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Abstract

Glycans and glycoconjugates are involved in regulating a vast array of cellular and molecular 

processes. Despite the importance of glycans in biology and disease, characterization of glycans 

remains difficult due to their structural complexity and diversity. Mass spectrometry (MS)-based 

techniques have emerged as the premier analytical tools for characterizing glycans. However, 

traditional MS-based strategies struggle to distinguish the large number of coexisting isomeric 

glycans that are indistinguishable by mass alone. Because of this, ion mobility spectrometry 

coupled to MS (IM-MS) has received considerable attention as an analytical tool for improving 

glycan characterization due to the capability of IM to resolve isomeric glycans prior to MS 

measurements. In this review, we present recent improvements in IM-MS instrumentation and 

methods for the structural characterization of isomeric glycans. In addition, we highlight recent 

applications of IM-MS that illustrate the enormous potential of this technology in a variety of 

research areas, including glycomics, glycoproteomics, and glycobiology.
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Introduction

As one of the most abundant and complex protein post-translational modifications (PTMs), 

glycosylation is associated with many key biological processes including cell adhesion, 

molecular trafficking, receptor activation, and signal transduction [1]. The analysis of 

glycans and glycoconjugates is challenging due to the large diversity of structures resulting 

from the non-template driven biosynthesis [2,3]. In addition, many of the monosaccharides 

that compose larger glycans are structural isomers, and they can be connected via either α- 

or β-stereochemistry at multiple linkage positions, resulting in many glycan isomers (Figure 

1a). Isomeric glycans can also have a variety of connectivities to numerous sites on other 

classes of molecules such as proteins, contributing to their strucutral complexity (Figure 1b).

Separation and detailed structural characterization of glycan or glycoconjugate isomers is 

crucial for understanding their roles in various biological processes. Benefiting from speed 

and sensitivity of analysis, liquid chromatography (LC)-MS and capillary electrophoresis 

(CE)-MS have emerged as powerful techniques for glycan characterization [4–6]. Despite 

recent improvements to nearly all aspects of MS-based analyical workflows for glycan and 

glycoconjugate characterization, it remains challenging to achieve complete structural 

elucidation due to the complexity of glycans and lack of standard reference databases. 

Therefore, new techniques and methods that enhance the differentiation of glycan and 

glycoconjugate isomers would be highly desirable.

Although it has been two decades since IM-MS was orginally used to separate glycan 

isomers, recent technological advancements have sparked increased interest in IM-MS for 

glycan and glycoconjugate analysis [7]. Unlike other commonly used separation techniques 

such as LC and CE, IM-MS is a post-ionization gas-phase technique that separates ions 

based on differences in shape and charge as they travel through a buffer gas under the 

influence of an electric field [8,9]. The time it takes for an analyte ion to travel through the 

IM cell can be used to calculate rotationally averaged collision cross section (CCS) which 

provides an additional parameter that can be used to identify compounds as well as 

information about molecular conformation [8–10].

Initial applications of IM to carbohydrate analysis focused on distinguishing small isomeric 

carbohydrate standards [11,12]. Due to the advancement and commercialization of IM-MS 

instrumentation, a growing number of labs continue to demonstrate that IM-MS is a fast, 

sensitive, and effective method for resolving carbohydrate isomers. For example, IM-MS has 

been used to separate a variety of isomeric species, including connectivity and 

configurational isomers [13]. Furthermore, studies have been extended to more complex 

systems such as N- and O-glycans and intact glycopeptides [14–20]. Here, we discuss the 

latest developments in IM-MS methods and technology that have allowed for enhanced 

sepration and structural characterization of glycans and glycoconjugates and discuss 

advances necessary for IM to become more widely used in glycomics and glycoproteomics 

workflows.
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Improving IM-Based Isomer Separations

Although many proof-of-principle experiments have shown the potential of IM to separate 

glycan isomers, baseline separation of isomeric glycans is difficult as they often have minor 

differences in CCS. This is especially problematic as studies are expanded to larger glycans 

and glycoconjugates because minor changes in the glycan composition often result in subtle 

differences in the overall structure. Furthermore, improved glycan separation will be crucial 

for extending the applications of IM-MS technology to large-scale studies of glycans and 

glycoproteins in complex mixtures from biological systems (i.e., glycomics and 

glycoproteomics). Thus, various analytical workflows that include IM separation have been 

developed to enhance the separation of isomeric glycans.

One of major factors that has limited the utility of IM-MS for many applications is that 

many instrument platforms lack the mobility resolution necessary to resolve isomeric 

species that have minor differences in CCS. The development of high resolution IM 

instrumentation using structures for lossless ion manipulations (SLIM) technology has 

shown great potential to enable separations of a variety of isomeric species [21]. Recently, a 

novel instrument was developed capable of ultralong pathlength travelling wave ion mobility 

(TWIM) separations on a serpentine-shaped SLIM device that has a 30-fold increase in IM 

resolution compared to traditional drift tube IM and TWIM instruments [22]. In addition to 

providing baseline separation of isomers lacto-N-hexaose and lacto-N-neohexaose, high 

resolution SLIM IM-MS revealed a new conformation of lacto-N-neohexaose. This suggests 

that SLIM-based IM separations will provide a level of conformational information about 

glycans that was previously inaccessible.

An alternative approach to increase isomer separation by improving IM-MS instrumentation 

is to optimize the charge state or polarity of the glycan ions to yield optimal separation of 

isomeric species. Numerous studies have demonstrated that mobility separations of glycan 

isomers can be optimized by manipulating the ion charge state or charge polarity [23,24]. 

Because of this it is important to consider a variety of charge carriers, such as metal cations 

and anions, and ionization methods for improving mobility separations (Figure 2a) [25–29]. 

Furthermore, it was demonstrated that electron transfer reactions with group II metal-

coordinated carbohydrates improve separation of isomeric species, suggesting the potential 

for ion-ion reactions in the gas-phase for differentiation of isomeric oligosaccharides [30].

As the detection and the characterization of glycans is often hindered by the lack of a 

chromophore and their poor ionization properties in either spectroscopic or mass-

spectrometric detection, a wide variety of glycan labeling reagents have been developed, 

which provide the opportunity to manipulate the conformation of the glycans in the gas-

phase. Although 1-phenyl-3-methyl-5-pyrazolone (PMP) was originally developed to 

enhance UV detection, a recent study showed increased separation of structural isomers after 

PMP derivatization [31]. Reacting with cis-diols on carbohydrates, boronic acid (BA) 

derivatization has also been shown to have great potential in improving isobaric 

carbohydrate differentiation as an ion mobility shift strategy [32]. Besides covalent binding, 

non-covalent binding such as crown ethers for peptides and metal cations for carbohydrates 

is another promising approach to enhance separations [24,33,34]. Recently, non-covalent 
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complexes between monosaccharides and combinations of metal cations, peptides, and 

amino acids were demonstrated to improve differentiation of 8 pairs of enantiomeric glucose 

isomers [35]. Although there is no universal strategy to use sample preparation or gas-phase 

chemistry to improve glycan isomer separation, the strategies discussed above are important 

considerations for achieving optimal separation.

Coupling IM with orthogonal separation techniques

In addition to improving IM-MS technology, it is important to consider the enhanced 

analytical capability by coupling IM-MS with a variety of orthogonal separation techniques. 

Because mobility separations typically occur on the order of milliseconds it is possible to 

couple IM between LC [36,37] or CE [38] and mass spectrometry for glycan analysis 

(Figure 2a). The combination of orthogonal separation methods has been demonstrated to 

offer improved characterization of isomeric glycans. For example, the combination of 

hydrophilic interaction chromatography (HILIC) and TWIM was used for separation of 

isomeric pectic oligosaccharides [37]. In addition, a straightforward reversed-phase LC-IM-

MS platform was developed for integrated proteomic and glycomic studies [39]. 

Furthermore, the combination of CE with TWIM-CID-MS/MS provided improved 

separation and quantitation of aminoxy tandem mass tag (aminoxyTMT)-labeled human 

milk oligosaccharides (HMOs) (Figure 2b) [38].

Coupling IM with MS-based fragmentation and spectroscopic techniques

The development of instrumentation that couples IM with a variety of fragmentation 

techniques has been crucial for improving the identification of glycan and glycopeptide 

isomers. It is important to note that coupling IM with MS/MS is mutually beneficial for both 

techniques. That is, ion mobility separations can be used to deconvolute complex 

fragmentation spectra that arise from coeluting isomeric species (Figure 3a). In addition, 

fragmentation spectra can be used to deconvolute CCS distributions of partially resolved 

isomeric species (Figure 3a).

An increasing number of studies have demonstrated that it is beneficial to perform ion 

mobility experiments on both precursor and fragment ions of isomeric species (Figure 3b). 

For example, IM analysis of precursor and fragmentation ions was used to differentiate 

Lewis and blood group epitopes [40]. Furthermore, it was recently demonstrated that IM 

analysis of MS/MS derived fragments of glycans can be used to differentiate anomeric 

glycosidic linkages [41]. Another promising approach capable of performing mobility 

separation of precursor and fragment ions is tandem IM (IM-CID-IM) in which two mobility 

regions are separated by a region where ions can be mobility selected and collisionally 

activated [42]. IM-IM-MS was recently used to distinguish underivatized carbohydrate 

isomers based on differences in mobilities of fragments ions. By probing ion mobility 

profiles of product ions, IM was also used to distinguish α2,3 or α2,6 sialic-acid linkage 

[15,43].

In addition to coupling IM with collision-based fragmentation methods, IM has recently 

been combined with a variety of fragmentation and spectroscopic techniques, including 
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electron activated dissociation (ExD) [44], UV photodissociation [45,46], and cryogenic IR 

spectroscopy [47,48]. The combination of selected accumulation-trapped IM (SA-TIMS) 

with Fourier transform ion cyclotron resonance (FTICR) mass spectrometers makes it 

possible to perform ExD on mobility-selected ions [44]. It was recently demonstrated that 

coupling IM with cryogenic IR spectroscopy can be used to identify isomeric 

glycosaminoglycans that are partially resolved by IM [49].

Collision Cross Section Databases

Another benefit IM-MS provides is the ability to measure CCS values which can be 

implemented into databases and used as additional criteria for structural identification 

(Figure 3c) [43,50]. Because CCS values are an additional parameter to improve the 

identification of glycan and glycopeptides, several groups have compiled CCS databases of 

glycans and glycopeptides that have potential to aide in glycan identifications [25,28,51–53]. 

For example, GlycoMob is an online database of >900 CCS values of glycans and their 

fragments. In addition, a database containing glycopeptide CCS values was recently 

presented that has the potential to aide in identification of unique glycoforms [54].

Accurate glycan identification based on CCS values is still in its early stage with several 

challenges remaining before this approach could be used routinely for glycan identification. 

One of the challenges lies in the shortage of available CCS values resulting from the 

difficulty in synthesizing glycan standards especially for these complex N- or O-glycans 

[55]. Another limitation of CCS databases is that CCS values are not intrinsic properties of 

ions in the same way as m/z values. CCS values depend on a variety of factors such as 

ionization conditions, buffer gas, instrument parameters, and the calibration method if not 

measured in a linear drift tube. Because of this, the development of robust standard 

operating procedures, quality controls, and calibration methods is necessary for CCS 

databases to be used effectively. Despite the challenges listed above, implementation of CCS 

databases into analytical workflows to improve glycan and glycoconjugate identification will 

likely be a crucial step for expanding the role and utility of IM-MS in the glycosciences. 

With increasing amounts of IM-MS data acquired each day, especially after coupling with 

LC, powerful bioinformatics tools that enable easy data acquisition, analysis and processing 

in a high-throughput and rapid way is key to advancing the IM-MS enhanced glycomics 

workflow development. Continuous efforts into platform development to support the storage 

of IM-MS data is also highly needed to facilitate the database query for the glycoscience 

community. Such platform should have the capability to support the complexity of IM-MS 

data, including the precursor ion and fragment ion m/z information, CCS information and 

LC information such as PGC-LC retention time reference [56], as well as the connections 

among these important parameters and information. Furthermore, the advancement of 

instrumentation with higher mobility resolution and CCS measurement accuracy will 

certainly improve the effectiveness and accuracy of IM-MS assisted glycomics workflow in 

a substantial manner.
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Improved characterization of intact glycoconjugates

Although most examples mentioned above illustrate the utility of IM-MS for separating free 

or released glycans, an emerging application of IM-MS is the structural characterization of 

glycans bound to other classes of molecules such as proteins, peptides, and lipids (i.e., 

glycoconjugates). The analysis of IM-MS can reveal information about the macro- and 

micro- heterogeneity of glycosylation of glycoconjugates. For example, IM can separate 

intact glycopeptides that differ only in the glycosylation sites [16]. Furthermore, IM-MS 

analysis of glycopeptide fragments was demonstrated to be an effective strategy to 

distinguish α2,3 versus α2,6 sialic acid linkages on intact glycopeptides [15,16]. In addition 

to glycopeptides, IM-MS was recently used to separate glycolipid isomers [57]. It is also 

important to note that as IM-MS technologies evolve, they have the potential to be extended 

to characterize glycosylation of larger systems such as intact glycoproteins, antibodies, and 

virus capsids. For example, IM-MS and collision induced unfolding was used to provide 

qualitative information about glycosylation levels for intact antibodies [58].

Improved characterization of biological samples

One of the most promising applications of IM-MS is the characterization of glycans and 

glycoconjugates in complex mixtures from biological systems. Several studies have shown 

the benefit of adding IM into MS-based workflows for the analysis of biological samples 

[20,59]. For example, incorporation of field asymmetric ion mobility spectrometry (FAIMS) 

into a bottom-up proteomic workflow increased the number of glycopeptides identified from 

flagellin from Campylobacter jejuni 11168 [20]. It is important to note that IM separation of 

isomeric and isobaric species prior to MS analysis has been shown to improve quantification 

accuracy of both peptides and glycans [38,60]. In addition to separating isomers, IM can 

also be used to extract glycan and glycopeptide regions from interference ions or other 

molecular species [39,61–63]. Being able to separate various molecular species, IM has the 

potential to aide multi-omics studies, which could greatly simplify sample preparation 

procedures and provide more detailed information about molecular and cellular processes 

[64,65]. Due to the recent improvements in technology and methods described here, the 

application of IM-MS will likely continue to be extended beyond proof-of-principle 

experiments performed on glycan standards to complex mixtures from a variety of biological 

samples.

Conclusions

IM-MS continues to emerge as a powerful method for characterizing the enormous structural 

diversity and complexity of glycans and glycoconjugates. Recent advances in IM-MS 

instrumentation and methods have positioned this technique to enable discoveries in the 

glycosciences. In the future, the development of hybrid methods that couples high-resolution 

IM with orthogonal separation techniques and MS-based fragmentation and spectroscopic 

techniques will likely provide the analytical capability to extend the application of IM-MS to 

more complex biological systems in order to unravel the role of glycans and glycoconjugates 

in biology and disease.
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Highlights

• IM-MS is a powerful tool for glycan and glycoconjugate isomer analysis.

• Coupling IM with orthogonal separation techniques along with gas-phase 

manipulations greatly enhance isomer separation.

• Coupling IM with MS-based fragmentation and spectroscopic techniques 

improves structure characterization.

• CCS database provides another dimension of information for confident 

structural identification.

• IM-MS contributes to improved characterization of complex biological 

samples.
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Figure 1. 
The isomerization of glycan and glycoconjugates. a) The building blocks (monosaccharides) 

that compose larger glycans are structural isomers (Hexose: galactose, glucose, mannose, N-

acetylhexosamine: N-acetylgalactosamine, N-acetylglucosamine); monosaccharides can be 

connected either α- or β-stereochemistry at multiple potential linkage position; fucose could 

be either attached to N-glycan core or branches. b) Epimeric glycoconjugates results from 

alternative configurations (α- or β-) at the anomeric linkages or the presence of epimeric 

glycan monomers (galactose or glucose), scheme modified from reference [43]; two 

isomeric N-glycopeptides differ in the site of N-glycan attachment.
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Figure 2. 
Coupling IM with LC or CE. a) After LC or CE separation, analytes were ionized by ESI 

and subject to another dimension of separation afforded by IM based on their shape and 

charge through a buffer gas under a weak electric field (E). Sample preparation or gas-phase 

chemistry could be manipulated to improve glycan isomer separation. b) CE-ESI-TWIM-

MS/MS analysis of a mixture of aminoxyTMT6-128 (light) and aminoxyTMT6-131 (heavy) 

differentially labeled sialyllacto-N-tetraose a, b, c (LSTa, LSTb, LSTc). CE was able to 

separate LSTa with LSTb/c, but was unable to resolve LSTb and LSTc. Benefiting from 

another dimension of separation afforded by TWIM, baseline separation between LSTb and 

LSTc was achieved, which enables quantitative analysis of each isomer following MS/MS 

[38].
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Figure 3. 
IM-MS analysis of precursor ions and their fragments. a) Two scenarios exist for co-eluted 

isomers A/B for IM-MS analysis after being selected by quadrupole. Scenario one: A and B 

could be baseline-separated by IM. The mobility-selected ions could be subject to CID 

separately and signature product ions could be obtained for each †isomer. Scenario two: A 

and B could not be completely resolved by IM. Signature product ions were obtained for 

unresolved species. Drift time profiles of these signature products ions were extracted from 

total drift time profiles to differentiate A and B. b) Co-eluted isomers A/B were selected by 

quadrupole for MS/MS and the drift time profiles could be obtained for all product ions. 

Those product ions that are indicative of the isomeric structures of the analyte could be 

distinguished by IM and be used to differentiate the isomers. c) The CCS of both precursor 

ions and product ions could be measured and implemented into a CCS database. The CCS 

values could be used as an additional parameter for glycan identification besides the 
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commonly used m/z, mass fragments, and retention time. Furthermore, conformational study 

could be conducted by molecular dynamics to acquire the 3D structures of glycans.

Chen et al. Page 15

Curr Opin Chem Biol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphic abstract
	Introduction
	Improving IM-Based Isomer Separations
	Coupling IM with orthogonal separation techniques
	Coupling IM with MS-based fragmentation and spectroscopic techniques
	Collision Cross Section Databases
	Improved characterization of intact glycoconjugates
	Improved characterization of biological samples
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3

