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Internal Motion Estimation by 
Internal-external Motion Modeling 
for Lung Cancer Radiotherapy
Haibin Chen1, Zichun Zhong2, Yiwei Yang3, Jiawei Chen1, Linghong Zhou1, Xin Zhen   1 & 
Xuejun Gu   4

The aim of this study is to develop an internal-external correlation model for internal motion estimation 
for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion 
are obtained by respectively registering the internal organ meshes and external surface meshes 
from the 4DCT images via a recently developed local topology preserved non-rigid point matching 
algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with 
external phasic and directional DVFs. Principle component analysis is then applied to the composite 
matrix to extract principal motion characteristics, and generate model parameters to correlate the 
internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) 
synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of 
mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)
mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung 
tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, 
and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. 
The extensive validations have demonstrated the effectiveness and reliability of the proposed model in 
motion tracking for both the tumor and the lung in lung cancer radiotherapy.

Organs and tumors in the thoracic and abdominal region can move and deform significantly due to respiration1. 
The respiration-induced tumor motion can be up to 3 cm in the superior-inferior (SI) direction2 and 2–4 mm in 
the anterior-posterior (AP) direction3. Respiration motion-induced translation, rotation, and deformation of the 
tumor and surrounding organs at risk (OARs) can cause significant geometric and dosimetric errors. Gierga et al.4 
reported that the planned target dose-volume histogram (DVH) was significantly degraded where the received 
CTV dose was reduced by 2–28% with tumor motion of 7.4 mm and 3.8 mm in the SI and AP directions, respec-
tively. In a 4D Monte Carlo study, 3–5% dose differences (9.3 Gy tumor under-dosage) was observed between a 
3DCT plan and a 4DCT plan where respiratory motion was considered5. Even with additional planning target 
volume (PTV) margin compensations for breathing motion, dose deviation of PTV D95 can be up to 26% for 
fractional dose and 14% for total dose with tumor motion6.

Respiration motion, on the other hand, can be utilized as an additional degree of freedom besides conven-
tional 3D spatial domain to achieve 4D optimized treatment plan with greater OAR-sparing while maintaining 
PTV coverage and delivery efficiency7. The primary step to take advantage of respiration motion is to accurately 
track both the tumor and OARs motion. Many motion tracking strategies have been investigated in the past two 
decades. Some have been already successfully implemented in clinics8–12. Intuitively, directly imaging of tumor 
and OARs to obtain real-time positions is the most accurate tracking method13–16. However, real-time imaging 
techniques often have their own limitations. For instance, the X-ray fluoroscopy has low image contrast in soft 
tissue15,16. MRI can provide high-quality soft tissue images and is promising for tumor and OAR tracking13,14; 
however, it is expensive and not widely available in clinics yet. While the clinically available MRI guidance radio-
therapy units only have 2D planar tracking capability14,17–19. Instead of tracking tumor and OAR directly, tracking 
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of the surrogates, e.g., implanted fiducial markers, is a preferable alternative. Studies have shown that fiducial 
tracking can achieve tumor localization accuracy of up to 0.4 mm20–22. However, the popularity of fiducial track-
ing is impeded by its invasiveness23 and possible fiducial migration24. Furthermore, fiducial tracking by X-ray 
fluoroscopy may introduce extra imaging dose20.

A more clinical practical tracking approach is achieved by constructing a correlation model to correlate the 
internal tumor/OARs motion and the external surface surrogate signals2,25. The internal-external correlation 
model, either linear or nonlinear, is usually established before treatment and renewed periodically by acquiring 
updated external and internal motion information8–12,26–29. The Cyberknife Synchrony system8–11, the Brainlab 
ExacTrac system12,29 and the Vero system (Brainlab, MHI)30,31 are three representative clinical applications. The 
Cyberknife tracks tumor motion based on a model defined between the external motion and internal markers. 
This model needs to be updated based on X-ray snapshots frequently32. The ExacTrac system can correct patient 
rigid positioning errors by combining continuous optical infrared tracking signal with X-Ray verification of the 
internal position. The Vero system achieves dynamic tumor tracking by monitoring the implanted markers with 
two orthogonal kilovoltage (kV) X-ray images30. All the above three systems will introduce extra imaging dose 
to the patient.

Recent studies have demonstrated the feasibility of correlating the internal motions with external motions 
detected by respiratory surrogates on the surface33–37. More recently, with the development of real-time 3D sur-
face imaging system, researchers have developed more comprehensive internal-external correlation models. 
For example, McClelland et al.35 proposed a correlation model for inter-fraction tracking by obtaining inter-
nal motion from deformable registration of Cine 4D-CT images and related it to a respiratory surrogate signal 
derived from the 3D skin surface. The extracted external surrogate signal in their method was one-dimensional 
which tends to underestimate the complex breathing induced motions. Martin et al.34 built a surrogate-driven 
motion model for lung tumor motion tracking from image data acquired by cone-beam CT(CBCT) scan. It 
was reported that the tracking error was reduced to <2.5 mm in either SI or transverse directions. However, the 
inherently limited field of view of CBCT scanning protocol only allows for tracking a limited region of interests 
(ROIs) instead of the entire internal volumes. Fayad et al.37 developed a patient-specific respiratory motion model 
using the surface surrogate signal on several ROIs between the xiphoid and umbilicus to track the deformation 
vector fields(DVFs) of the entire CT volume. Tracking accuracy of <2 mm in thirteen anatomical landmarks 
was achieved, which is superior over conventional methods using the phasic, amplitude, or phasic & amplitude 
as external surrogates. Fassi et al.36 also proposed a similar tracking model by correlating internal motion with 
three external surface surrogates (i.e., the baseline, amplitude and phase extracted from external surface DVFs). 
Tracking accuracy of 0.7–2.4 mm was demonstrated on the CBCT projections. Since only limited external sur-
rogates were used, the external motion was likely oversimplified and might not be sufficient for internal-external 
correlation modeling.

In this study, we proposed an internal motion estimation approach by surface mesh matching and 
internal-external motion correlation modeling by using estimated internal phasic DVFs and external phasic and 
directional DVFs. The effectiveness of the proposed model is demonstrated by extensive validations on a 4D 
NURBS-based cardiac-torso (NCAT) synthetic phantom and five clinical lung cancer cases. A preliminary ver-
sion of this work has been reported in an abstract38.

Methods and Materials
Ethics statement.  This retrospective patient study was approved by Human Research Protection Program 
Office (HRPPO)/Institutional Review Board (IRB) of The University of Texas Southwestern Medical Center. All 
methods in this study were conducted in accordance with the relevant guidelines and regulations. Considering 
that this is not a therapeutical treatment study, our institutional review board waived the need for obtaining writ-
ten informed consent from the participants.

Surface meshing.  In this study, external and internal motions were represented by deformation of the exter-
nal surface and internal organ surface, respectively. The surfaces used for modeling and validation were extracted 
from the 4DCT, on which the contours were first delineated and then the superior and lateral portion of the 
body contours, and the internal organ contours were converted to meshes using a particle-based surface mesh-
ing approach39. Given the contour points of the segmented organ masks (or particles in this algorithm), a high 
quality isotropic triangular surface meshing can be obtained by solving an inter-particle energy function with the 
quasi-Newton L-BFGS optimizer. The algorithm implementation details have been described by Zhong et al.39.

Motion and deformation tracking model.  The internal and external DVFs were denoted as Ij and Sj to 
characterize the motion of internal organs and external surface on phase j of the planning 4DCT images. The Ij 
and Sj can be represented as Equations (1) and (2).

= …I I I I I I I[ , , ; ; , , ], (1)j x j y j z j M x j M y j M z j1, , 1, , 1, , , , , , , ,

= … .S S S S S S S[ , , ; ; , , ] (2)j x j y j z j N x j N y j N z j1, , 1, , 1, , , , , , , ,

Here, x, y, z represented three cartesian coordinates, M was the number of vertices of the internal organ surface, 
and N was the number of small patches on the external surface. Here, N = 154 patches (14 × 11, 14 in the SI direc-
tion and 11 in the ML direction) were uniformly extracted from the external surface via the strategy detailed in 
a previous work33. Both Ij and Sj were estimated by registering the surface points on phase j (j ∈ [1,10]) of the 4D 
planning CT to those on a middle position (MidP) CT, which is a time-averaged CT image representing mean 
position of patient’s anatomy in the breathing cycle40. The DVFs (Sn,x,j, Sn,y,j, Sn,z,j) on patch n were calculated by 
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averaging the DVFs on vertices inside the corresponding patch. Surface point registration was accomplished 
using a recent developed local topology preserved non-rigid point matching algorithm(TOP-DIR)41. Unlike 
internal motion, which was the combination effect of respiration, heart beating and organ deformation, the exter-
nal surface motion is mainly caused by breathing. However, respiration induced motion may diminish when 
propagating from internal to external, and is weakly reflected on the external surface. To capture subtle external 
motion difference between different breathing process (e.g., from inhale to exhale vs. from exhale to inhale), we 
defined an Aj to describe respiration-induced directional external motion between consecutive respiratory phases:

= … .A A A A A A A[ , , ; ; , , ] (3)j x j y j z j N x j N y j N z j1, , 1, , 1, , , , , , , ,

Aj was calculated by subtracting the DVFs Sj−1 from DVFs Sj. Vector dj was constructed by combining Ij, Sj and 
Aj to describe the internal and external motion on phase j:

= … … …d I I I I S S S A A A S A[ , , , , , , , , , , , , , , ] (4)j x j y j z j M z j x j y j z j x j y j z j N x j Nzj1, , 1, , 1, , , , 1, , 1, , 1, , 1, , 1, , 1, , , ,

The internal-external motion pattern for all phases was described by a composite matrix:

= …  D d d d[ , , , ], (5)J1 2

where = − = ∑ =d d d d d J, , 10j j J j j
1 . The principle component analysis (PCA) was used to extract motion 

characteristics from D. Instead of calculating the eigenvalues and the corresponding eigenvectors of the covari-
ance matrix DDT directly with a standard PCA procedure, we adopted the approach of Fayad et al.37 to reduce 
computational expense. Let Xand λ be the eigenvectors and eigenvalues of matrix DTD,

λ=D DX X (6)T

multiplying D on both side of Equation (6) leads to:

λ=DD DX DX( ) (7)T

Equation (7) indicates that DX and λ are the eigenvectors and corresponding eigenvalues of the covariance 
matrix DDT. Note that λ was the eigenvalues of both DTD and DDT, and computation of eigenvalues and cor-
responding eigenvectors from DTD was more efficient (DTDwas with size J × J). Finally, the internal-external 
motion at time t can be approximated as a weight sum of the obtained eigenvectors E = [e1, …, eK] of the largest 
K(K ≤ J − 1)eigenvalues as the Equation (8) below, where W was the corresponding weight.

∑≈ + = =
=

 d t d d d w t e EW( ) , ( )
(8)k

K

k k
1

Then, d  was split into ≈I E WI , ≈S E Ws , where EI (size 3M × K) was constructed from the first 3M rows of 
E and ES (size 6N × K) was constructed from the rest 6N rows of E. Essentially, I  and S  were the internal and 
external DVFs, and EI and ES correspond to the internal and external components of the eigenvectors. By assum-
ing ES was invertible and eliminating the unknown weight matrix W, the internal DVFs I  can be predicted using 
the external DVFs S  as:

≈ = .−
  I t E E S t BS t( ) ( ) ( ) (9)I S

1

where B (size 3M × 6N) was a matrix correlating the internal and external motion.

Quantification of tracking accuracy.  The accuracy of the proposed model was assessed by comparing the 
tracked internal organ contours with the manually delineated ground truths. Four similarity metrics were used 
including the center of mass (COM) error, the Dice’s coefficient (DC)42, the percent error (PE)43 and the 
Housdourf ’s distance (HD)44. Given two volumes A (manual contoured volume/ground truth) and B(predicted 
volume), and their corresponding boundary points = …

���
A a a{ , }p1  and = …

��
B b b{ , , }q1 . COM error was defined 

as the 3D Euclidean distance between the mass center of ground truth volume A and that of predicted volume B, 
to measure the tracking accuracy of the motion trajectory. DC, PE and HD were used to measure the agreement 
between the predicted tumor and organ contours and the manual delineated ground truths. The COM, DC and 
PE were defined as:

= || − ||c A c BCOM ( ) ( ) , (10)

∩= +DC A B A B2( )/( ), (11)

∪ ∩= − .PE A B A B A( )/ (12)

In Equation (10), c(A) and c(B) represented the mass center coordinate of volume A and B and ||·|| was the L2 
norm. DC ranges from 0 to 1, corresponding to the worst and the best agreement, respectively. PE ranges from 0 
to infinity, with 0 represents the best agreement. The HD was defined as:

=
�� �� �� ��

HD h A B h B Amax( ( , ), ( , )), (13)
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where = −∈
→

∈
→

�� ��
h A B a b( , ) max mina A b B . The ground truth organ masks were contoured by an experienced 

physician. Better tracking results were indicated by lower COM, PE, and HD, or higher DC.
The developed model using the phasic DVFs and directional DVFs on the entire external surface (including 

all discrete surface patches, termed as SurMod) was compared with 1) using phasic DVFs (without directional 
DVFs) on partial external surface (10 selected patches, termed as RoiMod)37, and 2) using phasic DVFs (without 
directional DVFs) on the entire external surface (termed as SurphaMod).

Independent samples Kruskal-Wallis (K-W) test was adopted for organ tracking performance comparisons 
among RoiMod, SurphaMod, and SurMod. Inter-group comparisons were performed with Mann-Whitney tests. 
K-W tests and one-way analysis of variance (ANOVA) were conducted for non-parametric and parametric data, 
respectively, to analyze tracking performance difference. All statistical analyses were implemented using SPSS 
19.0 software (SPSS Inc., Chicago, IL), and the statistical significance level was set at p = 0.05. For multiple com-
parisons, the p-value was adjusted accordingly using the Bonferroni correction method for individual compari-
son tests in SPSS.

Synthetic cases.  4DCT images with five breathing cycles (Cycles 1–5) simulated by using the 4D NCAT 
phantom45 were employed for evaluation. As detailed in Table 1, the changes of breath period, amplitude and the 
atrophy of tumor response to the treatment were synthesized in the respiration motion in cycles 1–5. The tumor 
motions in the ML (Medio-Lateral), AP and SI directions for each respiratory cycle were given by:

π
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where H was the maximal amplitude of the surface motion in AP direction, T was the respiratory period, HML, 
HAP and HSI were the motion trajectories of the tumor centroids in the ML, AP and SI directions, respectively. The 
resolution and voxel size of the synthetic cases were 256 × 256 × 120 and 2.0 mm × 2.0 mm × 2.5 mm.

In this NCAT phantom evaluation, Cycle 1 was used for motion modeling. The established correlation model 
was then applied for motion tracking, where Cycles 2 and 3 were used for intra-fraction validation (with different 
periods but same tumor diameter), and Cycles 4 and 5 were used for inter-fraction validation (with different 
periods and different tumor diameter).

Clinical cases.  Clinical 4DCT images from five lung cancer patients (4 males and 1 female, ages range from 
53 to 78 with median of 63) were collected for validations (Table 2). All the 4DCT images were acquired on a 
Brilliance Big Bore-16 (Philips) CT scanner. The 4DCT images were sorted into 10 phases. Patients 1–3 have one 
set 4DCT image, and patients 4 and 5 have two sets 4DCT images. Both intra-4DCT and inter-4DCT evaluations 
were conducted. For intra-4DCT evaluation, the leave-one-out method was used, i.e., nine out of ten phases were 

Cycle # Period (s)
Maximal 
Amplitude (mm)

Tumor Diameter 
(mm)

1 5 12 30

2 4.5 10 30

3 5.5 14 30

4 4 8 20

5 6 16 20

Table 1.  Simulation parameters of the NCAT phantom.

Patient # 
(4DCT set #) Resolution

Voxel Size 
(mm × mm × mm)

Evaluation 
Case #

Intra- Inter-

1 512 × 512 × 142 1.0 × 1.0 × 3.0 1

2 512 × 512 × 149 1.0 × 1.0 × 3.0 2

3 512 × 512 × 104 1.0 × 1.0 × 2.5 3

4(1) 512 × 512 × 88 1.4 × 1.4 × 5.0 4 8, 9

4(2) 512 × 512 × 100 1.1 × 1.1 × 5.0 5 8, 9

5(1) 512 × 512 × 93 1.2 × 1.2 × 5.0 6 10, 11

5(2) 512 × 512 × 101 1.2 × 1.2 × 5.0 7 10, 11

Table 2.  Characteristics of the clinical lung cancer cases.
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used for modeling and the left one phase for motion tracking validation. For inter-4DCT evaluation, 10 phasic 
4DCT images from one set were used for modeling while those from the other set for tracking validation.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Results
NCAT phantom.  The quantitative comparisons, in terms of COM error, DC, PE and HD, between the 
RoiMod, SurphaMod, and SurMod are illustrated in Fig. 1. Only slight improvement is observed when comparing 
the SurphaMod with the RoiMod, while the proposed SurMod achieved the highest tracking accuracy for all the 
four metrics except for the HD in the lung tracking. The limited improvement of SurphaMod over RoiMod can 
be explained by the almost consistent surface motion pattern observed in the NCAT phantom, where employing 
the entire surface does not necessarily provide additional information in motion modeling. While further adding 
directional DVFs, as demonstrated by the SurMod, can offer more useful motion information in modeling the 
internal-external correlation.

The advantage of utilizing complete surface and directional DVFs in motion modeling is visualized as 
an example case shown in Fig. 2, where the SurMod and the RoiMod are compared at the end of inspiration 
(Fig. 2(a), (b)) and at the end of expiration (Fig. 2(c), (d)). It is observed that the SurMod can produce more accu-
rate The RoiMod and SurphaMod both failed in tracking the tumor motion in the ML direction (Fig. 3(a)), even 
though the simulated motion is relatively small (~3 mm in the ML direction). In contrast, the proposed SurMod 
is able to capture those subtle changes in the ML direction tracking than the RoiMod for both the tumor and the 
lung, especially in the apex of the lung (Fig. 2(a–d)-2).

Figure 3 shows the intra-fraction and inter-fraction tracking comparisons in the ML, AP and SI directions as 
well as the COM trajectories and COM differences. The RoiMod and SurphaMod both fail in tracking the tumor 
motion in the ML direction (Fig. 3(a)), even though the simulated motion is relatively small (~3 mm in the ML 
direction). In contrast, the proposed SurMod is able to capture those subtle changes in the ML direction, and 
yields superior tracking accuracy in all directions (Fig. 3(a), (b), (c)). The largest COM errors are 4.1 mm, 5.3 mm 
and 1.3 mm for the RoiMod, SurphaMod, and the SurMod, respectively. The mean errors in the ML, AP, SI direc-
tions of the RoiMod are 1.2(±0.8) mm, 0.4(±0.3) mm, 1.7(±1.2) mm, respectively. The SurphaMod yields sim-
ilar results with a mean error of 1.1(±0.8) mm, 0.4(±0.3) mm and 1.6(±1.4) mm. In comparison, the proposed 
SurMod achieves best tracking accuracy with a mean error of 0.4(±0.3) mm, 0.3(±0.2) mm and 0.5(±0.4) mm 
in the above three directions. In general, the SurMod decreases the mean COM error from 1.6(±1.2) mm and 
1.7(±1.4) mm to 0.8(±0.4) mm in tumor tracking when compared with the RoiMod and SurphaMod.

The quantitative evaluations on the synthetic phantom are illustrated in Table 3 and Fig. 4. For both intra-/
inter-fraction tracking, the SurphaMod achieves significant improvements over RoiMod in lung tracking accu-
racy, except for the HD of the intra-fraction tracking and the COM of the inter-fraction tracking. However, no 
significant improvement is observed in tumor tracking from RoiMod to SurphaMod. In contrast, the proposed 
SurMod achieves significant improvements over RoiMod in all metrics for both intra-/inter-fraction tumor and 
lung tracking. Furthermore, the SurMod also achieves significant improvements over the SurphaMod in tumor 
tracking except for the PE of inter-fraction tracking. After all, both the SurphaMod and SurMod achieve improve-
ments over the RoiMod, and the SurMod performs the best. Quantitatively, the tracking accuracies achieved by the 
proposed SurMod in terms of COM, DC, PE and HD are 0.8(±0.5)mm/0.8(±0.4)mm, 0.96(±0.02)/0.94(±0.03), 
0.09(±0.04)/0.12(±0.05), 2.3(±0.8)mm/2.2(±0.8)mm for tumor, and 1.3(±0.8)mm/1.8(±1.1)mm,  

Figure 1.  The tracking accuracy comparisons of the RoiMod, SurphaMod, and SurMod using Cycle 2 of the 
NCAT phantom. The boxes run from the 25th to 75th percentile; the two ends of the whiskers represent the 
5% and 95% percentiles of the data, the horizontal line in the box represents the median values, and the stars 
represent outliers, respectively.
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0.97(±0.01)/0.97(±0.01), 0.06(±0.02)/0.07(±0.03), 12.6(±3.5)mm/13.0(±4.3)mm for lung of intra-fraction/
inter-fraction tracking on the NCAT phantom, respectively.

Clinical cases.  The comparisons of the intra-4DCT tracking for a clinical case (Case 1) are illustrated in 
Fig. 5. We can see that the SurphaMod is able to produce more accurate tracking results than the RoiMod, though 
slight inferior COM errors are observed in the lung. Among the three models, the proposed SurMod yields the 
best results.

Visual comparisons of the intra-4DCT tracking of the clinical case 1 are shown in Fig. 6. More accurate tumor 
and lung contours are predicted by the SurMod compared with the RoiMod, indicates by better agreements 
between the tracked contours with the physician delineated ground truths.

Figure 7 shows an inter-4DCT tracking example comparison. For the tumor, the RoiMod yields the worst 
tracking accuracy of COM 3.7(±2.4) mm, DC 0.77(±0.07), PE 0.42(±0.12) and HD 8.9(±3.1), followed by the 
SurphaMod with COM 2.6(±1.0) mm, DC 0.83(±0.02), PE 0.33(±0.04) and HD 5.8(±0.7) mm. The SurMod 
achieves best tracking accuracy of COM 2.3(±1.2) mm, DC 0.84(±0.02), PE 0.30(±0.04) and HD 5.7(±0.8) mm. 
For the lung, similar results are achieved by RoiMod (COM 3.8(±2.0) mm, DC 0.95(±0.02), PE 0.10(±0.04), 
HD 21.9(±3.4) mm) and SurphaMod (COM 5.1(±2.5) mm, DC 0.94(±0.01), PE 0.12(±0.03), HD 23.0(±2.9) 
mm), and the proposed SurMod achieves improved accuracies of COM 2.0(±1.0) mm, DC 0.97(±0.01), PE 
0.06(±0.01), HD 18.8(±2.4) mm. However, the COM error of SurMod is larger than RoiMod and SurphMod in 
phase 50% and 60%. The reason for this is that the COM error is a biased metric when the target involves large 
deformation in motion, especially in scenarios(such as the lung at the end of exhale). The four metrics combined 
results show the three model behave similarly in phase 50% and 60%.

The tracking accuracy comparisons for all clinical cases (Cases 1 to 11) are shown in Table 4 and Fig. 8. 
In the intra-/inter-4DCT tracking, significant improvements are observed from SurphaMod over RoiMod in 
COM error of intra-/inter-4DCT tracking and HD of the inter-4DCT tracking for tumor, and in all metrics of 
intra-/inter-4DCT lung tracking except for the COM error of intra-4DCT tracking and the HD of inter-4DCT 
tracking. The SurMod also achieves significantly better tracking accuracies over RoiMod except for the COM 

Figure 2.  Tumor and lung tracking at the end of inspiration (a) and (b) and at the end of expiration (c) and 
(d) in one breathing cycle (Cycle 2) on the NCAT phantom. The zoom-in views (middle column) are extracted 
from the ROIs as labeled in (a).



www.nature.com/scientificreports/

7Scientific REPorTs |  (2018) 8:3677  | DOI:10.1038/s41598-018-22023-3

error and HD of intra-4DCT lung tracking. Furthermore, significant improvements also are observed from 
SurMod over SurphaMod in DC and PE of the inter-4DCT lung tracking. In general, both the SurphaMod and 
SurMod achieve improvements over RoiMod, but the SurMod yields the best results. Quantitatively, the pro-
posed SurMod improves the tracking accuracy in terms of COM, DC, PE and HD as 1.3(±1.0) mm/1.2(±1.2) 
mm, 0.90(±0.07)/0.89(±0.08), 0.20(±0.15)/0.23(±0.19), 5.2(±1.5) mm/5.6(±1.1) mm for tumor and 2.1(±1.4) 
mm/2.3(±1.7) mm, 0.97(±0.01)/0.97(±0.01), 0.06(±0.02)/0.06(±0.02), 15.2(±5.4) mm/15.5(±5.9) mm for lung 
in the intra-/inter-4DCT tracking on the clinical patient data, respectively.

Efficiency.  All experiments in this study were conducted on a CPU platform equipped with 8 GB memory, 
and the proposed model was coded and implemented on the software platform of MatlabR2011a. The average 
computational time for motion modeling and prediction were ~9 minutes and ~13 seconds. The computational 
time was closely related to the number of the generated mesh vertices of the internal organs and external surface. 
Intuitively, more vertices can depict more anatomical details on organ surface, however, it does not necessarily 
imply higher registration accuracy41. In this study, therefore, the quantity of mesh vertices was empirically set as 
1500 to balance the accuracy and efficiency, which was proved to be adequate to yield satisfactory registration 
result.

Discussion
As the evaluation results on synthetic NCAT phantom data and clinical data illustrated, the proposed SurMod 
achieved superior performance over the RoiMod and SurphaMod in the internal organs tracking for lung cancer 
radiotherapy. It also can be observed that, compared with the performance in clinical cases, the proposed model 
achieved better in the NCAT phantom. The reasons are two folds: firstly, the breathing pattern is constant in 
the NCAT phantom but might be irregular in real patient data. The proposed model is established using one 
set of the 4DCT image with the assumption that change in breathing pattern is small; however, this is an ideal 
hypothesis which might not happen in more complicated clinical cases. Secondly, since the target shape may 

Figure 3.  Tumor trajectories in the ML (a), AP (b), SI (c) directions, as well as the COM trajectories and COM 
differences (d) of the NCAT phantom.
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vary considerably between different treatment fractions, thus, delineation consistency of the target will intro-
duce another source of error for tracking accuracy evaluation. Compared with the inter-fraction tracking, higher 
accuracy was seen in intra-fraction tracking. This may attribute to the large anatomical changes between differ-
ent treatment fractions, even though the model had been adapted by registering the patient anatomy between 
fractions, the anatomical differences were unlikely to eliminate. Furthermore, the respiration pattern tends to be 
stable in intra-fraction treatment. However, it may vary considerably between treatment fractions. With effective 
model update strategies, this tracking accuracy discrepancy between intra-fraction and inter-fraction should be 
reduced.

The effectiveness of the proposed SurMod attributes to the utilization of motion information from the entire 
surface, as well as directional respiration-induced DVFs Aj. The partial ROIs based model was proved to be supe-
rior to the conventional approaches using phasic, amplitude, and phasic & amplitude as external surrogates37. 

Intra-fraction tracking (Cycles 2, 3)

Structures Quantitative Metrics RoiMod SurphaMod (vs RoiMod) SurMod (vs RoiMod/SurphaMod)

Tumor

COM(mm) 2.2 ± 1.3 1.8 ± 1.1(>0.05) 0.8 ± 0.5(<0.001/0.003)

DC 0.91 ± 0.05 0.92 ± 0.04(>0.05) 0.96 ± 0.02(0.001/0.005)

PE 0.19 ± 0.11 0.16 ± 0.08(>0.05) 0.09 ± 0.04(0.001/0.005)

HD(mm) 3.5 ± 1.1 3.2 ± 1.8(>0.05) 2.3 ± 0.8(0.003/0.039)

Lung

COM(mm) 1.7 ± 1.2 1.3 ± 0.8(0.045) 1.2 ± 0.9(0.010/>0.05)

DC 0.96 ± 0.02 0.97 ± 0.01(0.006) 0.97 ± 0.01(<0.001/>0.05)

PE 0.08 ± 0.04 0.06 ± 0.02(0.006) 0.05 ± 0.02(<0.001/>0.05)

HD(mm) 14.1 ± 4.6 12.6 ± 3.5(0.120) 11.8 ± 4.6(0.018/>0.05)

Inter-fraction tracking (Cycles 4, 5)

Structures Quantitative Metrics RoiMod SurphaMod (vs RoiMod) SurMod (vs RoiMod/SurphaMod)

Tumor

COM(mm) 2.1 ± 1.5 2.0 ± 1.8(>0.05) 0.8 ± 0.4(0.001/0.035)

DC 0.87 ± 0.08 0.88 ± 0.10(>0.05) 0.94 ± 0.03(0.005/0.050)

PE 0.27 ± 0.17 0.25 ± 0.20(>0.05) 0.12 ± 0.05(0.005/0.052)

HD(mm) 3.3 ± 1.3 3.1 ± 1.5(>0.05) 2.2 ± 0.8(0.046/0.018)

Lung

COM(mm) 2.7 ± 1.9 1.8 ± 1.2(0.131) 1.5 ± 0.9(0.014/>0.05)

DC 0.94 ± 0.03 0.97 ± 0.02(<0.001) 0.97 ± 0.01(<0.001/>0.05)

PE 0.12 ± 0.06 0.06 ± 0.03(<0.001) 0.07 ± 0.03(<0.001/>0.05)

HD(mm) 16.5 ± 5.8 13.0 ± 4.3(0.003) 13.0 ± 5.3(0.003/>0.05)

Table 3.  Quantitative comparisons (Mean ± STD(p-value)) between the RoiMod, SurphaMod and the SurMod 
in intra-fraction tracking and inter-fraction tracking for the NCAT phantom.

Figure 4.  The quantitative comparisons between the RoiMod, SurphaMod, and SurMod in intra-fraction 
tracking (Cycles 2, 3) and inter-fraction tracking (Cycles 4, 5) on the NCAT phantom. The meanings of the 
symbols in this figure are the same as in Fig. 2. The letters above each box indicate whether a statistically 
significant difference exists between any two tracking models. With different letters indicates statistical 
significance while the same letters for statistical insignificance.
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However, the location of the ten proposed ROIs were identified from ten patients, which might not be able to 
generalize to a broader patient cohort because of inter-patient respiration variations. The generally superior per-
formance of the SurphaMod over the RoiMod implied the robustness and effectiveness of using entire surface 
information. Moreover, benefited from the utilization of directional DVFs Aj, the proposed SurMod outper-
formed SurphaMod in scenarios when large inspiration-expiration differences occurred (e.g., synthetic cases, 
case 1 and case 9, as results shown in Figs 1, 5 and 7, respectively). In general, compared with the RoiMod37, the 
proposed SurMod improved the mean DC from 0.84/0.95 to 0.89/0.97 for inter-fraction tumor/lung tracking 

Figure 5.  The tracking accuracy comparisons between the RoiMod, SurphaMod and SurMod on the clinical 
Case 1.

Figure 6.  Intra-4DCT tracking of the tumor and lung at the end of expiration (a) and (b) and at the end 
of inspiration (c) and (d) of a clinical patient case (Case 1). The yellow zoom-in views (middle column) are 
extracted from the ROIs as labeled in (a).



www.nature.com/scientificreports/

1 0Scientific REPorTs |  (2018) 8:3677  | DOI:10.1038/s41598-018-22023-3

on clinical data (0.015/<0.001) significantly. The mean COM error of 1.2 mm achieved by SurMod is also lower 
than 2.4 mm reported in a conventional approach using the phases & baseline & amplitude surrogates36 in 
inter-fraction tumor tracking.

For the proposed SurMod, the modeling procedure costs <10 mins in a CPU platform and the motion pre-
diction costs <15 s, where most of the computation time is spent on surface meshes registration. Though 8~10 
frames per second (fps) tracking speed46 is usually expected in a clinical context for real-time tracking, 10 × or 
more acceleration, as reported by previous studies47–50, is possible and not effort-demanding. This can be achieved 
by simply coding the current model in parallel in a GPU environment equipped with high-end computational 
platform.

Though promising results were achieved on synthetic phantom data and clinical patient data, there are many 
challenges needed to be addressed before applying the proposed model in a clinical setting. Firstly, the proposed 
model is based on the stable respiration assumption, which may not apply to all patients, especially for those late 
stage lung cancer patients with poor lung function. Model updating is necessary to adapt the model to a new 
on-treatment scenario51,52, especially for inter-fraction tracking. Therefore, model validation during treatment 
and a regular model update scheme will be essential for renewing the model established on the pre-treatment 
4DCT. The model update can be achieved by registering the patient anatomy on the treatment day with that 
from the planning 4DCT, which is also used to accommodate the inter-fractional baseline drift in this study. The 
efficiency of the model update is closely related to the registration algorithm used. The registration process is 
expected to be done within half a minute with the aid of GPU acceleration53. With current technologies, the kV 
X-ray verification is the most practical tool for the tumor tracking model validation, which is also easy for model 

Figure 7.  Inter-4DCT tracking accuracy in terms of COM error (a,b), DC (c,d), PE (e,f), as well as HD (g,h) for 
the tumor and lung in a clinical patient case (Case 9). Phase 0% and 50% represent the end of inhale and the end 
of exhale, respectively.
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update to accommodate the baseline shift estimation. Since the purpose of the proposed model was to track both 
tumor location and tumor shape, projection images from multiple directions might be required to provide bench-
mark comparisons of tumor shape in different projection angles.

Furthermore, more complicated circumstances (e.g. phase shifts, baseline drifts and hysteresis, etc.) need 
to be evaluated for the proposed model. In this study, to evaluate the model’s responses to general respiration 
motion, primary parameters changes (period, amplitude and tumor shape) were simulated in the synthesized 
motion in the NCAT phantom study. We did not synthesize more complicated motion, where the reasons are two 
folds: (1) there are too many possibilities of respiration pattern to be evaluated if more parameters are added in 
motion simulation. Even if all these possibilities were enumerated, it is still difficult, if not impossible, to realis-
tically synthesize respiration since breathing pattern is far more complicated and diversified in patients; (2) the 
tracking accuracies responding to above practical issues are closely related to the corresponding solution scheme. 

Intra-fraction tracking (Cases 1–7)

Structures Quantitative Metrics RoiMod SurphaMod (vs RoiMod) SurMod (vs RoiMod/SurphaMod)

Tumor

COM(mm) 1.6 ± 1.2 1.3 ± 1.0(0.041) 1.3 ± 1.0(0.043/> 0.05)

DC 0.87 ± 0.08 0.90 ± 0.07(0.064) 0.90 ± 0.07(0.038/> 0.05)

PE 0.26 ± 0.17 0.21 ± 0.15(0.060) 0.20 ± 0.15(0.038/> 0.05)

HD(mm) 5.7 ± 1.7 5.3 ± 1.6(0.082) 5.2 ± 1.5(0.049/> 0.05)

Lung

COM(mm) 2.3 ± 1.8 2.3 ± 1.6(>0.05) 2.1 ± 1.4(>0.05/> 0.05)

DC 0.96 ± 0.02 0.97 ± 0.01 (<0.001) 0.97 ± 0.01 (<0.001/> 0.05)

PE 0.07 ± 0.03 0.06 ± 0.03 (<0.001) 0.06 ± 0.02 (<0.001/> 0.05)

HD(mm) 16.1 ± 6.2 14.7 ± 5.7(0.026) 15.2 ± 5.4(0.163/> 0.05)

Inter-fraction tracking (Cases 8–11)

Structures Quantitative Metrics RoiMod SurphaMod (vs RoiMod) SurMod (vs RoiMod/SurphaMod)

Tumor

COM(mm) 2.1 ± 2.2 1.3 ± 1.3(0.028) 1.2 ± 1.2(0.020/> 0.05)

DC 0.84 ± 0.12 0.88 ± 0.09(>0.05) 0.89 ± 0.08(0.015/> 0.05)

PE 0.37 ± 0.33 0.25 ± 0.21(>0.05) 0.23 ± 0.19(0.032/> 0.05)

HD(mm) 7.2 ± 2.6 5.7 ± 1.2(0.026) 5.6 ± 1.1(0.013/> 0.05)

Lung

COM(mm) 4.3 ± 3.0 3.0 ± 2.3(0.016) 2.3 ± 1.7 (<0.001/> 0.05)

DC 0.95 ± 0.03 ±0.96 ± 0.02(0.008) 0.97 ± 0.01 (<0.001/<0.001)

PE 0.11 ± 0.05 0.08 ± 0.04(0.004) 0.06 ± 0.02 (<0.001/<0.001)

HD(mm) 20.0 ± 8.3 16.7 ± 6.9(0.069) 15.5 ± 5.9 (<0.001/> 0.05)

Table 4.  Quantitative comparisons (Mean ± STD(p-value)) between the RoiMod, SurphaMod and the SurMod 
in intra-fraction tracking and inter-fraction tracking for all the clinical cases.

Figure 8.  The quantitative comparisons between the RoiMod, SurphaMod, and SurMod in intra-4DCT 
tracking (Cases 1–7) and inter-4DCT tracking (Cases 8–11) for all the clinical cases. The meanings of the 
symbols and letters above each box in this figure are the same as in Fig. 4.
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For example, aligning the patient anatomy on the treatment day with that defined on modeling is an alternative 
solution to address inter-fractional baseline drift. The influence in tracking accuracy from the baseline drift is 
directly related to the registration uncertainties of the adopted registration algorithm, which is beyond the scope 
of the proposed mathematical model. However, more comprehensive model evaluation and adaption need to be 
addressed in future studies before successful clinical applications.

Finally, in clinical practice, the external surface is obtained by optical surface imaging devices (e.g. ToF camera 
and AlighRT etc.), which has certain practical issues such as, image acquisition latency. Latency is a common 
issue in many commercial surface monitoring systems, and model forward prediction might be a practical way 
to accommodate this issue. For the proposed model, which was built on external DVFs estimated from DIR of 
external surface mesh, a forward predicted surface mesh might be needed. As an alternative, the external DVFs 
can be extrapolated using known phasic external DVFs, or breathing velocity/accelerated velocity calculated from 
directional external DVFs.

Conclusion
In this work, we proposed and validated a novel motion-tracking model in lung cancer radiotherapy, which is 
constructed based on the correlation between the phasic DVFs on the internal organs’ surface and phasic and 
inter-phasic DVFs on the patient’s external surface. Experimental evaluations were conducted on a synthetic 4D 
NCAT phantom and 4DCT images from five lung cancer patients. The evaluation results have demonstrated the 
capability of the proposed model in internal organs tracking with the variance of breath frequency, amplitude, 
inter-fraction anatomical baseline shift and deformation. The good performances on the evaluation data demon-
strated the effectiveness, reliability and accuracy of the proposed model. However, more comprehensive model 
evaluation and model adaption are needed before adopting the proposed model in a clinical setting.
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