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Mutations in a microbial population can increase the frequency of a geno-

type not only by increasing its exponential growth rate, but also by

decreasing its lag time or adjusting the yield (resource efficiency). The con-

tribution of multiple life-history traits to selection is a critical question for

evolutionary biology as we seek to predict the evolutionary fates of

mutations. Here we use a model of microbial growth to show that there

are two distinct components of selection corresponding to the growth and

lag phases, while the yield modulates their relative importance. The model

predicts rich population dynamics when there are trade-offs between

phases: multiple strains can coexist or exhibit bistability due to frequency-

dependent selection, and strains can engage in rock–paper–scissors inter-

actions due to non-transitive selection. We characterize the environmental

conditions and patterns of traits necessary to realize these phenomena,

which we show to be readily accessible to experiments. Our results provide

a theoretical framework for analysing high-throughput measurements of

microbial growth traits, especially interpreting the pleiotropy and corre-

lations between traits across mutants. This work also highlights the need

for more comprehensive measurements of selection in simple microbial

systems, where the concept of an ordinary fitness landscape breaks down.
1. Introduction
The life history of most organisms is described by multiple traits, such as

fecundity, generation time, resource efficiency and survival probability [1].

While all of these traits may contribute to the long-term fate of a lineage, it is

often not obvious how selection optimizes all of them simultaneously,

especially if there are trade-offs [2,3]. The comparatively simple life histories

of single-celled microbes make them a convenient system to study this problem.

Microbial cells typically undergo a lag phase while adjusting to a new environ-

ment, followed by a phase of exponential growth, and finally a saturation or

stationary phase when resources are depleted. Covariation in traits for these

phases appears to be pervasive in microbial populations. Experimental evol-

ution of E. coli produced wide variation of growth traits both between and

within populations [4,5], while naturally evolved populations of yeast

showed similarly broad variation across a large number of environments [6].

Covariation in growth traits appears to also be important in populations

adapting to antibiotics [7–10]. Even single mutations have been found to be

pleiotropic, generating variation in multiple phases [7,11].

Previous work has focused mainly on the possibility of trade-offs between

these traits, especially between exponential growth rate and yield (resource effi-

ciency) in the context of r/K selection [5,7,12–17], as well as between growth

rates at low and high concentrations of a resource [18–21]. However, new

methods for high-throughput phenotyping of microbial populations have

recently been developed to generate large datasets of growth traits [22], measur-

ing growth rates, lag times and yields for hundreds or thousands of strains

across environmental conditions [6]. Some methods can even measure these
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Figure 1. Growth and selection in a microbial population. (a) Schematic of a smooth growth curve (orange points, generated from a Gompertz function [25]) and
the minimal three-phase model (solid violet line); each phase is labelled with its corresponding growth trait. (b) Two example growth curves in the three-phase
model. Solid lines show the growth curves for each strain growing alone, while dashed lines show the growth curves of the two strains mixed together and
competing for the same resources. Note that the solid and dashed growth curves are identical until saturation, since the only effect of competition is to
change the saturation time. (c) Example growth curves over multiple rounds of competition. Each vertical dashed line marks the beginning of a new growth
cycle, starting from the same initial population size and amount of resources.
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traits for populations starting from single cells [23,24]. These

data require a quantitative framework to interpret observed

patterns of covariation in an evolutionary context. For

example, while growth trade-offs have previously been pro-

posed to cause coexistence of multiple strains [19,21], we

lack a quantitative understanding of what patterns of traits

and conditions are necessary to achieve these effects, such

that they can be directly evaluated on high-throughput data.

Here we address this problem by developing a quantitat-

ive framework for selection on multiple microbial growth

traits. We derive an expression for the selection coefficient

that quantifies the relative selection pressures on lag time,

growth rate and yield. We then determine how these selec-

tion pressures shape population dynamics over many cycles

of growth, as occur in natural environments or laboratory

evolution. We find that selection is frequency dependent,

enabling coexistence and bistability of multiple strains and

distorting the fixation statistics of mutants from the classical

expectation. We also find that selection can be non-transitive

across multiple strains, leading to apparent rock–paper–

scissors interactions. These results are not only valuable for

interpreting measurements of microbial selection and

growth traits, but they also reveal how simple properties of

microbial growth lead to complex population dynamics.
2. Methods
Consider a population of microbial cells competing for a single

limiting resource. The population size N(t) as a function of time

(growth curve) typically follows a sigmoidal shape on a logarith-

mic scale, with an initial lag phase of sub-exponential growth,

then a phase of exponential growth, and finally a saturation

phase as the environmental resources are exhausted (figure 1a).

We consider a minimal three-phase model of growth dynamics

in which the growth curve is characterized by three quantita-

tive traits, one corresponding to each phase of growth [25,26]:

a lag time l, an exponential growth rate g and a saturation popu-

lation size Nsat (figure 1a; electronic supplementary material,

section S1). It is possible to generalize this model for additional

phases, such as a phase for consuming a secondary resource

(diauxie) or a death phase, but here we will focus on these
three traits as they are most commonly reported in microbial

phenotyping experiments [6,22].

The saturation size Nsat depends on both the total amount of

resources in the environment, as well as the cells’ intrinsic effi-

ciency of using those resources. To separate these two

components, we define R to be the initial amount of the limiting

resource and Y to be the yield, or the number of cells per unit

resource [4]. Therefore N(t)/Y is the amount of resources

consumed by time t, and saturation occurs at time tsat when

N(tsat) ¼ Nsat ¼ RY. The saturation time tsat is therefore deter-

mined intrinsically (i.e. by the growth traits of the strain) rather

than being externally imposed. It is straightforward to extend

this model to multiple strains, each with a distinct growth rate

gi, lag time li, and yield Yi, and all competing for the same

pool of resources (figure 1b; electronic supplementary material,

section S1). We assume different strains interact only by compet-

ing for the limiting resource; their growth traits are the same as

when they grow independently.

We focus on the case of two competing strains, such as a

wild-type and a mutant. We will denote the wild-type growth

traits by g1, l1, Y1 and the mutant traits by g2, l2, Y2. Assume

the total initial population size is N0 and the initial frequency

of mutants is x. As we are mainly interested in the relative

growth of the two strains (e.g. their changes in frequency over

time), only relative time scales and yields matter. To that end

we can reduce the parameter space by using the following

dimensionless quantities:

relative mutant growth rate: g ¼ g2 � g1

g1
,

relative mutant lag time: v ¼ (l2 � l1)g1,

relative wild-type yield: n1 ¼
RY1

N0

and relative mutant yield: n2 ¼
RY2

N0
:

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:1Þ

Each relative yield is the fold-increase of that strain if it grows

alone, starting at population size N0 with R resources.

Laboratory evolution experiments, as well as seasonal natural

environments, typically involve a series of these growth cycles as

new resources periodically become available [27]. We assume

each round of competition begins with the same initial popu-

lation size N0 and amount of resources R, and the strains grow

according to the dynamics of figure 1b until those resources are
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exhausted. The population is then diluted down to N0 again

with R new resources, and the cycle repeats (figure 1c). In each

round, the total selection coefficient for the mutant relative to

the wild-type is

s ¼ log
N2(tsat)

N1(tsat)

� �
� log

N2(0)

N1(0)

� �
, ð2:2Þ

where time t is measured from the beginning of the round (elec-

tronic supplementary material, section S2) [28,29]. This definition

is convenient because it describes the relative change in fre-

quency of the mutant over the wild-type during each round of

competition. Let x(r) be the mutant frequency at the beginning

of the rth round of competition; the frequency at the end of the

round will be the initial frequency x(r þ 1) for the next round.

Using equation (2.2), the selection coefficient for this round is

s(x(r)) ¼ log(x(r þ 1)/[1 2 x(r þ 1)]) 2 log(x(r)/[1 2 x(r)]), which

we can rearrange to obtain

x(rþ 1) ¼ x(r)es(x(r))

1� x(r)þ x(r)es(x(r))
: ð2:3Þ

This shows how the mutant frequency changes over rounds as a

function of the selection coefficient. If the selection coefficient is

small, we can approximate these dynamics over a large number

of rounds by the logistic equation: dx/dr � s(x)x(1 2 x).

However, for generality we use the frequency dynamics over

discrete rounds defined by equation (2.3) throughout this work.
3. Results
(a) Distinct components of selection on growth

and lag phases
We can derive an approximate expression for the selection

coefficient as a function of the underlying parameters in the

three-phase growth model. The selection coefficient consists

of two components, one corresponding to selection on

growth rate and another corresponding to selection on lag

time (electronic supplementary material, section S3, figure S1):

s � sgrowth þ slag, ð3:1aÞ

where

sgrowth ¼ Ag log
1

2
H

n1

1� x
,
n2

x

� �� �
,

slag ¼ �Av(1þ g)

and A ¼ (1� x)=n1 þ x=n2

(1� x)=n1 þ (1þ g)x=n2
,

9>>>>>>=
>>>>>>;

ð3:1bÞ

and H(a, b) ¼ 2/(a21 þ b21) denotes the harmonic mean, x is

the frequency of the mutant at the beginning of the compe-

tition round, and g, v, n1 and n2 are as defined in equation

(2.1). The harmonic mean of the two yields is approximately

the effective yield for the whole population (electronic sup-

plementary material, section S4). Equation (3.1) confirms that

the relative traits defined in equation (2.1) fully determine

the relative growth of the strains.

We interpret the two terms of the selection coefficient

as selection on growth and selection on lag since sgrowth is

zero if and only if the growth rates are equal, while slag

is zero if and only if the lag times are equal. If the mutant

and wild-type growth rates only differ by a small

amount (jgj � 1), then sgrowth is proportional to the ordinary

growth rate selection coefficient g ¼ (g2 2 g1)/g1, while

2v ¼2(l2 2 l1)g1 is the approximate selection coefficient

for lag. This contrasts with previous studies that used
l ds/dl as a measure of selection on lag time [4,30], which

assumes that selection acts on the change in lag time relative

to the absolute magnitude of lag time, (l2 2 l1)/l1. But the

absolute magnitude of lag time cannot matter since the

model is invariant under translations in time, and hence

our model correctly shows that selection instead acts on the

change in lag time relative to the growth rate.
(b) Effect of pleiotropy and trade-offs on selection
Many mutations affect multiple growth traits simultaneously

(i.e. they are pleiotropic) [7,11]. Given a measured or pre-

dicted pattern of pleiotropy, we can estimate its effect on

selection using equation (3.1) (electronic supplementary

material, section S5). In particular, if a mutation affects both

growth and lag, then both sgrowth and slag will be non-zero.

The ratio of these components indicates the relative selection

on growth versus lag traits:

sgrowth

slag
¼ � g

v(1þ g)
log

1

2
H

n1

1� x
,
n2

x

� �� �
: ð3:2Þ

We can use this to determine, for example, how much faster a

strain must grow to compensate for a longer lag time. This

also shows that we can increase the magnitude of relative

selection on growth versus lag by increasing the relative

yields n1 and n2. Conceptually, this is because increasing

the yields increases the portion of the total competition

time occupied by the exponential growth phase compared to

the lag phase. As each relative yield ni is proportional to the

initial amount of resources per cell R/N0 (equation (2.1)),

we can therefore tune the relative selection on growth

versus lag in a competition by controlling R/N0. One can

use this in an evolution experiment to direct selection more

towards improving growth rate (by choosing large R/N0)

or more towards improving lag time (by choosing small

R/N0).

The ratio sgrowth/slag also indicates the type of pleiotropy

on growth and lag through its sign. If sgrowth/slag . 0, then

the pleiotropy is synergistic: the mutation is either beneficial

to both growth and lag, or deleterious to both. If sgrowth/

slag , 0, then the pleiotropy is antagonistic: the mutant is

better in one trait and worse in the other. Antagonistic pleio-

tropy means the mutant has a trade-off between growth and

lag. In this case, whether the mutation is overall beneficial

or deleterious depends on which trait has stronger selection.

As aforementioned, relative selection strength is controlled

by the initial resources per cell R/N0 through the yields

(equation (3.2)), so we can therefore qualitatively change

the outcome of a competition with a growth-lag trade-off

by tuning R/N0 to be above or below a critical value,

obtained by setting sgrowth ¼ slag:

critical value of
R

N0
¼ 2ev(1þ1=g)

H(Y1=(1� x), Y2=x)
: ð3:3Þ

The right side of this equation depends only on intrinsic

properties of the strains (growth rates, lag times, yields)

and sets the critical value for R/N0, which we can control

experimentally. When R/N0 is below this threshold, selection

will favour the strain with the better lag time: there are

relatively few resources, and so it is more important to start

growing first. On the other hand, when R/N0 is above the

critical value, selection will favour the strain with the better
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growth rate: there are relatively abundant resources, and so it

is more important to grow faster.

(c) Selection is frequency dependent
Equation (3.1) shows that the selection coefficient s depends

on the initial frequency x of the mutant (electronic sup-

plementary material, section S6, figure S2). This is

fundamentally a consequence of having a finite resource: if

resources were unlimited and selection were measured at

some arbitrary time t instead of tsat (which is intrinsically

determined by the strains’ growth traits), then the resulting

selection coefficient would not depend on x.

This frequency dependence means that some mutants are

beneficial at certain initial frequencies and deleterious at

others. The traits of these ‘conditionally neutral’ mutants

must satisfy

min (n1, n2) < ev(1þ1=g) , max (n1, n2), ð3:4Þ

which is obtained by determining which trait values allow

s(~x) ¼ 0 for some frequency 0 < ~x < 1. This condition is

only satisfied for mutants with a trade-off between growth

rate and lag time. For mutants satisfying equation (3.4),

the unique frequency at which the mutant is conditionally

neutral is

~x ¼ n1e�v(1þ1=g) � 1

n1=n2 � 1
: ð3:5Þ

If the mutant and wild-type have equal yields (n1 ¼ n2 ¼ n),

then the mutant is neutral at all frequencies if ev(1þ1/g) ¼ n.

Mutants not satisfying these conditions are either beneficial

at all frequencies (s(x) . 0) or deleterious at all frequencies

(s(x) , 0).

(d) Neutral, beneficial and deleterious regions
of mutant trait space

Figure 2a shows the regions of growth and lag trait space cor-

responding to conditionally neutral (green), beneficial (blue)

and deleterious (red) mutants. The slope of the conditionally

neutral region is determined by the magnitudes of the yields:

increasing both yields (e.g. by increasing the initial resources

per cell R/N0) makes the region steeper, as that increases

relative selection on growth (equation (3.2)).

We can further understand the role of the yields by

considering the trait space of growth rate and yield

(figure 2b,c), as commonly considered in r/K selection studies

[5,7,12–17]. If the mutant has a longer lag time, then having a

higher yield will be advantageous since the greater resource

efficiency gives the mutant more time to grow exponentially

to compensate for its late start (figure 2b). On the other hand,

if the mutant has a shorter lag time, then having a lower yield

is better since the mutant can hoard resources before the

wild-type grows too much (figure 2c). These diagrams also

show there are limits to how much a change in yield can

affect selection. For example, if a deleterious mutant with

slower growth (g , 0) but shorter lag (v , 0) reduces its

yield, the best it can do is to become conditionally neutral

(move down into the green region of figure 2c)—it can

never become completely beneficial. Likewise, a beneficial

mutant with faster growth but longer lag can never become

completely deleterious by varying its yield (figure 2b).

Furthermore, a mutant with worse growth and lag can
never outcompete the wild-type, no matter how resource-

efficient (high yield) it is. In this sense, there are no pure

‘K-strategists’ in the model [14]. Indeed, equation (3.1a) indi-

cates that there is no distinct selection pressure on yield, but

rather it only modulates the relative selection pressures on

growth and lag. Note that increasing the mutant yield

significantly above the wild-type value changes the selec-

tion coefficient very little, since the effective yield for the

combined population (which determines the selection coeffi-

cient) is dominated by whichever strain is less efficient

through the harmonic mean in equation (3.1).

(e) Growth-lag trade-offs enable coexistence or
bistability of a mutant and wild-type

Mutants that are conditionally neutral (satisfying equation

(3.4)) due to a growth-lag trade-off will have zero selection

coefficient at an intermediate frequency ~x (equation (3.5)).

Figure 3a shows the conditionally neutral region of trait

space coloured according to the neutral frequency. For the

two example mutants marked by blue and red points in

figure 3a, both with neutral frequency ~x ¼ 1
2, figure 3b shows

their selection coefficients s(x) as functions of frequency x.

Selection for the blue mutant has negative (decreasing)

frequency dependence, so that when the frequency is below

the neutral frequency ~x, selection is positive, driving the fre-

quency up towards ~x, while selection is negative above the

neutral frequency, driving frequency down. Therefore this

mutant will stably coexist at frequency ~x with the wild-type.

In contrast, the red mutant has positive (increasing)

frequency-dependent selection, so that it has bistable long-

term fates: selection will drive it to extinction or fixation

depending on whether its frequency is below or above the

neutral frequency. Bistability of this type has been proposed

as a useful mechanism for safely introducing new organisms

into an environment without allowing them to fix unintention-

ally [31]. Figure 3c shows example trajectories of the frequencies

over rounds of competitions for these two mutants.

Coexistence of a conditionally neutral mutant and wild-

type requires a trade-off between growth rate and yield

(electronic supplementary material, section S6)—the mutant

must have faster growth rate and lower yield, or slower

growth rate and higher yield—in addition to the trade-off

between growth rate and lag time necessary for conditional

neutrality. For example, the blue mutant in figure 3 has

slower growth but shorter lag and higher yield compared

with the wild-type. Therefore, when the mutant is at low fre-

quency (below ~x ¼ 1
2), the overall yield of the combined

population (harmonic mean in equation (3.1)) is approxi-

mately equal to the wild-type’s yield, and since the wild-

type has lower yield, this results in stronger selection on

lag versus growth. This means positive selection for the

mutant, which has the shorter lag time. In contrast, when

the mutant’s frequency is high, the overall yield of the popu-

lation is closer to the mutant’s yield, and thus there is

stronger selection on growth versus lag. This favours the

wild-type strain, which has the faster growth rate, and there-

fore produces negative selection on the mutant. These

scenarios are reversed when the strain with faster growth

(and longer lag) also has greater yield (e.g. the red mutant

in figure 3), resulting in bistability. As figure 3a assumes

the mutant has yield higher than that of the wild-type, all

mutants in the lower branch of the conditionally neutral
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region have coexistence, while all mutants in the upper

branch are bistable.

Given any two strains with different yields and a trade-off

between growth and lag, it is always possible to construct

competition conditions such that the two strains will either

coexist or be bistable. That is, one may choose any neutral fre-

quency ~x and use equation (3.3) to determine the critical

value of the initial resources per cell R/N0; with R/N0 set

to that value, the competition will have zero selection at pre-

cisely the desired frequency. Whether that produces

coexistence or bistability depends on whether there is a

trade-off between growth and yield. As the bottleneck popu-

lation size N0 also controls the strength of stochastic

fluctuations (genetic drift) between competition rounds, we

can determine how to choose this parameter such that coex-

istence will be robust to these fluctuations (electronic

supplementary material, section S7).

Frequency-dependent selection may also significantly

distort fixation of the mutant. In particular, it is common to

measure selection on a mutant by competing the mutant

against a wild-type starting from equal frequencies (x ¼ 1
2)

[27]. If selection is approximately constant across all frequen-

cies, this single selection coefficient measurement s( 1
2 ) is

sufficient to accurately estimate the fixation probability and
time of the mutant (electronic supplementary material,

section S8). However, conditionally neutral mutants may

have fixation statistics that deviate significantly from this

expectation due to frequency-dependent selection. For

example, a mutant that is neutral at ~x ¼ 1
2 will have s( 1

2 ) ¼ 0

by definition, which would suggest the fixation probability of

a single mutant should be the neutral value 1/N0. However,

its fixation probability may actually be much lower than that

when accounting for the full frequency dependence of selection

(electronic supplementary material, section S8, figure S3).

Therefore, accounting for the frequency-dependent nature of

selection may be essential for predicting evolutionary fates of

mutations with trade-offs in growth traits.

( f ) Selection is non-additive and non-transitive
We now consider a collection of many strains with distinct

growth traits. To determine all of their relative selection

coefficients, in general we would need to perform compe-

titions between all pairs. However, if selection obeys the

additivity condition

sij þ sjk ¼ sik, ð3:6Þ

where sij is the selection coefficient of strain i over strain j in a

binary competition, then we need only measure selection
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Figure 4. Non-transitive selection over three strains. (a) An example of three strains (blue, red, green) forming a non-transitive set: in binary competitions starting
from equal frequencies (x ¼ 1

2), red beats blue, green beats red and blue beats green. (b) The three strains from (a) in the trait space of relative growth rate g and
lag time v (all relative to the blue strain); the red and green shaded regions indicate the available trait space for the red and green strains such that the three
strains will form a non-transitive set. Insets: strains in the trait space of lag time and yield n (upper left) and trait space of growth rate and yield (lower right).
Arrows indicate which strain beats which in binary competitions. (c) Dynamics of each strain’s frequency xi(r) over competition rounds r for all three strains in (a)
simultaneously competing.
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coefficients relative to a single reference strain, and from

those we can predict selection for all other pairs. The additiv-

ity condition holds, for example, if selection coefficients are

simply differences in scalar fitness values (Malthusian par-

ameters) for each strain (i.e. sij ¼ fi 2 fj). Therefore, the

extent to which equation (3.6) holds is indicative of the

existence of a fitness landscape.

Based on the selection coefficient definition (equation

(2.2)), the additivity condition would hold if the selec-

tion coefficient is measured at a fixed time t before

saturation occurs. In that case, there is a scalar fitness value

fi ¼ gi(t 2 li) for each strain, and the selection coefficients

are just differences in these values (electronic supplementary

material, section S2). However, if we only measure selection

after the finite resources are exhausted, then the selection

coefficient depends on the saturation time tsat, which is intrin-

sically determined by the traits of the two competing strains

and is therefore different for each binary competition (elec-

tronic supplementary material, section S4). This means that

the selection coefficient in this model does not obey additivity

in general, although it will be approximately additive in the

limit of small differences in growth traits between strains

(electronic supplementary material, section S9).

A condition weaker than additivity is transitivity, which

means that if strain 2 beats strain 1 and strain 3 beats strain

2 in binary competitions, then strain 3 must beat strain 1 in

a binary competition as well [32]. This must also hold for

neutrality, so if strains 1 and 2 are neutral, and strains 2

and 3 are neutral, then strains 1 and 3 must also be neutral.

This essentially means that equation (3.6) at least predicts

the correct sign for each binary selection coefficient.

If all three strains have equal yields, then selection in our

model is always transitive for any initial frequencies (elec-

tronic supplementary material, section S10). If the yields are

not all equal, then it is possible to find sets of three strains

with non-transitive selection: each strain outcompetes one

of the others in a binary competition (electronic supplemen-

tary material, section S10), forming a rock–paper–scissors

game [33]. In figure 4a, we show an example of three strains

forming a non-transitive set. Figure 4b shows the distribution

of these same three strains in trait space, where the shaded

regions indicate constraints on the strains necessary for

them to exhibit non-transitivity. That is, given a choice of
the blue strain’s traits, the red strain’s traits may lie anywhere

in the red shaded region, which allows the red strain to beat

the blue strain while still making it possible to choose the

green strain and form a non-transitive set. Once we fix the

red point, then the green strain’s traits may lie anywhere in

the green shaded region.

This trait space diagram reveals what patterns of traits are

conducive to generating non-transitive selection. The trait

space constraints favour a positive correlation between

growth rates and lag times across strains, indicating a

growth-lag trade-off. Indeed, these trade-offs between

growth strategies are the crucial mechanism underlying

non-transitivity. For example, in figure 4a, red beats blue

since red’s faster growth rate and higher yield outweigh its

longer lag time; green beats red due to its even faster

growth rate, despite its longer lag and lower yield; and

blue beats green with a shorter lag time and lower yield.

Non-transitive strains will generally have no significant corre-

lation between yield and growth rate or between yield and

lag time (figure 4b, insets); furthermore, the cycle of selective

advantage through the three strains generally goes clockwise

in both the lag-yield and growth-yield planes.

As each strain in a non-transitive set can beat one of

the others in a binary competition, it is difficult to predict

a priori the outcome of a competition with all three present.

In figure 4c, we show the population dynamics for a ternary

competition of the non-transitive strains in figure 4a,b. Non-

transitive and frequency-dependent selection creates com-

plex population dynamics: the red strain rises at first, while

the blue and green strains drop, but once blue has suffi-

ciently diminished, that allows green to come back (since

green loses to blue, but beats red) and eventually dominate.

Note that we do not see oscillations or coexistence in these

ternary competitions, as sometime occur with non-transitive

interactions [32,34].

4. Discussion
(a) Selection on multiple growth phases produces

complex population dynamics
Our model shows how basic properties of microbial growth

cause the standard concept of a scalar fitness landscape to
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break down, revealing selection to depend fundamentally on

the multidimensional nature of life history. This occurs even

for the simple periodic environment (constant R and N0)

commonly used in laboratory evolution; fluctuating environ-

ments, as are expected in natural evolution, will probably

exaggerate the importance of these effects. In contrast with

previous theoretical work on trade-offs between different

phases of growth [19,21], we have obtained simple math-

ematical results indicating the environmental conditions

and patterns of traits necessary to produce complex popu-

lation dynamics such as coexistence and bistability. In

particular, we have shown how to tune the amount of

resources R and bottleneck population size N0 such that any
pair of strains with a growth-lag trade-off will coexist or be

bistable. In terms of ecology, this is an important demon-

stration of how life-history trade-offs can enable coexistence

of multiple strains even on a single limiting resource [18].

This conflicts with the principle of competitive exclusion

[35], which posits that the number of coexisting types

cannot exceed the number of resources. However, models

that demonstrate coexistence on multiple resources, such as

the MacArthur consumer-resource model [36], do not account

for multiple phases of life history, so that a single strain will

always have overall superiority on any one resource.

Our model furthermore provides a simple mechanism for

generating non-transitive interactions, in contrast to most

known mechanisms that rely on particular patterns of allelo-

pathy [33,37], morphology [34], or spatial dynamics [38]. Our

results emphasize the need for more comprehensive measure-

ments of selection beyond competition experiments against a

reference strain at a single initial frequency [27]. As we have

shown, these measurements may be insufficient to predict the

long-term population dynamics at all frequencies (due to fre-

quency-dependent selection), or the outcomes of all possible

binary and higher-order competitions (due to non-transitive

selection).
(b) Pleiotropy and correlations between traits
Trade-offs among growth, lag and yield are necessary for coex-

istence, bistability and non-transitivity. Whether these trade-

offs are commonly realized in an evolving microbial popu-

lation largely depends on the pleiotropy of mutations. Two

theoretical considerations suggest pleiotropy between growth

and lag will be predominantly synergistic. First, cell-to-cell

variation in lag times [23,24] means that the apparent popu-

lation lag time is largely governed by the cells that happen

to exit lag phase first and begin dividing, which causes the

population lag time to be conflated with growth rate [39].

Second, mechanistic models that attempt to explain how

growth rate and lag time depend on underlying cellular pro-

cesses also predict synergistic pleiotropy [40–42];

conceptually, this is because the product of growth rate and

lag time should be a positive constant corresponding to the

amount of metabolic ‘work’ that the cell must perform to

exit lag and begin to divide. Pleiotropy between growth rate

and yield, on the other hand, is generally expected to be

antagonistic due to thermodynamic constraints between the

rate and yield of metabolic reactions [43,44], although this

constraint may not necessarily induce a correlation [45].

Distributions of these traits have been measured for both

bacteria and fungi. Correlations between growth rate and

yield have long been the focus of r/K selection studies; some
of these experiments have indeed found trade-offs between

growth rate and yield [15–17,44], but others have found

no trade-off, or even a positive correlation [5–7,12,13].

Measurements of lag times have also found mixed results

[6,11,41,42,46]. However, most of these data are for evolved

populations, which may not reflect the true pleiotropy of

mutations: distributions of fixed mutations may be correlated

by selection even if the underlying distributions of mutations

are uncorrelated. Our model shows that higher yield is only

beneficial for faster growth rates, and so selection will tend

to especially amplify mutations that increase both traits,

which may explain some of the observed positive correlations

between growth rate and yield. Indeed, data on the distri-

butions of growth rates and yields from individual clones

within a population show a negative correlation [5]. The

model developed here will be useful for further exploring

the relationship between the underlying pleiotropy of

mutations and the distribution of traits in evolved populations.

(c) Analysis of experimental growth curves
and competitions

Given a collection of microbial strains, we can measure their

individual growth curves and determine growth rates, lag

times and yields. In principle, we can use the model

(equation (3.1)) to predict the outcome of any binary compe-

tition with these strains. These strains need not be mutants of

the same species, as we primarily discuss here, but can even

be different species. In practice, however, there are several

challenges in applying the model to these data. First, real

growth dynamics are undoubtedly more complicated than

the minimal model used here. There are additional time

scales, such as the rate at which growth decelerates as

resources are exhausted [19]; other frequency-dependent

effects, such as a dependence of the lag time on the initial

population size [47]; and more complex interactions between

cells, such as cross-feeding [20], especially between different

species. In addition, the measured traits and competition

parameters may be noisy, due to intrinsic noise within the

cells as well as the extrinsic noise of the experiment.

Nevertheless, the simplicity of the model investiga-

ted here makes it a useful tool for identifying candidate

strains from a collection of individual growth curves that

may have interesting dynamics in pairs or in multi-strain

competitions, which can then be subsequently tested by

experiment. Existing technologies enable high-throughput

measurement of individual growth curves for large numbers

of strains [22–24], but systematic measurements of compe-

titions are limited by the large number of possible strain

combinations, as well as the need for sequencing or fluor-

escent markers to distinguish strains. The model can

therefore help to target which competition experiments are

likely to be most interesting by computationally scanning

all combinations and setting bounds on various parameters

to be compared with experimental uncertainties. For

example, we can identify pairs of strains with growth-lag

trade-offs and predict a range of competition conditions

R/N0 that will lead to coexistence. We can also identify can-

didate sets of strains for demonstrating non-transitive

selection. Even for sets of strains with additional interactions

beyond competition for a single resource, which will almost

certainly be the case when the strains are different species,

our results can serve as a null model for testing the
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importance of these other interactions in shaping population

dynamics.
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