its nonlinear equivalent, which 

would seem to contradict our study [39]. However, this previous study used the initial values 

used to simulate data as the initial guesses for the non-linear fitting routines. An “ideal” 

initial guess is only available during simulation studies such as this recently published study, 

and an “ideal” initial guess is fundamentally impossible to obtain during practical 

experiments. Thus, the LRRM is a superior approach for analyzing DCE-MRI data as 

compared to NRRM.

The repeatability of R estimated with the LRRM was comparable to the repeatability of 

LTM, MER and iauc64 measurements, as shown by Gage R&R analyses of simulated and 

experimental data. A previous study showed that MER and iauc64 measurements have good 

reproducibility [35], which suggests that LRRM also has good reproducibility (where 

repeatability tests measurements under the same conditions, and reproducibility tests 

measurements under different conditions). TTP measurements, R estimated with the NRRM, 

and K estimated with the NTM showed the lowest repeatability, which was attributed to the 

stronger sensitivity to noise for these measurements.

The wSCV for R determined by the LRRM in our study is in good agreement with the 

wSCV (~0.40) for R reported in previous repeatability studies of the reference region model 

[35, 38]. The data analyzed in our study were acquired at lower temporal resolution than the 

previous repeatability studies. The wSCV for R determined by the NRRM showed that the 

NRRM was only half as repeatable relative to results from these previous reports. Therefore, 

linearization improves the repeatability of the RRM under conditions of slower temporal 

resolution, which are often encountered in clinical studies [38, 40]. This result regarding 

temporal resolution complements previous studies that have shown how LRRM can estimate 

accurate R values at temporal sampling rates as slow as 60 seconds [24], while NRRM 

requires temporal sampling rates less than 32.0 seconds to estimate accurate R values [39], 

and the Tofts model requires a temporal sampling rate of 5.0 seconds or faster [15, 16]. 

Furthermore, these previous studies showed that NRRM underestimates R and overestimates 

kep,TOI especially with low SNR, which matched the results of our study. In these previous 

studies, the calculation speed of LRRM was shown to be 1350–8200 times faster than 

NRRM (depending on the SNR) [24].

Our results also demonstrate the benefits of using Gage R&R analysis as a means to 

compare repeatability between different MRI analysis methods. Gage R&R analysis 

calculates the percentage of variation due to the measurement source compared to the total 

variation, and thus is not subject to the scale of the DCE-MRI parameter being measured. 

For comparison, wSCV is subject to the scale of the DCE-MRI parameter, and thus wSCV is 

inherently smaller for DCE-MRI parameters that have a small absolute value like TTP, 
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compared to larger DCE-MRI parameters like MER. In our experimental results, wSCV 

values for TTP compared to MER were lower, while Gage R&R analyses clearly showed 

better repeatability measurements for MER compared to TTP, for both pixelwise and ROI 

analysis, during simulations and experimental analyses.

Despite the promising results presented in this work, three limitations still remain. First, the 

Gage R&R method assumes that the biologic variability of the tumors were zero over the 

three time points. However, the tumors inevitably changed in size and possibly in perfusion 

characteristics over the three time points. Therefore, the fitting method variability and the 

day-today variability could be confounded in the estimation of iSV. Unfortunately, 

performing repeat scans 24 hours apart was the shortest timeframe allowed by the IACUC. 

Second, we used the change in MR signal to represent the change in concentration in the 

tumor and reference region during our DCE-MRI analyses. However, the MR signal has a 

non-linear relationship with CA concentration, which could lead to erroneous estimations of 

the absolute values of PK constants. Our study focused on the repeatability of measuring the 

estimated PK constants, which pertains to precision rather than accuracy, thus this potential 

pitfall should not significantly affect the conclusions of our study. Also, the relationship 

between MR signal and concentration becomes more linear at lower, clinically-relevant 

magnetic fields. To test this potential pitfall, a future DCE-MRI clinical study can be 

performed at ≤ 3T magnetic field strength with the acquisition of T1 parametric maps before 

injection of the Gd-based CA.

5. CONCLUSION

In conclusion, this report introduces the Gage R&R analysis as a convenient method to 

determine the repeatability of DCE-MRI, while also demonstrating that linearization 

increase the repeatability of the Tofts and reference region models for DCE-MRI by 

approximately 40%.
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Figure 1. 
A diagram of the steps to produce simulated Gage R&R percentage plots. 1) 30 Kand ve 

values were generated from a normal distribution. K mean = 0.25 and standard deviation = 

0.1. ve mean = 0.4 and standard deviation = 0.1. The Kand ve values were paired and the 

Tofts model was used to simulate 30 enhancement curves. To simulate how DCE MRI data 

from a single mouse could fluctuate over 3 days, 2) white Gaussian noise (SNR = 20 in this 

example) was added to an individual enhancement curve 3 times. 3) Each curve with noise 

was fit by NRRM, LRRM, LTM, and NTM analysis and the fitted Rand K values were 

stored in their respective tables. This process was repeated for all 30 enhancement curves. 

After, Gage R&R analysis was conducted and the percent variance (repeatability) value was 

stored. Steps 1–3 were repeated 1000 times using the same SNR, and the percent variance 

values were stored each time. After, the median value of the 1000 % variance values 

generated was taken as the true % variance for the particular SNR.
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Figure 2. 
Semi-quantitative analyses. a) Mean Enhancement Ratio (MER) is the maximum of the 

curve, Time To Peak (TTP) is the time from the last baseline image (0 minutes) to the time 

at the maximum (2.0 minutes), slope is MER divided by TTP, and iauc64 is the area under 

the curve from the last baseline image to 64 seconds post-baseline (shaded area). b) TTP is 

affected by noise more than MER.
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Figure 3. 
Dependence of Gage R&R on signal-to-noise. The median Gage R&R percent of the 1000 

repetitions (described in Figure 1) is displayed for each SNR tested for a) quantitative 

reference region analyses, b) semi-quantitative analyses, and c) quantitative Tofts analyses 

with the LRRM added as a reference. The LRRM analysis without and with a non-negative 

constraint produced almost identical Gage R&R percentages. Also note that the 95% CIs 

were smaller than the marker size for most plots.
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Figure 4. 
Representative example of the performance of the LRRM on experimental data for all rats 

on Day 2. Circles represent the observed signal for the tumor; squares represent the observed 

signal for the reference region (RR); dash lines represent the predicted signal for the tumor. 

The LRRM showed an excellent goodness-of-fit metric as measured by the R value for all 

rats.
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Figure 5. 
In vivo pixelwise percent Gage R&R plots. a) LRRM, NRRM, and NRRM* and b) LTM, 

NTM, and NTM* Gage R&R percent variances by pixelwise analysis as a function of the R 

correlation coefficient of the fit. Pixels that had R coefficients less than the threshold were 

excluded from analysis.

Jones et al. Page 19

Magn Reson Imaging. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
R parametric maps. a) LRRM b) NRRM and c) NRRM* R parametric maps of an individual 

rat imaged on three consecutive days.
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Table 2

Summary of Gage R&R Percent Variances (%)

Pixelwise Analysis ROI Analysis

Reference Region Model

LRRM 45.1 65.7

NRRM 78.3 93.5

NRRM* 53.3 86.7

Tofts Model

LTM 59.5 62.4

NTM 86.9 84.3

NTM* 62.7 71.8

Semi-quantitative

MER 46.1 65.5

Slope 50.9 48.2

TTP 88.7 100

Iauc64 46.5 66.4
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