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Abstract
Introduction  Metabolomics is a well-established tool in systems biology, especially in the top–down approach. Metabolomics 
experiments often results in discovery studies that provide intriguing biological hypotheses but rarely offer mechanistic 
explanation of such findings. In this light, the interpretation of metabolomics data can be boosted by deploying systems 
biology approaches.
Objectives  This review aims to provide an overview of systems biology approaches that are relevant to metabolomics and 
to discuss some successful applications of these methods.
Methods  We review the most recent applications of systems biology tools in the field of metabolomics, such as network 
inference and analysis, metabolic modelling and pathways analysis.
Results  We offer an ample overview of systems biology tools that can be applied to address metabolomics problems. The 
characteristics and application results of these tools are discussed also in a comparative manner.
Conclusions  Systems biology-enhanced analysis of metabolomics data can provide insights into the molecular mechanisms 
originating the observed metabolic profiles and enhance the scientific impact of metabolomics studies.

Keywords  Pathway · Network analysis · Correlation network · Association network · Enrichment analysis

1  Introduction

The pioneering experimental work of Mamer and Horning 
(Horning and Horning 1971; Mamer and Crawhall 1971) 
and the first application by Pauling (1971) laid the bases 
for metabolomic profiling of samples. These approaches 

constituted the precursors of today’s metabolomics tech-
niques. It was with the work of Oliver (1998) and Trethewey 
(1999) that metabolomics established itself as a standalone 
discipline and then became a core component of systems 
biology (SB), providing an integrated view of biochemistry 
in complex organisms (Nicholson and Lindon 2008). The 
rapid evolution and spreading of metabolomics leveraged 
the technical developments of Nuclear Magnetic Resonance 
(NMR) and Mass Spectroscopy (MS), which made metabo-
lomics experiments widely accessible.

In the top-down approach of SB (see Fig. 1), hypotheses 
about the regulatory mechanisms are drawn upon the analy-
sis of patterns observed in metabolite profiles. Such hypoth-
eses can be tested in new experiments in an iterative cycle 
(Bruggeman and Westerhoff 2007). In fact, metabolomics 
takes a special position among the omics disciplines in the 
SB top–down approach: the metabolome is the endpoint of 
biological processes, carrying imprints of genetic, epige-
netic and environmental factors, and thus it can provide the 
link between genotype and phenotype (Fiehn 2002; Griffin 
2006; Krumsiek et al. 2016). A crucial demonstration of this 
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concept was the observation that metabolomics measure-
ments can reveal phenotypes for proteins active in metabolic 
regulation, even if their deletion does not change metabolic 
fluxes, such as growth rate (Raamsdonk et al. 2001).

Contextually with experimental advancements, research-
ers soon realized that the potential of metabolomics data 
could be exploited by deploying multivariate and pattern-
recognition methods. The use of components methods, such 
as principal component analysis and factor analysis was 
established early (Meuzelaar and Kistemaker 1973; Win-
dig et al. 1980). Then, metabolomics became rapidly inter-
twined in an almost symbiotic fashion with chemometrics 
(Trygg et al. 2007; van der Greef and Smilde 2005; Wishart 
2007). This alliance has resulted in the development of a 
vast array of different tools for extracting (bio)chemically 
relevant information from measured (bio)chemical data, 
representing and displaying such information, and getting it 
into databases (Wold 1995; Wold and Sjöström 1998; Spicer 
et al. 2017).

Chemometrics proved to be pivotal in studies that show-
cased the potential of metabolomics (Assfalg et al. 2008; 
Holmes et al. 2008; Nicholson et al. 2011). However, now-
adays data analysis based on chemometrics alone may be 
considered the major bottleneck for further advancement 
of metabolomics itself. Chemometrics approaches have an 
intrinsic exploratory nature, and thus their application to 
metabolomics analyses typically generates novel biological 
hypotheses that need validation. Moving from research gen-
erating hypotheses towards research generating mechanistic 

insight about biological problems would constitute a major 
advance for the omics fields (Yates 2016). One way to 
achieve this is to deploy systems biology approaches, such 
as network analysis and metabolic modelling, to investigate 
metabolomics data. This may open new avenues to obtain 
biological knowledge from transcriptomics, proteomics and 
metabolomics studies and will allow researchers to leverage 
all omics to contextualize their results.

In line with the concepts outlined above, in this review we 
did not cover the approaches to data analysis that are typi-
cal of chemometrics and statistical analysis, such as super-
vised and regression methods (e.g., Partial Least Square 
Discriminant Analysis, principal component regression) 
or unsupervised tools (e.g., Principal Component Analysis, 
cluster analysis). Instead, we focused on systems biology 
approaches like network inference and metabolic modelling.

2 � Metabolite identification and mapping

An important aspect underlying most if not all the methods 
for the analysis of metabolomics data that we will address 
in the next sections is to properly identify the metabolites 
in the MS or NMR spectra and map them within the meta-
bolic context of the organism. Often the peaks detected in 
experiments are assigned based on reference spectra con-
tained in large chemical database. However, the analytical 
methods used in metabolomics do not allow coverage of the 
whole range of small molecules produced by an organism, 

Fig. 1   Relationship between the 
systems biology cycle and the 
metabolomics pipeline
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introducing possible biases in the interpretation of whole-
organism metabolism. Although this is a very broad theme, 
in this section we will try to summarize the features of some 
tools for metabolite mapping that can be exploited in the 
context of systems biology approaches.

Metabolome Searcher (Dhanasekaran et al. 2015) is a 
web-based application (http://procy​c.westc​ent.usu.edu/cgi-
bin/Metab​oSear​cher.cgi) to directly search genome-con-
structed metabolic databases. Its aim is to enhance the iden-
tification of MS data by using compound databases derived 
empirically. Incorporating information on genome-encoded 
metabolism facilitates the identification of MS peaks that 
may not be present in standard chemical databases. Only the 
compounds that the organism of interest is able to produce, 
based on its genome, are investigated for potential matches. 
The output metabolites are mapped also to known metabolic 
pathways.

The MassTRIX web server (Suhre and Schmitt-Kopp-
lin 2008) (http://masst​rix3.helmh​oltz-muenc​hen.de/masst​
rix3/) addresses the annotation of putative metabolites by 
providing a hypothesis-driven approach to interpret MS 
data. MassTRIX processes the submitted list of raw mass 
peaks by comparing the input experimental masses against 
all chemical compounds of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (Kanehisa et  al. 2015, 
2017), additionally including 13C, 15N and other isotopes 
and optionally adding selected lipids. Then it presents the 
identified chemical compounds in their genomic context as 
differentially coloured objects on KEGG pathway maps. By 
adding transcriptomics data or information on differences 
in the gene complement (e.g. samples from different bacte-
rial strains), the user can interpret the metabolic state of the 
organism in the context of its actual or potential enzymatic 
capacities.

A similar approach was also employed in MetaMapp 
(Barupal et al. 2012). MetaMapp is a tool to integrate bio-
chemical pathways (using the KEGG reactant pair database) 
and chemical relationships (using the Tanimoto chemical 
similarity score and the mass spectral similarity score of 
the National Institute of Standards and Technology, NIST) 
to map the metabolites detected in MS and/or NMR experi-
ments in a network graph. Such graphs can be displayed in 
Cytoscape (Shannon et al. 2003). MetaMapp is independent 
of the experimental technology utilized to identify metabo-
lomics profiles, thus providing a way to integrate and visual-
ize data from different metabolomics platforms.

MetExplore (Cottret et al. 2010) is a computational pipe-
line designed to map chemical libraries on genome-scale 
metabolic networks. This tool can be used to obtain statistics 
on the experimental coverage of organism-specific metabolic 
networks. The main purpose of MetExplore is to provide 
an interactive visualization of metabolic networks (or sub-
networks) to mine metabolomics (and other “omics”) data. 

After the mapping is performed, MetExplore permits to 
visualize metabolites in the context of the whole network, 
a specific pathway, a selection of pathways or a selection of 
reactions.

Another recent tool integrating automated analysis of 
mass spectrometry data and visualization of biological con-
text by linking each metabolite to one or more biological 
pathways (see also next section) is the Polyomics integrated 
Metabolomics Pipeline (PiMP) (Gloaguen et al. 2017). This 
tool annotates metabolites identified in mass spectrometry 
experiments, providing direct access to the experimental fea-
tures supporting each annotation, and then allows users to 
jump directly to the pathway(s) relevant for each metabolite. 
However, this is a visualization tool and does not perform 
pathway analysis as described in Sect. 6.

Pre-existing biochemical knowledge about metabolic 
pathways may provide useful information for the assign-
ment of unknown compounds in large metabolomics data-
sets. Gipson et al. (2008) exploited this idea by developing 
a computational protocol to improve UPLS-MS metabolite 
assignment through the matching of peak correlation pairs 
(from acquired MS data) with a database of biochemically 
relevant interaction pairs (pathway data from the KEEG 
database). A stochastic local search optimization algorithm 
was implemented to select the putative peak assignment that 
maximizes both the correlations and the strength of corre-
lations in each cluster of MS peaks, in agreement with the 
most likely metabolic pathway from the database.

Integrated approaches that combine transcriptome, pro-
teome and metabolome profiling have gained popularity and 
have proven to provide novel insights in the understanding 
of the biological systems (Cho et al. 2008; Jiang et al. 2015; 
Kolbe et al. 2006). A first approach to the interpretation 
of complex omics experiments is the joined visualization 
of the data on templates that collect previous knowledge. 
In this frame, the Paintomics web server (http://www.paint​
omics​.org) (García-Alcalde et al. 2011) provides a simple 
but effective resource for integrated visualization in studies 
where transcriptomics and metabolomics data are generated 
on the same set of samples. The inputs to the server are gene 
expression and metabolite quantifications, which are then 
displayed on KEGG maps.

The web-based ProMeTra system (Neuweger et al. 2009) 
(https​://omict​ools.com/prome​tra-tool) allows users to com-
bine datasets from heterogeneous multiple-omics sources. 
This tool visualizes and combines datasets from transcrip-
tomics, proteomics, and metabolomics on user defined met-
abolic pathway maps. ProMeTra supports pathway maps 
designed and annotated by the users.

There are only a few tools explicitly devoted to the 
analysis of metabolomics data. Metscape (Gao et al. 2010) 
(metscape.ncibi.org) is a plug-in for Cytoscape (Shan-
non et  al. 2003), developed to visualize and interpret 

http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
http://masstrix3.helmholtz-muenchen.de/masstrix3/
http://masstrix3.helmholtz-muenchen.de/masstrix3/
http://www.paintomics.org
http://www.paintomics.org
https://omictools.com/prometra-tool
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metabolomics data in the context of human metabolic 
networks. Metscape allows users to trace the connections 
between metabolites and genes, visualize compound net-
works and display compound structures as well as informa-
tion for reactions, enzymes, genes, and pathways. Experi-
mental data can be visualized and explored as networks and 
as a function of time or experimental conditions. A subse-
quent redesign of Metscape (Metscape 2) (Karnovsky et al. 
2012) allows users to enter experimental data and display 
them in the context of relevant metabolic networks to iden-
tify enriched pathways from expression profiling data.

Table 1 presents a list of the tools for mapping metabo-
lites into biochemical pathways mentioned in this section.

3 � Analysis of metabolomics data using 
network approaches

The most natural extension and complementation of methods 
based on covariance/correlation for the analysis of multivari-
ate metabolomics data [such as principal component analy-
sis or covariance simultaneous component analysis (Smilde 
et al. 2015)] is their representation and analysis as networks. 
Networks constitute a powerful view to understand biologi-
cal systems where not only the individual components are 
considered, but also their interconnections and their function 
as a whole (Ma’ayan 2011; Weckwerth and Fiehn 2002).

Table 1   Tools for mapping metabolites into biochemical pathways

Name Description Reference URL

NA Refine mass assignments through the 
intersection of peak correlation pairs 
with a database of biochemically 
relevant interaction pairs

Gipson et al. (2008) NA

Metabolome Searcher Simplify database search in MS data-
bases by limiting the query to genome 
plausible metabolites

Dhanasekaran et al. (2015) http://procy​c.westc​ent.usu.edu/cgi-bin/
Metab​oSear​cher.cgi

MassTRIX Presents the MS identified chemical 
compounds in their genomic context 
as differentially coloured objects on 
KEGG pathway maps

Suhre and Schmitt-Kopplin (2008) http://masst​rix3.helmh​oltz-muenc​hen.de/
masst​rix3/

MetaMapp Map the detected metabolites in a MS 
experiment in a network graph

Barupal et al. (2012) NA

MetExplore To provide an interactive visualization 
of metabolic networks (or sub-net-
works) to mine metabolomics data

Cottret et al. (2010) http://metex​plore​.toulo​use.inra.fr/jooml​
a3/index​.php

Paintomics Provide a simple but effective resource 
for integrated visualization in studies 
where transcriptomics and metabo-
lomics data are generated on the same 
set of samples

García-Alcalde et al. (2011) http://www.paint​omics​.org

KaPPa-View A web-based tool for representing quan-
titative data for individual transcripts 
and/or metabolites on plant metabolic 
pathway maps

Tokimatsu et al. (2005) http://kpv.kazus​a.or.jp/

MapMan A user-driven tool that displays large 
data sets onto diagrams of metabolic 
pathways or other processes

Thimm et al. (2004) http://mapma​n.gabip​d.org/web/guest​

ProMeTra Visualizes and combines datasets from 
transcriptomics, proteomics, and 
metabolomics on user defined meta-
bolic pathway maps, with the ability 
to generate enriched SVG images or 
animations via a user-friendly web 
interface

Neuweger et al. (2009) https​://omict​ools.com/prome​tra-tool

Metscape Allows users to trace the connections 
between metabolites and genes, visual-
ize compound networks and display 
compound structures as well as infor-
mation for reactions, enzymes, genes, 
and pathways

Gao et al. (2010) http://metsc​ape.ncibi​.org/

http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
http://masstrix3.helmholtz-muenchen.de/masstrix3/
http://masstrix3.helmholtz-muenchen.de/masstrix3/
http://metexplore.toulouse.inra.fr/joomla3/index.php
http://metexplore.toulouse.inra.fr/joomla3/index.php
http://www.paintomics.org
http://kpv.kazusa.or.jp/
http://mapman.gabipd.org/web/guest
https://omictools.com/prometra-tool
http://metscape.ncibi.org/
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A biological network is a graphic representation of 
objects (called nodes) and their relationships (described 
by links or edges). It can be conveniently described using 
a matrix, termed adjacency or connectivity matrix A. The 
rows and columns of A represent the nodes, i.e. metabolite 
concentrations or abundances. Here, we refer generically to 
metabolite concentration. Strictly speaking, this is correct 
only for targeted metabolomics experiments where the con-
centrations of metabolites are determined using appropriate 
standards. In general, MS experiments provide metabolite 
abundances, which can be considered a proxy for concentra-
tions, whereas NMR provides quantities in arbitrary units 
that are proportional to concentrations. However, from a 
numerical point of view this is not relevant for the compu-
tational methods presented here, but it might be relevant 
for the biological interpretation of the data. The non-zero 
elements of A are real numbers that describe the strength 
of the relationship between any two nodes. The relationship 
between two metabolites can be very diverse in nature: for 
instance, one can postulate the existence of such relation-
ship if their concentration levels are highly correlated, if 
they participate in the same metabolic pathway, or if they 
are directly connected through some biochemical reaction. 
Within this context, it should be noted that metabolomics 
data can be used to reconstruct metabolic networks at dif-
ferent levels (topology, stoichiometry, directionality and 
kinetics) using dedicated experiments. In this review, we 
focus on the application of network approaches to analyze 
metabolomics data that usually have not been gathered with 
the aim of reconstructing entire metabolic networks. For the 
latter purpose, the typical starting point is genome data (see 
also some of the tools mentioned in the previous section and 
in Table 1). Nevertheless, some approaches are available to 
build genome-scale metabolic networks from raw high reso-
lution mass spectroscopy data (Jourdan et al. 2007; Moritz 
et al. 2017). Methods to reconstruct metabolic networks have 
been reviewed elsewhere (Frainay and Jourdan 2017; Hen-
drickx 2013; Hendrickx et al. 2011).

Table 2 presents a list of network-based methods applica-
ble to metabolomics studies. These methods are discussed 
in the following sections.

3.1 � Association networks

The nodes in a network are associated (connected) based 
on some similarity measure: in metabolomics the similarity 
between metabolites, and thus their association, is usually 
expressed using Pearson or Spearman’s correlation indexes. 
Consequently, the elements of the corresponding adjacency 
matrix are in the interval [−1, 1] (Cakır et al. 2009). This 
kind of networks is sometimes called correlation or rele-
vance networks. Biological information can be derived con-
sidering both the magnitude and the sign of correlations: for 
instance, strong positive correlation ( |𝜌| > 0.9 ) between two 
metabolites can indicate a condition of rapid equilibrium 
or enzyme dominance, while strong negative correlation 
can indicate the presence of a conserved moiety (Camacho 
et al. 2005). In general, the correlations observed in metabo-
lomics data are the result of the combination of all reactions 
and regulatory processes in the network (Hendrickx 2013; 
Stelling et al. 2004; Steuer et al. 2003). Surprisingly, there 
may be no correlation between metabolites that are close 
in a metabolic pathway. For instance, in wild type potato 
tubers, glutamate and glutamine are metabolic neighbors 
in the glutamine synthase pathway, but appear to be uncor-
related (ρ = 0.0243, Spearman). Instead, valine and methio-
nine are strongly correlated (ρ = 0.951) even if they are not 
metabolic neighbors (Camacho et al. 2005; Weckwerth et al. 
2004). The information encoded in the correlation matrix 
may be not fully sufficient to reverse engineer the underly-
ing enzymatic system (Steuer et al. 2003). Still, it can be 
used as a proxy to describe a given physiological state of the 
system of interest, as the correlation matrix can change with 
the steady-state concentrations of metabolites (Fukushima 
et al. 2011). It is then reasonable to assume that differences 
or communalities in the biological processes are reflected 
in the characteristics of the inferred correlation networks 
(Szymanski et al. 2009). This is the rationale for the use of 
association networks to analyse metabolomics data.

The zero elements of the adjacency matrix can be selected 
based on the statistical significance of the pairwise metabo-
lite correlations. This was the approach used in (Ursem et al. 
2008), one of the first papers to deploy a network approach 

Table 2   List of network inference methods used in metabolomics studies

Acronym Name Reference

ARACNE Algorithm for the reconstruction of accurate cellular networks Margolin et al. (2006)
CLR Context likelihood of relatedness algorithm Faith et al. (2007)
CORR Correlation
PCLRC Probabilistic context likelihood of relatedness of correlation algorithm Saccenti et al. (2014)
PIUmet Prize-collecting Steiner forest algorithm for integrative analysis of untargeted metabo-

lomics
Pirhaji et al. (2016b)

WCGNA Weighted correlation gene network analysis Zhang and Horvath (2005)
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to the analysis of metabolomics data, where Pearson correla-
tions were calculated among pairs of metabolites measured 
using gas chromatography–mass spectrometry (GC–MS) 
in tomato samples. The advantage over principal compo-
nent analysis (PCA) is that network plots do not focus on 
the representation of maximum variation in data matrices, 
which may negatively affects data interpretation. Indeed, the 
relationships between metabolites whose variation is spread 
out over several principal axes can be easily overlooked in 
PCA biplots (Ursem et al. 2008). The work of Ursem et al. 
(2008) built on previous works, where correlation analy-
sis was used to unravel molecular mechanisms (Kose et al. 
2001; Roessner et al. 2001; Steuer et al. 2003; Urbanczyk-
Wochniak et al. 2003).

Yang et al. (2012) performed a correlation network 
analysis on urine metabolomics data from patients suf-
fering of central precocious puberty taking a hybrid 
approach. First, they identified metabolites discriminating 
between cases and controls using a Partial Least Squares 
(PLS) approach and then mapped them on a reconstruction 
of a global human metabolic network using the KEGG 
database (Kanehisa et al. 2015, 2017). The discriminating 
metabolites had significantly higher degree, betweeness 
and closeness than the global network.

Another commonly used approach is to binarize the 
adjacency matrix by imposing a threshold τ for the correla-
tion | ρ| between any pair of metabolites and/or a threshold 
α on the associated P-value. This is usually called hard 
thresholding, as exemplified below:

The choice of the threshold τ is fundamental since it ulti-
mately drives the topology of the resulting networks. In an 
analysis of tissue- and/or genotype-dependent metabolomics 
correlations in Arabidopsis, Fukushima et al. investigated 
the effect of varying the correlation threshold and found that 
the number of groups of connected metabolites showed a 
transition from small to large at τ = 0.5, which they sub-
sequently used (Fukushima et al. 2011). They commented 
that such a threshold does not guarantee explicit biological 
significance. However, this value is not far from 0.6, which 
was indicated as a lower bound for low/weak correlations in 
metabolomics data (Camacho et al. 2005) and used by other 
authors (Ghini et al. 2015; Saccenti et al. 2016; Suarez-
Diez and Saccenti 2015). Szymanski et al. (2009) applied 
a threshold α = 0.01 on the P-value of the correlation after 
Bonferroni correction for multiple testing and used boot-
strapping to obtain robust correlation estimation.

The patterns of correlations between metabolites 
can be compared across different conditions to identify 

(1)A
ij
→

{
1 if

|||𝜌ij
||| > 𝜏 (and P < 𝛼)

0 otherwise

associations that are disrupted or altered by pathophysi-
ological conditions with respect to a healthy or control 
status, an approach referred to as differential network 
analysis. Hu et al. (2015) addressed the problem of finding 
disrupted connections in osteoarthritis by taking a statisti-
cal approach that exploited a permutation test to assess the 
significance of changes in the correlations of two metabo-
lites across different conditions. Similarly, Szymanski 
et al. (2009) considered metabolite correlation networks 
from Escherichia coli exposed to different environmental 
stress conditions and compared network characteristics to 
pinpoint possible mechanisms underlying stress response.

Saccenti et al. (2014) investigated the latent cardiovascu-
lar risk of healthy subjects by considering highly connected 
metabolites, the so called hubs, and reported differential 
behaviour of Very Low Density Lipoprotein (VLDL) and 
glucose in high and low risk cardiovascular risk networks. 
They applied a combined method, by analysing association 
networks with a multivariate approach to highlight differ-
ences among networks pertaining to different risk pheno-
types (see Fig. 2). Hubs are nodes that are much more con-
nected than average or typical nodes, and consequently are 
very likely to play crucial biological roles. The concept of 
hubs was first introduced within the analysis of yeast pro-
tein–protein interaction networks (Jeong et al. 2001).

The correlations observed for metabolomics data are 
usually small ( |𝜌| < 0.6 ) because of the systemic nature of 
metabolic control. As previously mentioned, two metabolites 
can be poorly correlated even if they are neighbours in a 
metabolic pathway because the variance in the enzymes that 
control them can affect their levels to the same extent and 
in different directions (Camacho et al. 2005). Metabolites 
are generated through fast biochemical reactions in an open 
mass-flow system. Consequently, they can be considered to 
be in a quasi-steady state when compared to the time scales 
of the upstream regulatory processes. This results also in 
indirect, system-wide correlations between distantly con-
nected metabolites (Lee et al. 2008). The latter phenom-
enon can be taken into account using partial correlations, 
i.e. considering pairwise correlation between two variables 
with the effect of a set of controlling random variables 
removed. Krumsiek et al. (2011) used Gaussian graphical 
models, a type of undirected network representation where 
the relationships among metabolites are expressed as partial 
correlations, to analyse a large human population cohort. 
They found this approach to generate more sparse and robust 
networks with modular structure than those based on Pear-
son’s correlations, and observed that high partial correla-
tion coefficients generally correspond to known metabolic 
reactions. This is a striking result since associations in a 
correlation networks do not necessarily correspond to and/or 
represent metabolic reactions (Marcotte 2001; Steuer et al. 
2003). Using the same approach, Krumsiek et al. (2015) 
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investigated sex-related differences in metabolite associa-
tion networks and found several submodules across different 
pathways that were strongly gender-regulated.

As a word of caution, it is important to consider that the 
results of network inference (and data analysis in general) 
can be affected by data pre-treatment (also known as pre-
processing) such as scaling, transformation and normaliza-
tion. Such pre-treatments are routinely applied to metabo-
lomics data in order to correct for systematic and unwanted 
variation such as sample-to sample to variability induced 
by dilution effects (e.g. in the case of urine) or differences 

in experimental settings (like different sample titration or 
different number of scans in NMR experiments). The lit-
erature on the topic is huge: we refer the reader to Bijlsma 
et al. (2006), Goodacre et al. (2007), Saccenti (2016), Van 
Den Berg et  al. (2006) and references therein for more 
information.

3.2 � Weighted correlation networks

Weighted gene correlation network analysis (WCGNA) is 
a systems biology method for describing the correlation 

Fig. 2   Association network of 
133 blood metabolites measured 
using MS/MS on 2139 subjects. 
a Plasma metabolites associa-
tion networks obtained using the 
four different methods. b Serum 
metabolites association net-
works obtained using the four 
different methods. c Consensus 
association network for serum 
and plasma. CLR context likeli-
hood of relatedness, ARACNE 
algorithm for the reconstruction 
of accurate cellular networks, 
PCLRC probabilistic context 
likelihood of relatedness on 
correlations, CORR Pearson’s 
correlation). Reproduced with 
permission from Suarez-Diez 
et al. (2017). Copyright (2017) 
American Chemical Society
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patterns among genes across microarray samples. WCGNA 
can be used for finding clusters (modules) of highly cor-
related genes, for summarizing such clusters using the so-
called module eigengene, i.e. a representative gene summa-
rizing the expression profile of the module (Langfelder and 
Horvath 2007), or an intramodular hub gene, for relating 
modules to one another and to external sample traits (Lang-
felder and Horvath 2008). When applied to metabolite pro-
files rather than to gene expression profiles WCGNA can be 
considered an extension of correlation network inference. 
While correlation networks are based on the similarity of 
metabolites profiles as expressed by the correlation coef-
ficients, WCGNA in based on the dissimilarity profiles 
obtained from the so-called topological overlap matrix 
(TOM). Using the TOM makes the networks less sensitive to 
spurious connections or to connections missing due to ran-
dom noise (Ravasz et al. 2002; Zhao et al. 2010). However, 
also the TOM is based on the correlation between any pair 
of metabolites; indeed, the element wij of TOM is defined as

where

and mi and mj denote metabolite i-th and j-th, ki and kj denote 
the connectivity of metabolite i-th and j-th. The dissimilar-
ity is defined as 1 − wij, which is a measure of interaction 
between metabolites weighted by the strength of their cor-
relation. The parameter � is chosen to achieve a scale-free 
topology and its choice is a fundamental step in WCGNA. 
Clusters of metabolites are obtained by applying a hierar-
chical clustering algorithm on the dissimilarity matrix in 
order to assign the metabolites to different modules based 
on a dynamic branch height cutting algorithm (Langfelder 
et al. 2007).

DiLeo et al. (2011) applied WCGNA to NMR metabo-
lomics data collected from developmentally staged tomato 
fruits belonging to several genotypes. With this approach, 
they could recognize and model systems-level differences 
in biological networks even where the poorly defined phe-
notypes precluded the use of PCA or other multivariate 
approaches.

Lusczek et al. (2013) applied WCGNA to investigate 
pathophysiologic state associated with traumatic injury and 
haemorrhagic shock through the analysis of scale-invariant 
metabolic network which were constructed from NMR uri-
nary metabolic profiles. They could define network modules 

(2)wij =
lij + aij

min(ki, kj) + 1 − aij

(3)aij = corr(mi,mj)
�

(4)lij =
∑

u

aiuauj

(i.e. clusters of functionally related metabolites) related, 
for examples, to tricarboxylic acid (TCA) cycle or to aero-
bic metabolism. Within those modules they identified hub 
metabolites related to cellular respiration, highlighting its 
fundamental role in the pathophysiology of haemorrhagic 
shock and to late resuscitation time points. They observed 
that PLS discriminant analysis (PLS-DA) did not capture 
the significance of several hub metabolites, which emerged 
only in the network analysis. In the same work (Lusczek 
et al. 2013), the authors discussed also the limitation of the 
WCGNA approach. Such limitations rest on the assump-
tions that the network shows a scale-free topology, that is 
with few metabolites highly connected and many metabo-
lites with low connectivity; this translates in the connectivity 
P(k) and the clustering coefficient C(k) to follow a power 
law. The authors found P(k) to follow a power law but not 
C(k), indicating the absence of modular structure in the net-
work of urinary metabolites. They suggested that this may 
be caused by (i) urine being a waste product in which little 
to no active metabolism occurs and (ii) the limited number 
of metabolites considered (n = 60) which is less than the 
content of the full urinary metabolome. A further hypothesis 
put forward in the same work was that networks constructed 
from metabolite profiles derived from biological samples 
that are metabolically active, such as blood or tissue, may 
exhibit power law (i.e. a few metabolites connected with 
many metabolites) behaviour in both connectivity and clus-
tering coefficients. However, in contrast to gene regulatory 
network, expression networks or metabolic networks, the 
metabolite correlation networks have not been fully char-
acterized in terms of network topology (i.e. the patterns of 
interconnection among the nodes). Therefore, it is not very 
clear what are the expected or more likely network proper-
ties (e.g. small-world networks, distribution networks). We 
refer the reader to (Lee et al. 2008; Nikiforova et al. 2005; 
Weckwerth et al. 2004) and references therein for more on 
this topic.

3.3 � Approaches from functional genomics

Since one of the major challenges in systems biology is the 
reconstruction of gene regulatory networks, many methods 
have been developed for this scope (Marbach et al. 2012) 
and some of them have been deployed in metabolomics. Sac-
centi et al. (Suarez-Diez and Saccenti 2015) compared two 
methods for the inference of regulatory networks, ARACNE 
(Algorithm for the Reconstruction of Accurate Cellular 
Networks) and PCLR (Probabilistic Context Likelihood of 
Relatedness Algorithm), to reconstruct blood metabolite 
association networks. Both these methods leverage mutual 
information. Given two discrete variables A and B (describ-
ing, for instance, metabolite concentrations), the mutual 
information MI(A,B) between A and B is defined as
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where p(ai,bj) is the joint probability distribution function 
of A and B, and p(ai) (respectively p(bj)) indicates the prob-
ability that A = ai (respectively B = bj). It should be noted that 
the mutual information between two variables is not inde-
pendent from correlations, since, under some conditions, 
the two variables can be functionally related (Song et al. 
2012). The following sections describe the two approaches 
in some detail.

3.3.1 � The algorithm for the reconstruction of Accurate 
cellular networks (ARACNE)

ARACNE (Algorithm for the Reconstruction of Accurate Cel-
lular Networks) (Margolin et al. 2006) assigns to each pair of 
metabolites an association weight equal to their mutual infor-
mation. It then takes into account triplets of edges connecting 
metabolites i, j and k in the network. The weakest associa-
tion of each triplet is considered to be indirect (spurious) and 
pruned, i.e. set to 0, if the difference between the two lowest 
weights is above a cut-off value ξ. In practice, the following 
two conditions are evaluated for each triplet i, j, k:

The weighted adjacency matrix is transformed into 
a binary topological matrix by additionally imposing a 
threshold on the mutual information. The threshold is usu-
ally 0, leading to all non-zero values being transformed to 
1. Saccenti et al. (2015) observed that ARACNE produces 
extremely sparse metabolites association networks; nev-
ertheless, most of the associations deemed relevant by the 
ARACNE algorithm were also recovered by the other algo-
rithms assessed in the study, indicating that it was able to 
reconstruct the backbone of the association network.

3.3.2 � The context Likelihood of relatedness (CLR) algorithm

The CLR algorithm (Faith et al. 2007) estimates the likeli-
hood of the mutual information MI(i, j) between two metab-
olites by defining a null model that considers all the possible 
MI values [MIi] and [MIj] for metabolites i and j. The follow-
ing equations define the likelihood f

where

(5)
MI(A,B) =

n∑

i,j

p(ai, bj) log
p(ai, bj)

p(ai)p(bj)

(6)

{
MI(i, j) < MI(j, k) − 𝜉

MI(i, j) < MI(i, k) − 𝜉

(7)f (zi, zj) =

√
z2
i
+ z2

j

(8)zi = max

{
0,

MIi(i, j) − �i

�i

}

and µi and σi are, respectively, the mean and the standard 
deviation of the distribution of the [MIi] values: a weighted 
adjacency matrix is built with entries f(zi, zj).

3.3.3 � The probabilistic context likelihood of relatedness 
of correlation algorithm (PCLRC)

Saccenti et al. (2014) developed a novel version of the CLR 
approach by substituting the mutual information with corre-
lation and using a resampling approach for robust inference 
of the correlations. In this implementation, two-thirds of the 
data are used to iteratively estimate pairwise correlations 
among metabolites retaining only the 30% strongest.

At each iteration a matrix Ait is built in such a way that 
Ait
ij
 = 1 if there is an association between metabolites i and j 

and 0 otherwise; this procedure is repeated K times and the 
final weighted association network is constructed by averag-
ing the entries of Ait over the K iterations. The weights con-
stitute a probabilistic measurement of edge likeliness on 
which a threshold can be applied to obtain a binarized asso-
ciation network. This algorithm was used to construct asso-
ciation networks of blood metabolites characteristics of low 
and high latent cardiovascular risk (Saccenti et al. 2014; 
Zhao et al. 2010).

3.3.4 � The wisdom of crowd approach

Saccenti et al. (2016) proposed a wisdom of crowd approach 
(Marbach et al. 2012) to define urine metabolite association 
networks in healthy subjects by considering the consensus 
obtained from four different approaches (ARACNE, CLR, 
PCLR and Pearson’s correlations) and deeming relevant 
only associations inferred by three or more methods. They 
modelled the subject-specific networks through a statistical 
mechanics approach (Menichetti et al. 2015), by defining 
a core network of metabolite–metabolite associations con-
served across 31 subjects.

The same approach was used in a study aiming to com-
pare metabolite association networks obtained from serum 
and plasma samples. The networks were found to be topo-
logically similar but showed local differences as in the case 
of amino acids (see Fig. 3) (Suarez-Diez et al. 2017). Simi-
larly, Vignoli et al. (2017) studied sex- and age-specific asso-
ciation networks for metabolites in the plasma of healthy 
subjects. In particular, they investigated the different pat-
terns of interconnectedness and observed sex-related vari-
ability in several metabolic pathways (branched-chain amino 
acids, ketone bodies and propanoate metabolism) as well as 
reduction in the connectivity of metabolite hubs linked to 
age in both sex groups.
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Fig. 3   a Weight plot and b 
loadings plot of the INDSCAL 
model for the metabolite cor-
relation network obtained using 
the PCLCR method. Each dot 
represents a network that corre-
sponds to a given cardiovascular 
(CVD) risk parameter. Blue 
dots indicate low latent CVD 
risk, while red indicate high 
latent CVD risk. The associ-
ated CVD risk parameters are 
indicated in upper case for high 
risk and lower case for low risk. 
A reference network (indicated 
as “All”, black ball), built using 
all the subjects in the study, is 
given as reference. Reproduced 
with permission from Saccenti 
et al. (2014). Copyright (2014) 
American Chemical Society



From correlation to causation: analysis of metabolomics data using systems biology approaches﻿	

1 3

Page 11 of 20  37

3.3.5 � Other methods

Pirhaij et al. (2016a) used their algorithm PIUmet (http://
fraen​kel-nsf.csbi.mit.edu/PIUMe​t/) to analyse and inter-
pret untargeted liquid chromatography–mass spectrometry 
(LC–MS) data from lipidomics and phosphoproteomics 
experiments in a cell-line model of Huntington’s disease. 
Grounding on database information, the algorithm infers the 
identity of unassigned metabolites corresponding to features 
and the molecular mechanisms underlying their dysregu-
lation. This innovative approach helps to reduce the bias 
towards well-studied metabolites typical of targeted metabo-
lomics. The algorithm takes as input a list of LC–MS peaks 
that differ between two different conditions and searches for 
them in a databases containing over 42,000 nodes (either 
proteins or metabolites) connected by over one million 
weighted edges representing interactions between proteins 
as well as enzymatic and transporter reactions. The output 
is a subnetwork of the database representing metabolic path-
ways that are dysregulated under the conditions considered.

4 � Kinetic models

The metabolism is a network structure that can be 
approached as a system of interdependent variables that ena-
ble mathematical modelling through kinetic models. These 
models are defined as systems of ordinary differential equa-
tions describing the time course of metabolite concentrations 
as a function of rate laws that account for enzyme catalysis. 
The development of these models requires to know both the 
network structure and the reaction kinetics and parameters 
(Klipp et al. 2004). On the one hand, there is a large accu-
mulated knowledge regarding the network structure, which 
is stored in databases like KEGG (Kanehisa et al. 2012), 
MetaCyc (Caspi et al. 2016) or Biomodels (Chelliah et al. 
2015). Although this is a well-studied cellular level, the true 
structures can be importantly affected by factors like com-
partmentalization (de Mas et al. 2011; Nicolae et al. 2014) 
enzyme complexes and metabolic channelling (Castellana 
et al. 2014; Ovadi 1991). On the other hand, regarding reac-
tion kinetics, there is also an accumulated knowledge, which 
can be explored in databases such as BRENDA (Scheer et al. 
2011; Schomburg et al. 2013) or SABIO-RK (Wittig et al. 
2012).

However, the details on enzyme kinetic parameters are 
available only for a minor part of the latter reactions (Büchel 
et al. 2013). In addition, the available measurements of the 
kinetic properties of enzymes historically come from sys-
tems reconstituted in vitro using purified enzymes (Savageau 
1992). In this setting, the ideal conditions of homogeneity 
and free diffusion are fulfilled, and consequently the result-
ing models may neglect some factors affecting the kinetic 

properties, such as molecular crowding (Schnell and Turner 
2004) and limited diffusion (Alekseev et al. 2016). To over-
come these limitations, alternative approaches combine 
sampling methods with the integration of systemic avail-
able data and in vivo observations (fluxes, concentrations, 
perturbation experiments, …) (Andreozzi et al. 2016; Saa 
and Nielsen 2016; Stanford et al. 2013).

Alternative approaches take advantage of the current 
availability of data regarding the network structure and of 
the lineal nature of the system used to describe it, to apply 
optimization techniques to infer flux distributions (Fouladiha 
and Marashi 2017). Genome—scale models accounting for 
thousands of reactions are currently available (Chelliah et al. 
2015; King et al. 2016; Swainston et al. 2016).

For those models including only the network structure 
as well as for complete kinetic models, it is useful to adopt 
techniques based on stable isotopes to know about the inter-
nal distribution of the metabolism. These are addressed in 
the next section.

5 � Metabolic flux modelling using stable 
isotope resolved metabolomics data

Although the analysis of metabolite correlative networks 
may not grasp the complete underlying metabolic mecha-
nisms, it is certainly a valuable tool for the exploration of 
metabolomics data, as shown by the budding literature on 
the topic. The use of stable isotopes can provide a greater 
insight on the mechanisms that underlie the observed metab-
olomics profiles, permitting a direct analysis of mechanistic 
changes in metabolism. Each chemical reaction or transport 
process involved in a metabolic pathway is associated with 
a rate (flux) of transformation or transport. Mechanistic 
changes at the level of the metabolism are likely to produce 
changes in the distribution of fluxes. Intracellular fluxes 
are not directly measurable, but the use of stable isotope-
enriched nutrients, such as 1,2-13C2-glucose or 13C5,15N2-
glutamine, in in cell culture media and the application of 
Stable Isotope Resolved Metabolomics (SIRM) (Fan et al. 
2012; Higashi et al. 2014) provides clues about the redistri-
bution of carbon atoms along metabolic pathways. This can 
be used to estimate information about fluxes, such as their 
relative or absolute magnitudes (Lee 2006; Zamboni et al. 
2005).

The estimation of fluxes based on the measured patterns 
of stable isotope labeling (especially using 13C) relies upon 
a combination of different methods, going from the direct 
interpretation of the labeling patterns to computational 
model-based approaches (Buescher et al. 2015; Niedenführ 
et al. 2015). Frequently, direct interpretation of labeling 
patterns is sufficient to provide information on the relative 
activities of pathways, on qualitative changes in pathway 

http://fraenkel-nsf.csbi.mit.edu/PIUMet/
http://fraenkel-nsf.csbi.mit.edu/PIUMet/
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contributions via alternative metabolic routes, and on nutri-
ent contribution to the production of different metabolites 
(Buescher et al. 2015). A recent example is the direct inter-
pretation of the contributions of isotopic labeling tracers 
like 1,2-13C2-glucose to the synthesys of pentoses phosphate 
(Dong et al. 2017). The entry of this tracer into the oxida-
tive pentose phosphate pathway results in the loss of the 13C 
tracer in position 1 in 1,2-13C2-glucose, contributing to the 
synthesis of ribose phosphate molecules that contain only 
one 13C atom (usually named M+1 pool of ribose-5-phos-
phate). Instead, the entry into the non-oxidative pentose 
phosphate pathway results in the synthesis of ribose phos-
phate molecules that contain two 13C atoms (usually named 
M+2 pool of ribose-5-phosphate). The subsequent entry of 
M+1 pentose-phosphate into glycolysis contributes to the 
synthesis of triose phosphate and lactate molecules with one 
13C atom (M+1). An approximate estimation of the rela-
tive importance of oxidative versus non-oxidative pentose 
phosphate pathway fluxes can be inferred from the M+1/
M+2 ratio of the RNA-derived ribose. During the last years, 
the use of this and other isotopic labelling tracers have been 
applied to unveil the different metabolic pathways activated 
in cancer cells (see for a review Dong et al. 2017).

By using computational approaches, all internal meta-
bolic fluxes can be estimated simultaneously by combin-
ing the measured labeling patterns resulting from isotope 
propagation with the measured cellular uptake and secre-
tion rates (Buescher et al. 2015). A reliable model of the 
relevant network of biochemical reactions is an indispen-
sable input to the computational approach. The reliability 
of hypotheses regarding flux distributions can be evaluated 
by comparing measured and predicted isotopologue distri-
butions. (Fig. 4). A variety of different methods are avail-
able (Crown and Antoniewicz 2013; Kruger and Ratcliffe 
2009; Niedenführ et al. 2015; Sauer 2006; Wiechert and 
Nöh 2013; Zamboni 2011), together with specific software 
platforms: FiatFlux (Zamboni et al. 2005); Isodyn (Seliv-
anov et al. 2005); METRAN (Yoo et al. 2008); OpenFlux 
(Quek et al. 2009); Influx_s (Sokol et al. 2012); 13CFLUX2 
(Weitzel et al. 2013); INCA (Young 2014); WUFlux (He 
et al. 2016). In many cases, a system of balance equations 
around isotopomers—which depend on specific fluxes—is 
solved to predict label enrichments. Fluxes are iteratively 
changed until the difference among measured and predicted 
label enrichments is reduced.

Ideally, assuming steady state, the distribution of iso-
topologues would only depend on the distribution of fluxes 
and the labeled and non-labeled status of the substrates used 
in the experiment. However, 13C propagation from tracer 
precursors to products is a dynamic phenomenon. Initially, 
all product metabolites are unlabeled (M+0). Progres-
sively, these products are enriched in 13C, with concomi-
tant decrease in M0. Isotopic steady state (Selivanov et al. 

2005) is quickly reached for small pools of metabolites but 
not necessarily for larger pools such as those of fatty acids, 
glycogen and culture medium metabolites. For these larger 
pools, M0 values are oversized and may not decrease to the 
hypothetical value that should be reached at steady state. 
Accordingly, as an alternative, some software platforms 
allow for solving the fitting procedure under non isotopic 
steady state (e.g. Isodyn, INCA among those cited above).

6 � Pathway analysis

6.1 � Enrichment analysis and overrepresentation 
analysis: the concept

Enrichment analysis as applied in metabolomics is largely 
based on the approaches implemented for the analysis of 
transcriptomes, known as Gene Set Enrichment Analysis 
(GSEA) (Subramanian et al. 2005). The original idea of 
GSEA is to focus on «gene sets, that is, groups of genes that 
share common biological function, chromosomal location, 
or regulation» instead of performing statistics on individual 
genes. In practice, the goal of the approach is to detect bio-
logical processes, such as metabolic pathways, that differ in 
the experimental dataset of interest versus control datasets.

Replacing gene transcription level with alterations in 
metabolite concentrations provides a very straightforward 
approach to interpret metabolomics experiments in terms of 
changes in the activity of cellular processes. For the appli-
cation of the GSEA concept in metabolomics, prior infor-
mation on the biological relationships between metabolites 
is needed and can be derived from databases of metabolic 

Fig. 4   Overview of metabolic flux modelling using stable isotope 
resolved metabolomics data
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pathways and reactions (see Table 3 for a list of databases), 
such as KEGG (Kanehisa et al. 2015, 2017) or MetaCyc 
(Caspi et al. 2008), or computed based on the similarity of 
chemical structures (Moreno et al. 2015).

A related approach is the so called over-representation 
analysis (ORA, sometimes called annotation enrichment 
analysis) where one checks whether a group of differentially 
expressed genes is enriched for a pathway or ontology term 
by using overlap statistics such as the cumulative hypergeo-
metric distribution (Doniger et al. 2003; Zhong et al. 2004). 
In contrast with GSEA, ORA does not involve a quantitative 
assessment of the change in metabolite concentrations. In 
practice, the application of a hypergeometric test or Fisher’s 
exact test, with appropriate corrections for multiple testing 
(e.g. Bonferroni), allows researchers to evaluate whether 
specific pathways containing metabolites in an experiment-
derived list are overrepresented. If the input list contains 
metabolites featuring different concentrations in different 
phenotypes (e.g. healthy versus diseased) then the analy-
sis will identify pathways associated with the phenotype 
changes.

6.2 � Metabolite set enrichment analysis (MSEA)

In the application of the GSEA concept to metabolomics, 
MSEA takes into consideration a quantitative measure asso-
ciated to each metabolite (e.g. concentration). As the first 
step of the analysis, metabolites are assigned to specific 
sets based on one or more reference databases. A group of 
metabolites are assigned to the same set if they are known 
to be: (i) involved in the same biological processes (i.e., 
metabolic pathways, signaling pathways, taken from KEGG) 
(Kanehisa et al. 2015, 2017); (ii) changed significantly under 

the same pathological conditions (i.e., various metabolic 
diseases, taken from the Human Metabolome Database, 
HMDB) (Wishart et al. 2013) and (iii) present in the same 
locations such as organs, tissues, or cellular organelles (e.g., 
also from HMDB).

Different strategies exist for performing MSEA depend-
ing, among others, on the statistical test applied. In the 
popular Globaltest method (Goeman et al. 2004) n samples 
(e.g. individuals) of p metabolites are measured, of which 
m metabolites belonging to the same pathway are selected. 
The question whether these metabolites behave differently 
in the two conditions being compared can be translated into 
the question whether the metabolite levels are predictive for 
the outcome (Fig. 5). In other words, the question is “does 
the knowledge of the metabolite concentrations help to 
improve the prediction of the phenotype (e.g. group, sur-
vival, etc…)?” To answer this question, Globaltest exploits 
logistic regression, where the regression coefficients indicate 
whether a certain metabolite affects the difference between 
the two conditions. The null hypothesis tested is that no 
metabolite in the pathway has a different concentration in the 
two conditions. Thus, the regression coefficients are all zero 
if the group of selected metabolites has no influence on the 
phenotype. Unfortunately, the number of coefficients is often 
much larger than the number of samples leaving no room for 
classical testing procedures. Goeman et al. (2004) dealt with 
this issue by assuming that all coefficients belong to a com-
mon distribution and demonstrated that the covariance of 
the distribution is zero under the null hypothesis. Thus, the 
test becomes whether the covariance is zero (null hypoth-
esis) or different from zero (alternative hypothesis). For this 
purpose, Rao’s score test (Rao 1948), which is very power-
ful for detecting small deviations from the null hypothesis, 

Table 3   List of databases of metabolic pathways

Acronym Full name Features Reference

BiGG Biochemical genetic and genomic knowledge-
base of large scale metabolic reconstructions

A genome-scale metabolic reconstruction of the 
human metabolism

Schellenberger et al. (2010)

BioCyc BioCyc database collection A collection of computationally predicted meta-
bolic pathways for nearly 9400 organisms whose 
genome is available

Requires subscription

Caspi et al. (2016)

HumanCyc Encyclopedia of human genes and metabolism A partially curated database of metabolic reactions 
derived from the human genome

Requires subscription

Romero et al. (2004)

KEGG Kyoto encyclopedia of genes and genomes A collection of manually drawn pathway maps Kanehisa et al. (2017)
MetaCyc MetaCyc metabolic pathway database A curated database of experimentally elucidated 

pathways
Caspi et al. (2016)

Reactome NA A curated, peer-reviewed knowledgebase of bio-
logical pathways, including metabolic pathways. 
It is mainly focused on human pathways

Fabregat et al. (2016)

WikiPathways NA A database of biological pathways maintained by 
and for the scientific community

Kelder et al. (2012)
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can be applied. The quality parameter that is reported 
is the Q-score statistics, which is based on the differences 
of metabolite levels between two conditions; a P-value is 
calculated by using permutations. A correction is needed 
for multiple hypothesis (pathway) testing (e.g. Bonferroni). 
The Globaltest detects consistent differences in patterns of 
metabolite levels between two conditions. It does not test in 
which direction a pathway is regulated (up or down), nor it 
determines how many metabolites have changed concentra-
tion levels between two conditions. If the tested pathway is 
activated or inhibited by the tested condition (e.g. healthy 
versus diseased patients), the differences in metabolite levels 
will result in a large Q-score and a small P-value. However, 
the results may change, depending on which metabolites are 
included, i.e. on the completeness of the database(s) from 
which prior knowledge has been obtained. If the correla-
tion of the missing metabolite(s) with the outcome is almost 
equal to the average correlation between the outcome and 
the metabolites included in the pathway, this has almost no 

effect on the Q-score. Instead, if a metabolite that has a much 
higher or lower correlation to the outcome than average is 
missing then the Q-score will change upon its inclusion. 
This is an aspect inevitably intrinsic to the MSEA strategy. 
Databases contain metabolites from only a limited number 
of pathways, compared to the whole metabolic network of an 
organism. Consequently, it is possible to test only a relatively 
small number of pathways and this is an inherent limitation 
of MSEA.

Another available method is Global Analisys of Covari-
ace (GlobalANCOVA). GlobalANCOVA exploits linear 
logistic regression and Analysis of Variance (ANOVA) in 
the framework of a global assessment for a group of metab-
olites. GlobalANCOVA aims to evaluate the relationship 
between the metabolite concentrations and the phenotypic 
covariates. In particular, the aim of GlobalANCOVA is to 
prove the relevance of certain covariates in explaining the 
observed metabolite concentration patterns, called covari-
ates of interest. Therefore, two models are compared: the full 
model (FM), which contains all covariates and the reduced 
model (RM), which does not have the covariates of interest. 
The null hypothesis is that both models explain the data 
equally well. The relevance of the covariates of interest in 
explaining the observed pattern is proven if the full model 
explains the observation better than the reduced model. To 
do so, a squared error is computed for the fitting of the con-
centration levels of each metabolite. Subsequently, the resid-
ual sum of squares (RSS) over all metabolites in the group 
is computed. Finally, a multivariate test statistic is built 
based on the RSS values for the full and reduced models 
(Hummel et al. 2008; Mansmann and Meister 2005; Smyth 
2005). The F-test is applied to test the null hypothesis and 
a P-value is computed using permutations. A correction for 
multiple testing is also used. Differently from the Globaltest, 
GlobalANCOVA evaluates the impact of group membership 
on the observed metabolite concentration patterns. In other 
words, GlobalANCOVA practically tests the null hypothesis 
that the information on the group level does not improve the 
fitting. The GlobalANCOVA approach allows the inclusion 
of time-dependent information in a straightforward manner 
constructed (Hummel et al. 2008).

Hendrickx et al. (2012) first tested the applicability of the 
Globaltest for metabolomics data and found it effective to 
highlight the differential behavior of groups of metabolites 
measured in E. coli and S. cerevisiae under different envi-
ronmental conditions.

In a recent study on the impact of sequence variability of 
mitochondrial DNA on metabolism and ageing, MSEA was 
used to investigate specific pathways in liver and plasma, 
showing for example significant changes of glutathione 
metabolism in both organs (Latorre-Pellicer et al. 2016). 
MSEA is also useful to assess the impact of therapeutic 
strategies in disease. For example, the inhibition at an early 

Fig. 5   Overview of the Global test. a From the autoscaled data 
matrix, m metabolites belonging to the same pathway are selected. A 
binary outcome is defined, coded 0 and 1, for instance healthy versus 
disease. b A score statistic Q is calculated from the mean centered 
outcome and the matrix of selected metabolites. c The significance 
of the relation between the group of metabolites (pathway) and the 
outcome is determined by performing a permutation test. Reproduced 
with permission from Hendrickx et al. (2012); Copyright (2012) Else-
vier B. V
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of glutamine metabolism induces extensive changes in the 
metabolism of other amino acids but also of the oxidation 
of branched-chain fatty acids in pancreatic ductal adenocar-
cinoma cells (Biancur et al. 2017).

6.3 � Over representation analysis (ORA)

The most traditional strategy for enrichment analysis in tran-
scriptomics is to take the user’s preselected list of ‘inter-
esting’ genes e.g. genes showing differential expression 
between two conditions and then iteratively test the enrich-
ment of their annotation terms; Gene Ontology (GO) terms 
are often used for this purpose. The annotation terms passing 
the enrichment P-value threshold are then reported in a tabu-
lar format, usually ordered by the enrichment probability or 
P-value. The calculation of the enrichment P-value is related 
to the number of genes in the list that share the same annota-
tion terms. For example, Gorilla (Eden et al. 2009) enables 
GO enrichment analysis in ranked lists of genes. Ranking 
is usually done as a function of expression level or of fold-
change in expression. The method identifies, independently 
for each GO term, the threshold at which the most significant 
enrichment is obtained. The significance score is corrected 
for threshold multiple testing. The null assumption is that 
all configurations of GO term occurrence in the ranked list 
are equiprobable.

To apply ORA to pathway analysis, the user provides 
one or more lists of identifiers representing genes/proteins/
metabolites significantly associated with the effect of inter-
est. In order to reduce the potential bias when the number of 
such measured entities is small it is advisable to provide also 
background lists of all measured genes/proteins/metabolites. 
Otherwise, all the entities in the predefined pathway data-
base, or in a user-selected sub-ensemble of pathways, are 
taken into account and used as the background list. Based on 
the occurrence of its entities within the input lists, the signif-
icance of each pathway is assessed by means of a statistical 
test. ORA analyzes whether, for a given list of metabolites 
with significantly different concentrations, one particular 
pathway is overrepresented, i.e. there are more metabolites 
in the list from that pathway than would be expected by 
chance. A major difference of ORA with respect to MSEA 
is that it does not take into account the extent of the fold 
change of the abundance of metabolites in the list of signifi-
cant entities: the inclusion of any metabolite in the list typi-
cally depends on a fixed arbitrary threshold. In some tools 
for ORA, however ranked lists are provided, i.e. metabolites 
are sorted based on the fold-change of their concentration 
(or their P-values). The analysis focuses on whether com-
mon terms tend to occur towards the top or the bottom of 
the list (Kankainen et al. 2011). An application of ORA to 
patients with mild cognitive impairment (MCI), a transition 
phase between normal aging and Alzheimer’s disease (AD), 

showed that the pentose phosphate pathway was differently 
regulated in MCI patients who later progressed to AD with 
respect to patients who remained stable (Oresic et al. 2011).

The common weakness of tools performing ORA is 
that the linear output of terms can be very large and over-
whelming (from hundreds to thousands), and this can make 
difficult to grasp potential interrelationships of relevant 
terms. In addition, the quality of the pre-selected metabo-
lite lists has a deep influence on the enrichment analysis, 
making the output unpredictably sensitive to changing 
statistical methods or cutoff thresholds. In particular, it is 
inappropriate to use all the metabolites of the metabolite 
set library as the reference metabolome, because there is 
no analytical platform that can measure all these metabo-
lites with the same probability. Thus, the choice of the 
platform rather than the experimental conditions may 
cause the observed metabolite enrichment. To tackle this 
problem, the user may upload a platform-specific reference 
metabolome. This is an option provided, for example, in 
the implementation available in MetaboAnalyst (Xia et al. 
2015). Finally, since multiple hits on a given pathway are 
required to achieve statistical significance, ORA is of lim-
ited usefulness for small-sized pathways like glutathione 
biosynthesis pathway, which contains only ten compounds.

Due to their intrinsic differences, MSEA and ORA may 
not give the same results and potentially lead to unlike 
biological interpretation of the same experimental data. 
This has been demonstrated for a small set of microar-
ray data, where different GO terms and therefore differ-
ent biological processes were identified by Globaltest and 
GOEAST (a web-tool for the analysis of GO term enrich-
ment) (Hulsegge et al. 2009).

6.4 � Pathway activity profiling (PAPi)

PAPi allows users to compare the activity of metabolic 
pathways under different experimental conditions (Aggio 
et al. 2010). The underlying concept is to associate Activ-
ity Scores to each pathway in a set obtained from the 
KEGG database by averaging the relative abundance of 
all detected metabolites assigned to that pathway, normal-
ized by a scaling factor that takes into account that not 
all metabolites are detected. The comparison of Activity 
Scores under two or more different experimental condi-
tions for the same pathway can pinpoint changes in activ-
ity that are statistically significant, as assessed by a two-
sample t-test or by ANOVA. PAPi can provide information 
regarding the impact of environmental conditions and 
stimuli on metabolite uptake and intracellular metabolic 
overflow. Metabolic pathway activity is directly related to 
metabolic flux distribution and thus this kind of analysis 
can tie directly to fluxomics.
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7 � Concluding remarks

The systems biology approach to the interpretation of 
metabolomics has the potential to unravel the causative 
mechanisms leading to the observed metabolomics profile. 
In this way, there is a paradigm shift from the chemometrics 
framework that makes metabolomics a hypothesis-generat-
ing research field to a framework where metabolomics can 
provide insights into the biological properties of cell and 
organism functioning. This shift will unlock the potential of 
metabolomics and related omics disciplines, such as fluxom-
ics and lipidomics, to fully contribute to the advancement of 
our understanding of health and disease. In this review, we 
addressed approaches based on association networks and on 
pathway analysis. These are useful tools to grasp the com-
plexity of metabolomic profiles; however, they are not suf-
ficient to understand fully the intricacies of the metabolism 
without dedicated experiments.

Many of the methods described here exploit the lessons 
learned in other, more mature omics, mainly genomics and 
transcriptomics, e.g. regarding the validation of their theo-
retical frameworks. As mentioned several times, a major 
caveat in untargeted metabolomics is the impossibility of 
measuring all metabolites in the sample, whose conse-
quences are very difficult to predict.
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