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Abstract

The nervous system comprises many different cell types including neurons, glia, macrophages, 

and immune cells, each of which is defined by specific patterns of gene expression, morphology, 

function, and anatomical location. Establishment of these complex and highly regulated cell fates 

requires spatial and temporal coordination of gene transcription. Open chromatin (euchromatin) 

allows transcription factors to interact with gene promoters and activate lineage specific genes, 

whereas closed chromatin (heterochromatin) remains inaccessible to transcriptional activation. 

Changes in the genome-wide distribution of euchromatin accompanies transcriptional plasticity 

that allows the diversity of mature cell fates to be generated during development. In the past 20 

years, many new genes and gene families have been identified to participate in regulation of 

chromatin accessibility. These genes include chromatin remodelers that interact with Trithorax 

group (TrxG) and Polycomb group (PcG) proteins to activate or repress transcription, respectively. 

Here we review the role of TrxG proteins in neurodevelopment and disease.
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1. Introduction

Embryonic development proceeds from a single multipotent cell to a multicellular complex 

organism with distinct organs, tissues, and cell types that retain their identities over 

developmental space and time. While some mature cells and tissues exhibit high levels of 

proliferative and regenerative potential (i.e, skin and gut epithelial cells), others (i.e, 

neurons) are quiescent and unable to self-renew upon injury. The mechanisms by which 

specific cell types maintain their fate or “memory” that instructs profiles of gene expression 
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despite active DNA replication and mitosis remain a mystery; however, much work has been 

done to identify the genes, molecules, and chromatin-associated factors involved in this 

process. Chromatin structure has a regulatory role on the transcriptional profile on processes 

that underlie cellular proliferation and maintenance of cell fate. Identifying the molecular 

pathways that direct chromatin structure and gene expression is a central goal in 

developmental biology, and has important relevance for understanding basic mechanisms of 

developmental disorders.

This review explores mechanisms of human developmental disorders caused by pathogenic 

variants in human homologs of trithorax group (TrxG) genes encoding histone 

methyltransferases, demethylases, and chromatin remodelers (Table 1). TrxG is a family of 

proteins that form large multi-protein complexes exhibiting histone methyltransferase and/or 

chromatin remodeling functions (Schuettengruber et al., 2011). Drosophila trithorax (trx) 

was first identified as a spontaneous pathogenic variant in flies with abnormalities of head, 

thoracic, and abdominal structures, consistent with transformations of body segment identity 

(Ingham, 1983). In the fly, trx encodes for a histone methyltransferase and acts to suppress 

the functions of Polycomb group (PcG) genes. TrxG and PcG genes are highly conserved 

across evolution, and act antagonistically at genetic targets such as the Hox gene cluster to 

regulate gene expression (Steffen and Ringrose, 2014). In general, PcG genes encode 

proteins that function as transcriptional repressors, whereas TrxG genes encode proteins that 

act as transcriptional activators (Fig. 1). This mutual antagonism has led to a model whereby 

PcG and TrxG proteins switch between stably repressed or activated patterns of gene 

expression during development.

TrxG proteins generally function as large multi-protein complexes, where they localize to 

transcription start sites, enhancers, and gene bodies, with variable roles that are influenced 

largely by their interacting partners and target sites in the genome. Based on their molecular 

functions, TrxG proteins are categorized into three general classes. The first class of TrxG 

proteins comprises SET-domain histone methyltransferases. This class includes the 

COMPASS (complex of proteins associated with Set1) members SET1A, SET1B, and mixed 

lineage leukemia-1-4 (MLL1, MLL2, MLL3 and MLL4), among others (Piunti and 

Shilatifard, 2016). The second class of TrxG proteins contains ATP-dependent chromatin 

remodelers that “read” the histone modifications established by SET domain-containing 

enzymes. This class includes switch/sucrose non-fermenting (SWI/SNF) proteins, imitation 

switch (ISWI), inositol auxotroph 80 (INO80), and chromodomain-helicase-DNA binding 

(CHD) proteins. Chromatin remodelers harness the energy of ATP to slide nucleosomes 

along DNA, evict nucleosomes from DNA, or exchange histone dimers, thereby altering the 

chromatin architecture and making it more or less accessible to transcription factors and 

other regulatory proteins or RNA. The third class of TrxG proteins bind specific DNA 

sequences called TrxG response elements (TREs), which often coincide with PcG response 

elements (PREs) that switch status between activation and silencing by mechanisms that 

involve noncoding RNA transcription (Herzog et al., 2014). This general classification of 

TrxG proteins is still evolving, as new information is obtained about the functions of this 

large group of proteins and associated factors.
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2. Histone modifications and developmental disorders

2.1 Epigenetic mechanisms

Abundant post-translational modifications of histone tails (phosphorylation, methylation, 

acetylation, ubiquitination, sumoylation), which regulate accessibility of genetic 

information, are a distinguishing feature of eukaryotic organisms. Epigenetic regulation of 

gene expression requires involvement of many different histone modifying enzymes, 

including “writers” that attach modifications to histone tails, and “erasers” that remove 

modifications, whereas “readers” recognize modifications distributed in a cell-specific 

manner across the genome. A function of histone modifications is to coordinate chromatin 

remodelers and transcriptional machinery for transcriptional regulation. Histone 

modifications function together with histone variants, chromatin-remodeling activities, DNA 

methylation, and histone chaperones to contribute to the faithful establishment and 

maintenance of the chromatin environment.

Among various post-translational modifications, histone H3 Lysine 4 (H3K4) methylation 

(H3K4me) is evolutionarily conserved and closely associated with transcriptionally active 

chromatin (Bannister and Kouzarides, 2011; Shilatifard, 2006). Data supports H3K4 

methylation in pivotal early steps of the signaling cascade leading to transcriptional 

activation (Campos and Reinberg, 2009; Ruthenburg et al., 2007). Also, H3K4me recruits 

basic transcriptional machinery (Tang et al., 2013; Vermeulen et al., 2007), including histone 

acetyltransferases and ATP-dependent chromatin remodeling proteins of the CHD family 

such as CHD7 and CHD8 (Ruthenburg et al., 2007; Schnetz et al., 2009; Schnetz et al., 

2010; Taverna et al., 2007; Wysocka et al., 2006). Genome-wide analyses show that 

H3K4me, which is highly enriched at gene promoters and enhancers, positively correlates 

with transcription rates, occupancy of RNA Pol II, and histone acetylation at 5′ regions of 

active genes (Barski et al., 2007; Heintzman et al., 2007). H3K4me is also enriched at 

chromatin regions ‘poised’ for differentiation and lineage specification in embryonic stem 

cells (ESCs), juxtaposed with the antagonistic H3K27me3 mark (Azuara et al., 2006; 

Bernstein et al., 2006; Pan et al., 2007). Thus, specific histone marks or combinations of 

histone marks serve as tags for unique functional regions of the genome.

2.2 Disorders of epigenetic factors

Disruptions of histone modifications and chromatin accessibility comprise an important 

class of human developmental disorders (Fahrner and Bjornsson, 2014; Lopez and Wood, 

2015). Human genetic disorders caused by pathogenic variants in epigenetic modulators 

include CHARGE, Kabuki, Coffin-Siris, Kleefstra, Wiedemann-Steiner, and Nicolaides-

Baraitser syndromes (Table 1)(Jones et al., 2012; Mendelsohn et al., 2014; Strom et al., 

2014). Neurodevelopmental disorders have also been associated with pathogenic variants in 

TrxG genes, COMPASS members, and other ATP-dependent chromatin remodelers. Perhaps 

not surprisingly, altered dosage and function of TrxG-related proteins leads to a variety of 

cancers such as leukemia, rhabdoid tumors, and meningioma (Table 1) (Schuettengruber et 

al., 2017).
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3. ATP-dependent chromatin remodelers

3.1 ISWI

Goodwin and Picketts, in this issue, provide a comprehensive review of ISWI and its role in 

neurodevelopmental disorders, including genes that encode ISWI components BAZ1B and 

CECR2 in Williams-Beuren and Cat Eye syndrome, respectively (Banting et al., 2005; 

Bozhenok et al., 2002; Footz et al., 2001; Lu et al., 1998; Mellor, 2006; Peoples et al., 1998). 

Readers are encouraged to read their paper for more information on this important class of 

ATP-dependent chromatin remodelers.

3.2 SWI/SNF

SWI/SNF (also known as BRG1/BRM associated factor (BAF)) complexes are comprised of 

at least 15 different subunits that are enriched at gene promoters, enhancers, and super-

enhancers (Sokpor et al., 2017). Dynamic switching among BAF subunits during neuronal 

development has the potential to generate hundreds of different complexes (Lessard et al., 

2007). Five genes encoding subunits of the SWI/SNF family (SMARCA4 (BRG1), 
SMARCB1 (SNF5), SMARCE1 (BAF57), ARID1A (BAF250A), and ARID1B 
(BAF250B)) have been implicated in Coffin-Siris syndrome (Santen et al., 2012; Tsurusaki 

et al., 2012), and pathogenic variants in SMARCA2 (BRM) cause Nicolaides-Baraitser 

syndrome (Sousa et al., 2014; Van Houdt et al., 2012). Pathogenic variants in SMARCA4 
(Coffin-Siris syndrome) and SMARCA2 (Nicolaides-Baraitser syndrome) are predicted to 

result in functionally inert proteins that retain their abilities to interact with and target 

specific regions of the genome with other subunits of SWI/SNF. Pathogenic variants in 

SMARCA1 (SNF2L1) have been reported in individuals with schizophrenia, microcephaly, 

intellectual disability, and Rett-like phenotypes (Homann et al., 2016; Karaca et al., 2015; 

Lopes et al., 2016). Mechanistically, SWI/SNF and CHD proteins share the common 

property of flanking nucleosome-free regions (NFRs) in embryonic stem cells, suggesting 

that complex interactions between these protein classes are necessary for regulating distinct 

patterns of chromatin and gene expression (de Dieuleveult et al., 2016).

3.3 INO80

INO80 proteins, unlike other chromatin remodelers, have unique structural features and 

functions that include regulation of DNA replication and repair. INO80 promotes 

progression of the DNA replication fork, evicts RNA polymerase II at transcribed genes 

upon interaction with the replication fork, and releases nucleosomes after oxidative DNA 

damage (Poli et al., 2017). Recently, INO80 was described as a candidate disease gene for 

an individual who presented with primary microcephaly and global developmental delay in a 

cohort of consanguineous families (Alazami et al., 2015). In addition, variants in YY1AP1, a 

component of the INO80 complex, were identified as a cause of Grange syndrome (Guo et 

al., 2017). Pathogenic variants in the INO80 homolog SRCAP cause Floating-Harbor 

syndrome, a neurodevelopmental disorder with expressive language delay, short stature, and 

abnormal skeletal/craniofacial development (Hood et al., 2012; Hood et al., 2016; Nikkel et 

al., 2013). Ultimately, evidence from these human genetic studies points to the importance 

of chromatin remodeling in DNA replication, damage, and transcription as critical during 
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development, and perturbation of these processes leads to overlapping phenotypes that affect 

neurodevelopment.

3.4 CHD

The CHD family comprises nine chromatin remodeling members characterized by the 

presence of two chromodomains (chromatin organization modifier), a structural domain of 

about 40–50 amino acid residues, centrally located DNA helicase domains, and less well-

defined carboxyl terminal domains (Shur and Benayahu, 2005; Woodage et al., 1997). 

Chromodomains are not unique to the CHD family; they are also present in repressive 

Polycomb protein Pc and heterochromatin associated protein HP1 of D. melanogaster, where 

they were first described (Paro and Hogness, 1991). CHD proteins, similar to SWI/SNF 

proteins, regulate access to DNA by using the energy of ATP hydrolysis to alter chromatin 

structure, slide nucleosomes along DNA, or evict nucleosomes from the DNA strand during 

transcription or replication (Becker and Hörz, 2002; Eberharter and Becker, 2004; Lusser 

and Kadonaga, 2003; Manning and Yusufzai, 2017; Narlikar et al., 2002; Smith and 

Peterson, 2005). Moreover, CHD proteins “read” H3K4 methylation at transcription start 

sites and enhancers and exhibit pleiotropic functions during development, including 

regulation of pluripotency, stem cell proliferation, and lineage determination (Dowen et al., 

2014; Hnisz et al., 2013; Niederreiter et al., 2015). The CHD family exhibits high 

evolutionary conservation back to S. cerevisiae and D. melanogaster with one and four 

members, respectively. In vertebrates, the nine CHD proteins are divided into three distinct 

subfamilies on the basis of similarities in amino acid sequence and functional protein 

domains (Liu et al., 2015; Woodage et al., 1997). CHD proteins were also recently shown to 

target specific nucleosomes near MNase-defined NFRs (de Dieuleveult et al., 2016).

3.4.1 The CHD Family Subclass I—Subclass I of human CHD proteins is comprised of 

CHD1 and CHD2, both of which are associated with human disease. Notably, subclass I 

proteins display the ability to interact with histone modifications (methylation of H3K4), 

through a chromodomain aromatic cage (Flanagan et al., 2007), and the ability to bind DNA 

through a C-terminal domain structure that resembles a SWI3, ADA2, N-CoR, and TFIIIB 

(SANT) domain and a SANT-like ISWI domain (SLIDE domain) (Aasland et al., 1996; 

Delmas et al., 1993; Grune et al., 2003; Ryan et al., 2011; Stokes and Perry, 1995; Woodage 

et al., 1997). Heterozygous pathogenic variants in CHD1 were recently identified in six 

individuals with autism, developmental delay, speech apraxia, and craniofacial 

dysmorphisms (Pilarowski et al., 2017). CHD2 was first implicated in neurodevelopment 

disease through case reports describing de novo deletions of 15q26 in individuals with 

epilepsy, developmental delay and craniofacial dysmorphisms (Capelli et al., 2012; Veredice 

et al., 2009). However, the definitive involvement of this chromatin remodeler in 

neurodevelopment, independent of other 15q26 genes, was not discovered until cohort 

studies applied targeted and whole exome sequencing approaches. De novo pathogenic 

variants and copy number variants (CNVs) in CHD2 were later discovered in epileptic 

encephalopathy, non-syndromic intellectual disability, and autism spectrum disorder cohorts, 

suggesting that pathogenic variants in CHD2 cause a spectrum of neurological phenotypes 

including seizures (Carvill et al., 2013; Chenier et al., 2014; Epi et al., 2013; Lund et al., 

2014; O’Roak et al., 2014; Pinto et al., 2014; Rauch et al., 2012; Suls et al., 2013).
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The underlying mechanism of CHD2 pathogenic variants has not been precisely defined. 

Suls et al. utilized morpholino knockdown of chd2 in zebrafish, and reported that larvae with 

chd2 partial knockdown exhibited epileptiform discharges and abnormal twitching behavior 

(Suls et al., 2013). Several other phenotypes were also observed in chd2 partial knockdown 

zebrafish, including microcephaly, growth retardation, curved body appearance, absence of 

the swim bladder, and pericardial edema. Consistent with multiple abnormalities observed in 

chd2 mutant zebrafish, Chd2 mutant mice that lack the C-terminal DNA binding domain 

also exhibit small size, a hunched appearance, and multiple organ abnormalities in the heart, 

spleen, liver, kidney and lymph nodes (Marfella et al., 2006). Chd2 is expressed in adult 

mouse brain tissue; however, no brain abnormalities were reported upon necropsy or 

histopathology examination, nor was epileptic behavior observed (Marfella et al., 2006). It is 

possible that the lifespan of Chd2 mutant mice (32 to 64 weeks) is too short to observe 

neurological phenotypes, or neurological abnormities are too subtle to be detected by the 

macroscopic and histopathology methods used for evaluation. Alternatively, expression of 

the mutant CHD2 protein (which retains the chromodomains and ATPase domain) may be 

sufficient to prevent neurological disease. Alternatively, there may be species-specific 

differences in CHD2 function between humans, zebrafish, and mice.

The chromatin remodeling role of CHD2 appears to influence the deposition of histone 

variant H3.3 at genes important for development. H3.3 is generally observed at chromatin 

associated with active transcription, but also contributes to the chromatin environment at 

bivalent gene promoters (Goldberg et al., 2010). Interestingly, depletion of H3.3 or Hira, the 

histone chaperone that deposits H3.3 at genic regions, leads to reduced H3K27me3 at 

bivalent gene promoters in mouse embryonic stem cells (ESCs), whereas Chd2 depletion 

results in a greater enrichment of both H3.3 and H3K27me3 (Banaszynski et al., 2013; 

Semba et al., 2017). These studies highlight the importance of histone chaperones and CHD 

proteins in balancing repressive and active histone modifications at developmentally critical 

genes.

3.4.2 The CHD Family Subclass II—The CHD subclass II proteins CHD3, CHD4 and 

CHD5 are distinguished from the other two subclasses in that they display two plant 

homeodomain (PHD) zinc finger domains capable of reading lysine 4 methylated H3 (Bienz, 

2006; Sanchez and Zhou, 2011). Interestingly, members of the CHD subclass II are 

components of the nucleosome remodeling and histone deacetylation (NuRD) complex 

(Tong et al., 1998; Xue et al., 1998; Zhang et al., 1998). The NuRD complex contains at 

least six subunits histone deacetylase-1 (HDAC1) and -2 (HDAC2), and chromatin 

remodeling functions from CHD3-5 (Basta and Rauchman, 2015; Bowen et al., 2004; Lai 

and Wade, 2011). The composition of NuRD during mouse cortical development implicates 

each of the three-chromatin remodelers (CHD3, CHD4 and CHD5) in a different stage of 

corticogenesis with generally non-redundant roles (Nitarska et al., 2016). Studies of NuRD 

in rat postnatal cerebella demonstrate that CHD4 regulates gene repression and drives 

synaptogenesis of granule neuron parallel fibers and Purkinje cells (Yamada et al., 2014). 

CHD4 also complexes with Polycomb Repressive Complex 2 (PRC2) catalytic component 

EZH2 in mouse neural progenitor cells to maintain the sequential order of transcriptional 

programs, specifically to suppress glial gene expression (Sparmann et al., 2013).
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All CHD subclass II members are associated with human disease. Levels of CHD3 (formerly 

autoantigen Mi-2) and CHD4 were reported to be elevated in sera of patients with arthritis 

and dermatomyositis (Ge et al., 1995; Seelig et al., 1996). Phenotypes associated with 

pathogenic CHD4 variants are clinically heterogeneous; however, all individuals are reported 

to have abnormal neurodevelopment. De novo CHD4 variants, including missense and an in-

frame deletion, have been identified in individuals with non-specific neurodevelopmental 

disorders and in a cohort of individuals with congenital heart defects (Sifrim et al., 2016; 

Weiss et al., 2016), and some of these individuals have structural brain anomalies such as 

macrocephaly and ventriculomegaly. The underlying molecular pathologies of the CHD4 
pathogenic variants observed in humans are under intense study. Functional studies in 

HEK293 cells showed that pathogenic CHD4 variants in the C-terminal helicase domain 

(p.Arg1127Gln and p.Arg1173Leu) do not alter the ability of the mutant CHD4 protein to 

localize to the nucleus and interact with Histone Deacetylase 1 (HDAC1) (Weiss et al., 

2016). Conditional deletion of Chd4 in mice results in mild microcephaly, contrasting the 

macrocephaly noted in some individuals with CHD4 pathogenic variants (Nitarska et al., 

2016). The discordance between human and mouse CHD4 deficiency phenotypes suggests 

either that this model system does not fully recapitulate human brain development or that the 

molecular pathology of human CHD4 pathogenic variants deviates from loss-of-function.

CHD5 is highly expressed in the nervous system and is regulated by retinoic acid in 

neuroblastoma cells (Egan et al., 2013; Higashi et al., 2015). CHD5 is a tumor suppressor in 

the p19(Arf)/p53 pathway controlling cell proliferation, apoptosis, and senescence (Bagchi 

et al., 2007).

3.4.3 The CHD Family Subclass III—CHD subfamily III contains CHD6, CHD7, 

CHD8, and CHD9. Subclass III CHD proteins are unique from the other chromodomain 

proteins in having a SANT domain and two BRK domains C-terminal to the helicase 

domain. The SANT domain is conserved among many regulators of transcription and 

chromatin structure, and is believed to function as a histone tail binding module (Boyer et 

al., 2004). The BRK domain is found only in CHD subclass III proteins, in the catalytic 

subunit of the SWI/SNF complex, and in Drosophila brahma and kismet (Daubresse et al., 

1999; Dorighi and Tamkun, 2013). BRK domains are proposed to reorganize chromatin 

structure via formation of a chromodomain aromatic cage similar to CHD subfamily I, 

suggesting BRK may also participate in binding methylated lysine residues (Daubresse et 

al., 1999; Doerks et al., 2002).

The Drosophila kismet (kis) gene is highly related to mammalian CHD class III members. 

The kismet gene was identified in a genetic screen for dominant suppressors of polycomb, a 

group of genes that act as transcriptional repressors of homeotic genes (Daubresse et al., 

1999). Loss of kismet results in homeotic transformations, suggesting that kismet is a 

member of the TrxG of gene activators. Brahma, the catalytic subunit of the Drosophila 
SWI/SNF complex, may also function by a similar mechanism (Boyer et al., 2004; 

Daubresse et al., 1999; Kennison and Tamkun, 1988; Tamkun et al., 1992). Loss of maternal 

kismet leads to significant defects in larval body segmentation, and expression of the 

segment polarity gene engrailed is significantly altered in kismet mutant flies, indicating that 

Moccia and Martin Page 7

Mol Cell Neurosci. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



engrailed and other genes important for proper segmentation require normal kismet function 

(Daubresse et al., 1999).

Of the four CHD subfamily III members, only CHD7 and CHD8 have been shown to be 

associated with human genetic disease. In humans, heterozygous CHD7 pathogenic variants 

cause CHARGE syndrome, a clinically variable, multiple congenital anomaly condition 

affecting development of the inner ear, eyes, heart, choanae (the region between the 

oropharynx and nasal passages), genitalia, nervous system, and craniofacial structures 

including the hard and soft palates, lip, external ear, midface, and olfactory system (Hall, 

1979; Vissers et al., 2004). CHARGE is a common cause of deaf-blindness, balance 

disorders, and congenital heart malformations, with an estimated incidence of 1:8500–

1:12,000 in newborns (Harris et al., 1997; Issekutz et al., 2005; Kallen et al., 1999). 

Heterozygous nonsense, deletion, or missense CHD7 pathogenic variants are estimated to 

occur up to 90% of patients with CHARGE (Aramaki et al., 2006; Jongmans et al., 2006; 

Lalani et al., 2006; Sanlaville et al., 2005; Vissers et al., 2004). CHD7 pathogenic variants 

are distributed throughout the coding sequence and do not correlate with specific aspects of 

the clinical phenotype. In addition, most human CHD7 pathogenic variants identified thus 

far are de novo; however, evidence for germline mosaicism has been reported in a family 

with affected siblings (Jongmans et al., 2006) and in a father of two children with CHARGE 

syndrome (Pauli et al., 2009).

CHD7 preferentially binds to enhancers and transcription start sites, some of which are 

marked by methylation of H3K4 (Scacheri et al., 2006). In addition, CHD7 regulates rRNA 

transcription along with key transcription factors and signaling molecules that control 

neurogenesis (Basson and van Ravenswaaij-Arts, 2015; Feng et al., 2013; Jones et al., 2015; 

Layman et al., 2011; Layman et al., 2009; Micucci et al., 2014; Whittaker et al., 2017; 

Zentner et al., 2010). Ethylnitrosourea (ENU) mutagenesis projects have led to 

characterization of nine different lines of Chd7 mutant mice, each with an identifiable single 

base pair Chd7 pathogenic variant (Bosman et al., 2005; Nolan et al., 1995). These Chd7 
mutant mice are viable and exhibit hyperactivity, head bobbing, circling behaviors, disrupted 

lateral semicircular canals, reduced postnatal growth, variable cleft palate, choanal atresia, 

cardiac septal defects, hemorrhage, prenatal death, genital abnormalities, and 

keratoconjunctivitis sicca (dry eye) (Bosman et al., 2005; Hawker et al., 2005; Kiernan et al., 

2002; Nolan et al., 1995; Pickard et al., 1995). Another mutant mouse (Wheels) has a similar 

phenotype and maps to the same region of mouse chromosome 4 but is not known to harbor 

a Chd7 pathogenic variant (Alavizadeh et al., 2001; Bosman et al., 2005; Nolan et al., 1995; 

Pickard et al., 1995). Our laboratory generated and characterized a lacZ-expressing, Chd7 
gene trap null allele (Chd7Gt) that results in homozygous intrauterine lethality by E11.5 and 

heterozygous phenotypes similar to other Chd7 mutant mice (Hurd et al., 2007). Chd7Gt/+ 

mice also have the advantage of expressing β-galactosidase (β-gal) from a null Chd7 allele 

and can be used to track Chd7 mutant cells. Together, these observations demonstrate that 

CHD7 is involved in epigenetic regulation of gene transcription during development and 

CHD7 deficiency causes similar phenotypes in mice and humans.

CHD8 was recently identified as a novel candidate gene for Autism Spectrum Disorder 

(ASD) (Bernier et al., 2014; O’Roak et al., 2012a; O’Roak et al., 2012b; Zahir et al., 2007). 
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Although ASD is genetically heterogeneous, many studies utilizing whole exome 

sequencing and molecular inversion probe sequencing methods have demonstrated that 

individuals with ASD show enrichment for both truncating and non-truncating CHD8 
variants (Bernier et al., 2014; De Rubeis et al., 2014; Neale et al., 2012; O’Roak et al., 2014; 

O’Roak et al., 2012a). Interestingly, individuals with CHD8 pathogenic variants often have 

macrocephaly, facial dysmorphisms and gastrointestinal dysfunction, suggesting important 

roles for CHD8 related chromatin remodeling in brain and craniofacial development.

The combination of both ASD and macrocephaly phenotypes has sparked many studies 

utilizing animal model systems to determine the biological function of CHD8 during 

neurodevelopment. Knockout of Chd8 is embryonic lethal, and both knockdown and 

heterozygous germline editing approaches have been utilized to study morphological 

features attributed to CHD8 depletion (Nishiyama et al., 2004; Nishiyama et al., 2009). 

Studies utilizing zebrafish with morpholino knockdown of chd8 and generation of chd8 
microdeletions by CRISPR-Cas9 were shown to recapitulate macrocephaly, the distinct 

facial feature of increased distance between the eyes, and a gastrointestinal phenotype 

observed in humans with CHD8 pathogenic variants (Bernier et al., 2014). Similarly, reports 

of germline edited heterozygous Chd8 mutant mice have noted increases in brain volume, 

ASD-related behaviors, increased distance between eyes, and gastrointestinal defects 

(Katayama et al., 2016; Platt et al., 2017). Taken together, the highly consistent 

morphological features between individuals with CHD8 pathogenic variants and animal 

models highlight the importance of CHD8 for building a normal brain.

4. Common Targets and Potential Therapies for Epigenetic Diseases

Collectively, disruptions of histone methyltransferases and chromatin remodelers impact 

epigenetic regulation of gene transcription, suggesting there may be common genetic targets 

and potential therapies with broad application for these conditions. One promising example 

of such a therapy is the use of topoisomerase inhibitors to de-repress the silenced allele in 

Angelman syndrome (Huang et al., 2012). In CHARGE syndrome, the majority of 

pathogenic variants result from disruption of a single copy of CHD7 (Janssen et al., 2012). 

Thus, therapies that (a) alter histone modifying activities, (b) increase CHD7 expression, or 

(c) counteract changes in downstream gene expression may be relevant for CHARGE and 

other TrxG protein-related disorders. A recent study showed that CHD7 interacts with 

Topoisomerase 2b (Feng et al., 2013), suggesting that regulation of Topoisomerase may also 

be an effective approach for conditions where CHD7 is dysfunctional or absent. For those 

epigenetic disorders caused by haploinsufficiency, enhancement of expression or 

functionality of the remaining wild type allele could improve chromatin recruitment and 

remodeling activities. Pharmacologic agents that target epigenetic regulators may prove to 

be particularly effective for neurodevelopmental disorders. Additional research is needed to 

identify novel epigenetic mechanisms underlying brain, craniofacial, neural, and embryonic 

development. Such studies could provide critical information about chromatin remodeler and 

histone methyltransferase target genes and regulatory complexes, and will help lay the 

foundation for further mechanistic studies of histone modifications, nucleosome positioning 

and basic chromatin biology of cellular proliferation and differentiation.
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5. Conclusions

Human homologs of TrxG genes encoding methyltransferases, demethylases, and chromatin 

remodelers contribute vital regulation of the epigenetic landscape in the cell nucleus. In turn, 

the corresponding chromatin configurations influence the dynamic states of gene expression, 

which ultimately dictate proliferative outcomes and cell fates. Pathogenic variants impacting 

TrxG-related genes occur in a variety of human disorders in which the brain is commonly 

affected. These genetic disorders display a high degree of phenotypic overlap, suggesting 

that similar biological pathways or stages of development are impacted. In this review, we 

have highlighted human studies and animal models which have established the molecular 

pathologies of disease from altered TrxG, COMPASS, and ATP-dependent chromatin 

remodelers. Results from these studies have set a foundation for future explorations of the 

mechanisms controlling the histone code, accessibility of DNA to trans-acting factors, and 

gene expression.
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Highlights

• Epigenetic regulators and chromatin remodelers influence chromatin 

accessibility.

• Human homologs of Trithorax related genes are associated with 

neurodevelopmental disorders.

• Animal models and biochemical studies highlight roles for ATP-dependent 

chromatin remodeling in brain development.
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Figure 1. Schematic of Polycomb and Trithorax Related Proteins at Promoters of Repressed and 
Active Genes
Repressed genes are bound by Polycomb group proteins (PcG) whereas Trithorax-related 

proteins (TrxG) localize to actively transcribed genes. COMPASS (complex of proteins 

associated with Set1) opposes PcG activity to activate transcription. ATP-dependent 

chromatin remodelers (CHD, ISWI, INO80, and SWI/SNF) regulate DNA accessibility, 

which influences gene repression and activation during embryonic development.
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Table 1
Human genetic diseases associated with Trithorax group related genes

Human disease associations, and Autism susceptibility according to SFARI gene classification for Trithorax 

group related genes. Scoring for SFARI gene is as follows: syndromic (S), high confidence (1), and strong 

candidate (2).

Trithorax Group Class Gene Name Human Disease Association SFARI Gene Score SFARI Syndromic

Histone Methyltransferases KMT2F (SET1A) Association with Schizophrenia and 
neurodevelopmental disorders

KMT2A (MLL1) Wiedemann-Steiner syndrome and 
Leukemia Myeloid

2 S

KMT2D (MLL2) Kabuki syndrome 1

KMT2C (MLL3) Kleefstra syndrome 2

KMT2B (MLL4) Dystonia

Histone Demethylase KDM6A (UTX) Kabuki syndrome 2

ATP-Dependent 
Chromatin Remodelers - 

SWI/SNF

SMARCA1 (SNF2L1) Schizophrenia, Microcephaly with 
intellectual disability, Rett-like phenotypes

SMARCA2 (BRM) Nicolaides-Baraitser syndrome and 
Schizophrenia

S S

SMARCA4 (BRG1) Coffin-Siris syndrome 4 and Rhabdoid 
Tumor Predisposition syndrome 2

SMARCB1 (SNF5) Coffin-Siris syndrome 3, somatic 
Rhabdoid tumors, Rhabdoid 

Predisposition syndrome 1, and 
susceptibility to Schwannomatosis-1

SMARCE1 (BAF57) Coffin-Siris syndrome 5, susceptibility to 
familial Meningioma

ARID1A (BAF250A) Coffin-Siris syndrome 2

ARID1B (BAF250B) Coffin-Siris syndrome 1 1 S

ATP-Dependent 
Chromatin Remodelers - 

INO80

YY1AP1 (YAP) Grange syndrome

SRCAP (SWR1) Floating-Harbor syndrome 2

ATP-Dependent 
Chromatin Remodelers - 

CHD

CHD1 Pilarowski-Bjornsson syndrome

CHD2 Childhood-onset Epileptic Encephalopathy 2 S

CHD4 Sifram-Hitz-Weiss syndrome

CHD7 CHARGE syndrome S S

CHD8 Autism Spectrum Disorder 1 S
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