
Improving the discovery of secondary metabolite natural 
products using ion mobility-mass spectrometry

Alexandra C. Schrimpe-Rutledgea, Stacy D. Sherroda,b, and John A. McLeana,b,*

aDepartment of Chemistry, Vanderbilt Institute of Chemical Biology, Center for Innovative 
Technology, Vanderbilt University, Nashville, Tennessee 37235 USA.

bVanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 
Nashville, Tennessee 37235 USA.

Abstract

Secondary metabolite discovery requires an unbiased, comprehensive workflow to detect unknown 

unknowns for which little to no molecular knowledge exists. Untargeted mass spectrometry-based 

metabolomics is a powerful platform, particularly when coupled with ion mobility for high-

throughput gas-phase separations to increase peak capacity and obtain gas-phase structural 

information. Ion mobility data are described by the amount of time an ion spends in the drift cell, 

which is directly related to an ion’s collision cross section (CCS). The CCS parameter describes 

the size, shape, and charge of a molecule and can be used to characterize unknown metabolomic 

species. Here, we describe current and emerging applications of ion mobility-mass spectrometry 

for prioritization, discovery and structure elucidation, and spatial/temporal characterization.
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Introduction

Advances in microbial genome sequencing have revealed cryptic secondary metabolite gene 

clusters that are thought to be unexploited sources of new bioactive compounds for 

discovery [1,2]. Expression of secondary metabolites can be an adaptive response, thus 

screening an organism under a variety of environmental stimuli to induce silent biosynthetic 

gene clusters could expand the catalog of natural products (NP) [3]. The analysis of complex 

chemically-diverse samples and identification of NP candidates is challenging. Untargeted 

metabolomics, which aims to comprehensively measure all analytes within a biological 

sample, has the potential to address this chemical diversity. A mass spectrometry (MS)-

based metabolomic platform is a powerful approach with high sensitivity and specificity [4]. 

In a typical experiment, the MS scans over a defined mass range to detect ions related to 

metabolites of interest. The number of compounds detected depends on the resolving power 

of the separation platform(s). Pre-ionization separations are routinely interfaced with MS; 

liquid chromatography (LC) is widely selected [5,6] since a majority of NP are non-volatile. 

Coupling LC with MS increases peak capacity, although there is a concomitant decrease in 

throughput. Ion mobility (IM) is a high-throughput separation technique that allows for rapid 

(µs to ms) separation of molecules [7] and has shown utility for studying a variety of natural 

products sources [8–10].

Ion mobility is a form of gas-phase electrophoresis that is readily coupled to mass 

spectrometry. In temporally dispersive IM methods, ions traverse an electric field colliding 

with a carrier buffer gas. The number of collisions encountered depends upon an ion’s 

physical properties (charge state, size, and shape), which are described by a collision cross 

section (CCS). Ions with a low mass and compact structure arrive at the mass analyzer with 

short drift times, while larger and bulkier molecules elute from the drift cell later. Ultimately, 

the ion mobility dimension increases the signal-to-noise ratio (S/N) in MS measurements. 

This report describes emerging applications for IM-MS analyses including feature 

prioritization strategies for downstream natural product discovery and structural elucidation, 

as well as ion mobility-MS imaging (MSI) for secondary metabolite spatial characterization. 

For a much more detailed survey of ion mobility-mass spectrometry, the reader is referred to 

several comprehensive reviews describing IM-MS theory, instrumentation, and analyses 

[7,11–13].

IM-MS for prioritization

IM is an appealing technology for NP prioritization efforts owing to its ability to separate 

molecules based on their gas-phase structural conformation. Unlike primary metabolites 

which are largely composed of conserved functional groups, secondary metabolite structures 

have diverse physicochemical properties (e.g., variable molecular weight, atom type, 

cyclization, degree of oxidation, etc.) [14]. This diversity can affect structural conformation 

and result in discrete regions of conformational space along trendlines being occupied by 

various molecular classes in mobility-mass correlations [15,16], as shown in (Figure 1a). 

Deviations of species from predicted trendlines can be exploited for secondary metabolite 

prioritization. Recent work has shown that a peptide natural product from cave 

actinomycetes [17] and halogenated natural products (i.e., particularly attractive lead 
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compounds [18]) derived from crude cyanobacteria extracts [9] deviate from predicted or 

experimentally-derived mobility trendlines.

Prioritization efforts can also leverage IM’s ability of IM to enhance analytical figures of 

merit, particularly when combined with LC [19]••[20], although a variety of other front-end 

separation techniques have been coupled with IM-MS platforms [21]. Basit and coworkers 

recently showed the ability for an untargeted LC-IM-MS-based lipidomics workflow to 

detect changes in mouse brain tissue. Specifically, the ion mobility separation dimension 

uncovered a subclass of dysregulated phospholipids that were not initially revealed by 

conventional prioritization strategies (i.e., principal component analyses)[22]. Other LC-IM-

MS studies have shown the ability to prioritize features via self-organizing maps (SOM) 

analyses of response trends to either multiplexed environmental stimuli [23] or co-culture 

with challenger organisms [24] •• designed to elicit potential induction of cryptic or silent 

gene clusters.

IM-MS for experimental flexibility

Numerous IM-MS instrument designs have been utilized in omics discovery research, and 

data showcase the benefit of incorporating an IM separation at a variable position within an 

instrument’s configuration or experimental method. Performing IM prior to MS analysis 

enables ion signal filtering, for example, using Differential Mobility Spectrometry (DMS) to 

suppress chemical noise and separate small isobaric molecules [25], and Field Asymmetric 

waveform Ion Mobility (FAIMS)-MS to detect lower abundance lipid classes by separating a 

highly abundant protein species [26]•.

Many metabolomics approaches utilize high energy MS fragmentations to generate tandem 

spectra for identifications. These experiments focus on identifying features of interest by 

matching MS/MS spectra with reference spectra for candidate annotations. Spectrum 

matching can be particularly challenging for data independent acquisitions where 

fragmentation for many ions occurs simultaneously resulting in combined MS/MS spectra. 

The inclusion of IM prior to fragmentation facilitates deconvolution of MS/MS spectra 

through correlation of drift time (DT, from the mobility dimension) and retention time (RT, 

from the LC dimension) with precursor and product ions. This approach has been 

successfully used for the discovery of novel secondary metabolites and subsequent structure 

elucidation in mutant Nocardiopsis strains [27]. Mobility-separated spectra are also 

particularly advantageous for distinguishing isobars in complex samples [19]•[28]•. Recent 

experiments have shown the utility of an IM dimension for more accurate quantification of 

individual isobaric species and deconvolution of their combined MS/MS spectra [29].

Performing fragmentation prior to IM analysis also has demonstrated utility. Mobility-

separated product ion data was used to guide neutral- and phospholipid identifications 

[30]•[31], a particularly challenging effort due to the existence of common structural 

moieties and large number of lipid isomers. Finally, an IM-MS instrument can be configured 

to enable fragmentation prior to and after mobility separation. This approach aided 

localization of fatty acyl and double bond positions in phosphatidylcholines [32]. An 

extension of this configuration incorporates in-source fragmentation to generate MS4 data 
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and has enabled the identification of co-eluting isobaric polycyclic polyprenylated 

acylphloroglucinols, bioactive components of Garcinia plants, not previously resolved by 

conventional LC-MS based methods [33]•.

IM–MS for dereplication, identification, and structural elucidation

The process of dereplication (to discriminate novel versus previously elucidated natural 

products) is crucial in discovery-based MS workflows [34]. Methods to facilitate 

dereplication efforts via crowd-sourcing analyses have been employed (such as those 

available through the Global Natural Product Social Molecular Networking (GNPS) website 

[35]), though many features remain unknown unknowns (i.e., unidentified novel molecules). 

Analytical advances leading to increased molecular information content should expedite 

dereplication and elucidation efforts. In omics-based LC-MS/MS experiments, species are 

characterized with a multi-coordinate set of descriptors (e.g., retention time, accurate mass, 

isotopic distribution [36,37], MS/MS pattern [38]) to generate candidate identifications. The 

opportunity to include the IM dimension (i.e., CCS) as a complementary robust 

measurement to increase specificity and molecular information content is recognized 

[13,39,40]. Experimental CCSs can be derived directly from drift time measurements [via 

Drift Tube Ion Mobility Spectrometry (DT IMS)] or by performing a non-linear calibration 

with an appropriate calibrant under defined conditions [41]•• [via Traveling Wave Ion 

Mobility Spectrometry (TW IMS)]; inter-lab reproducibility has been established [39].

Though experimental CCS values are valuable physicochemical descriptors, their utility is 

currently the greatest for known unknown compounds (i.e., known compounds pending 

identification). Multiple known unknown candidates may meet the accurate mass 

measurement and isotopic abundance pattern criteria, thus filtering with published CCS 

values has the potential to reduce the number of candidates to support an identification 

(Figure 1b). Previously established CCS values are often unavailable. When a compound is 

labeled as an unknown unknown, CCS alone is not a discriminating identifier. In these cases, 

experimental IM data can also be used in conjunction with computational methods that 

simulate 3-D structural conformations and calculate theoretical CCS values [42] [43]• to 

guide identification of unknown unknowns; predicted conformations consistent with 

experimental data are prioritized for evaluation (Figure 1c). Recent works incorporating 

molecular dynamic simulations have allowed for the characterization of a dipeptide-amyloid 

β complex [44]• and drug metabolite structural isomers [45]•.

IM-MSI for spatial characterization

Multi-dimensional IM-MS metabolomics data allow for separations of ions based on their 

structural and physicochemical attributes, including hydrophobicity, mass, and collision 

cross section along with fragmentation data (Figure 1b). Mass spectrometry imaging (MSI) 

generates data with yet another level of knowledge, positional context, to interrogate spatial 

distributions of molecules and has been successfully combined with IM separations for 

added sensitivity. The ionization source of MSI instruments must be amenable to sampling 

the surface of a biological substrate (e.g., tissue, agar, etc.) and coincide with experimental 

goals (sample preparation, image resolution, etc.) [46]. Matrix Assisted Laser Desorption 
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Ionization (MALDI), Desorption Electrospray Ionization (DESI), and Liquid-Microjunction-

Surface Sampling Probe (LMJ-SSP) have demonstrated success for IM-MSI applications 

[46–51] [52]•. After matrix application on the surface, MALDI imaging analyses are 

typically performed in-vacuo with relatively high spatial resolution (dictated by the size and 

shape of the laser); ambient ionization techniques, such as DESI and LMJ-SSP, require 

minimal to no sample preparation allowing samples to be analyzed in native state, but have 

more moderate spatial resolution [53]. Fernandez and coworkers used an IM separation in an 

effort to compensate for the limited spatial resolution of DESI [50]. The incorporation of 

DMS as a front end ion filter enabled increased sensitivity by improving S/N, effectively 

rendering higher quality images. A recent study used an interchangeable source to compare 

DESI and MALDI ionization of lipids in brain tissue on a single TWIM-MS instrument [52] 

•. The DESI IM configuration was particularly advantageous for this work as a trendline 

comprised of fragile lipid species was revealed, though several species with lower DESI 

ionization efficiencies were ionized better by MALDI, rendering complementary data.

Inherently, MSI does not enable chromatographic separation prior to imaging. Identification 

of ions detected in an MSI experiment is therefore challenging, owing to the m/z 

interferences (isobaric compounds and in-source fragmentation) [54] that confound the 

spatial data interpretation (Figure 1d). Further, the lack of an LC RT descriptor results in the 

use of accurate mass and isotopic abundance pattern alone for identification efforts. The 

ability of IM-MSI to address these limitations has been explored. Applications have shown 

the ability to reduce background chemical noise and increase sensitive and specificity, for 

example, to resolve poly-sialylated gangliosides in murine brain sections [52] and enable 

high-throughput localization and identification of recombinant biocatalysts in live bacterial 

colonies [55]•. Advances in IM-MSI technology will continue to benefit discovery-based 

research, particularly for 3-D imaging approaches to capture spatial profiles of molecular 

interactions [34] and investigations of native environments for biological systems exhibiting 

steep surface topologies [56].

Concluding remarks

IM-MS analyses can facilitate biological discovery research by providing an additional 

dimension of sensitive and specific physicochemical data for metabolite prioritization. LC-

IM-MS measurements are particularly advantageous for natural product discovery where 

multiple descriptors (see Fig 1b.) are used to minimize dereplication efforts. Structural 

elucidation is a more arduous task. While IM will certainly augment identification 

confidence, pre-ionization separations/chromatography and MS/MS are still necessary for 

MS-based elucidation.

The full potential for massive data sets generated using IM-MS-based spatial and/or 

temporal experiments is tantalizing, though hurdles related to the mining the data must be 

overcome. New software tools need to be developed to extract and process high-

dimensionality data in order for researchers to be able to interpret and manage findings. 

Additionally, data storage for copious large datasets is a legitimate concern. The IM field is 

currently determining the boundaries with which we can utilize CCS measurements for 

discovery and structural elucidations. Innovations in IM technology, specifically leading to 
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high mobility resolution analyses [57–60], MSI technology, and automated data analysis 

workflows incorporating both theoretical and experimental CCS data, should have far 

reaching implications in the natural product, and thus human health, research communities. 

Though we focused many examples on natural product-based secondary metabolite research, 

the utility of IM is applicable for primary and secondary metabolites in any biological 

system.
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Highlights

• IM techniques separate ions in the gas-phase based on size, shape, and charge

• Deviations from mobility-mass trend lines can be prioritized for identification

• The inclusion of IM enables flexible MS experimental designs

• Collision cross section values can be used as physicochemical descriptors

• IM enhances imaging MS with post-ionization separation of isobaric species
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Figure 1. 
Applications of metabolomic workflows utilizing ion mobility-mass spectrometry for 

discovery of secondary metabolite natural products. (a) (Left) IM-MS mobility-mass 

correlation plots reveal trends of various molecular classes within conformational space. 

(Middle) Deviations of species from predicted trendlines can be exploited for secondary 

metabolite prioritization. (Right) This region annotates a peak with dense gas-phase packing 

efficiency that falls nearly 12% below the linear peptide trendline for this m/z. This 

compound was identified as siamycin II, a tricyclic peptide, and confirmed by isolation and 

NMR analyses. Reproduced with permission from [17]. Copyright 2012 American Chemical 
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Society. (b) The Venn diagram represents candidate identifications based on individual data 

dimensions. Mass spectrometry yields accurate mass and isotope pattern information that 

can be used to determine molecular formula, liquid chromatography yields retention time, 

and ion mobility yields drift time/CCS. The goal of including multiple descriptors is to filter 

candidate space and remove false positives, ultimately leading to a true positive 

identification (represented here by a star). (c) Computational methods can be used to 

simulate 3-D structural conformations and calculate theoretical CCS values for comparison 

with experimental data. Conformations that are consistent with the experimental CCS range 

are prioritized for structural elucidation. In this mock example, three conformations were 

predicted for an unknown species with a molecular formula of C6H13NO2. Their theoretical 

CCS values were compared with the experimental CCS value, revealing conformation 3 as a 

plausible structure. (d) MSI experiments generate m/z spectra for each spatial coordinate. 

The integration of an ion mobility dimension enables isobaric species to be separated 

resulting in more accurate ion images. In this example, m/z 1 appears with uniform signal 

(green dots) across a sample. Mobility data revealed an isobar, m/z 1-a, with signal (blue 

dots) that appears as a border around the sample. Further temporal data would enable 

tracking of this spatial data as a function of time.
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