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ABSTRACT

T-cell receptor (TCR)-engineered T cells are a novel
option for adoptive cell therapy used for the treatment of
several advanced forms of cancer. Work using TCR-
engineered T cells began more than two decades ago,
with numerous preclinical studies showing that such
cells could mediate tumor lysis and eradication. The
success of these trials provided the foundation for clini-
cal trials, including recent clinical successes using TCR-
engineered T cells to target New York esophageal squa-
mous cell carcinoma (NY-ESO-1). These successes
demonstrate the potential of this approach to treat can-
cer. In this review, we provide a perspective on the cur-
rent and future applications of TCR-engineered T cells for
the treatment of cancer. Our summary focuses on TCR
activation and both pre-clinical and clinical applications
of TCR-engineered T cells. We also discuss how to
enhance the function of TCR-engineered T cells and
prolong their longevity in the tumor microenvironment.
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INTRODUCTION

It was shown as early as 1976 that interleukin-2 (IL-2),
regarded as a T-cell growth factor, induced T-cell prolifera-
tion without loss of effector function in vitro (Morgan et al.,
1976). It is now known that the cytokine IL-2 is crucial for
sustained clonal expansion of responding T cells. A study by
Rosenberg et al. demonstrated that syngeneic tumor-infil-
trating lymphocytes (TILs) could undergo expansion in the
presence of IL-2. Adoptive transfer of these TILs to murine
models was shown to lead to regression in lung and liver

tumors (Rosenberg et al., 1986). Subsequently, adoptive cell
therapy using autologous TILs has become one of the most
effective approaches to induce long-lasting regression in
patients with metastatic melanoma (Rosenberg et al., 1988;
Dudley et al., 2002; Scanlan et al., 2002; Rosenberg et al.,
2011; Pilon-Thomas et al., 2012; Radvanyi et al., 2012;
Besser et al., 2013). The presence of TILs has also been
associated with improved prognosis in other cancer types,
including ovarian, colon, and breast cancer (Clemente et al.,
1996; Sato et al., 2005; Galon et al., 2006; Loi, 2013).

Early studies found that TILs isolated from melanoma
patients recognized two non-mutated melanoma melanocyte
differentiation proteins: MART-1 and gp100 (Kawakami
et al., 1994a; Kawakami et al., 1994b). MART-1 and gp100
proteins are often expressed by melanocytes in the skin,
eye, and ear. However, many patients who present complete
cancer regression did not have a toxic response after treat-
ment with TILs targeting MART-1 or gp100. This demon-
strated that it is the antigen-specific T cells in TILs that are
crucial for cancer regression. There are however several
hurdles to purifying the amount of antigen-specific T cells
necessary to be used as a therapy: (1) it is difficult to isolate
tumor-specific T cells from many cancer patients; (2) it takes
considerable time to obtain a therapeutic amount of tumor-
specific Tcells. With the introduction of T-cell receptor (TCR)
engineering technologies, it became possible to produce
antigen-specific T cells. Treatment with engineering, tumor
antigen-specific T cells has demonstrated significant clinical
successes in patients with metastatic melanoma, colorectal
carcinoma, synovial sarcoma, and multiple myeloma (Mor-
gan et al., 2006; Johnson et al., 2009; Parkhurst et al., 2011;
Robbins et al., 2011; Rapoport et al., 2015; Robbins et al.,
2015) (Fig. 1). Tumor antigen-specific TCR gene-engineered
T cells are therefore considered as a potentially “off-the-
shelf” treatment for cancer patients.
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THE FOUNDATION OF TCR ACTIVATION

TCR recognition of pMHC molecules

TCR is expressed on the surface of T cells and consists of two
distinct protein chains. In the majority of mature T cells, the
TCR consists of α and β chains, although there is a smaller
population of T cells in which the TCR consists of γ and δ
chains. Antigen recognition by the αβTCR is central to the
function of the adaptive immune system. αβTCR bind to the
peptide major histocompatibility complex (pMHC) on the sur-
face of antigen-presenting cells. The interaction between an
αβTCR and a pMHC is highly specific owing to the fact that T
cells are able to distinguish between rare foreign pMHCs and
the abundant self pMHC molecules (Germain and Stefanova,
1999). CD8+ T cells play an important role in the adaptive
immune response in cancer patients and are activated by TCR
recognition of specific peptide epitopes. These peptide epi-
topes are largely generated from endogenous proteins that are
presented by MHC class I proteins on the surface of tumor cells
(Phan and Rosenberg, 2013). MHC class I proteins are
membrane proteins that are expressed on almost all nucleated
cells. They are encoded by several families of human leuko-
cyte antigen (HLA-A, B, and C) genes (Brown et al., 2014).
Expression of HLA genes can be upregulated by interferon
(IFN) signaling, but the expression is often notably down-reg-
ulated in tumors. The degree of down-regulation correlates with
immune evasion and disease progression in patients with

cancer (Agrawal and Kishore, 2000; Leone et al., 2013). T cell
activation requires translation of pMHC antigen binding to the
TCR and then on to intracellular signaling pathways (Zhang
and Bevan, 2011; Obst, 2015; Pageon et al., 2016). Ex vivo
and in vivo studies demonstrate that the dose of antigen pre-
sented determines the nature of cytokine expression in T cells
(Corse et al., 2011; Tkach et al., 2014).

TCR signaling transduction

Naïve T cells undergo clonal expansion of between 10 and
20 rounds of cell division after activation by TCR/pMHC
interaction (Zhang and Bevan, 2011; Obst, 2015). Compared
with naïve T cells, antigen-stimulated T cells substantially
increase antigen responsiveness via a process termed
“functional avidity maturation” (Margulies, 2001; Slifka and
Whitton, 2001). Studies have found that antigen-stimulated T
cells exhibit greater proliferation and cytokine production
than naïve T cells (Akbar et al., 1988; Byrne et al., 1988;
Sanders et al., 1989; Sallusto et al., 1999). T cells recognize
antigen-MHC complexes through the TCR-CD3 cluster. After
interaction between the MHC and TCR, several classes of
protein are then recruited to the plasma membrane by acti-
vated receptors to participate in signal propagation (Fig. 2).
Phospholipase C-γ1 (PLC-γ1) cleaves molecules of mem-
brane phospholipid phosphatidylinositol bisphosphate
(PIP2), into inositol triphosphate (IP3), and diacylglycerol

Leukapheresis

Antigen reactive T cell

TCR-engineered T cell

TCR-engineered T cell

Packaging cell

Transfection

Clone TCR α and
β chain gene Vector plasmid

Modified T cell
infusion

Modified T cell
expansion

Transduce with
retrovirus

Construct
retroviral
vector

TCR gene
LTR LTR

Figure 1. Process of TCR-engineered T cells therapy. T cells are isolated from patient blood or tumor tissue. TCR α and β chains

are then isolated from single T-cell clones and inserted into a lentivirus or retrovirus vector. Tcells isolated from the peripheral blood of

the patient can be modified with the lentivirus or retrovirus vector to encode the desired TCRαβ sequences. These modified Tcells are

then expanded in vitro to obtain sufficient numbers for treatment and re-infusion back into the patient.

T-cell receptor-engineered-T cells for cancer treatment REVIEW

© The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn 255

P
ro
te
in

&
C
e
ll



(DAG). The interaction of IP3 with its receptors in the
endoplasmic reticulum upregulates the level of Ca2+ in the
cytosol, activating the Ca2+-binding protein calmodulin. This
subsequently regulates nuclear factor of activated T cells
(NFAT) proteins. Additionally, DAG activates the Ras/extra-
cellular regulating kinase (Erk) pathway, modulating the
nuclear factor Fos. Through all of these interacting signaling
pathways, T cells are activated, releasing numerous cytoki-
nes and chemokines, including IFN-γ, Granzyme B, and IL-2
(Abraham and Weiss, 2004; Smith-Garvin et al., 2009).

The function of T lymphocytes is largely regulated by TCR
signaling. Studies have shown that initial TCR signaling via
p38 leads to successive induction of Vitamin D receptor
(VDR) and PLC-γ1, both of which are required for classical
TCR signaling and T cell activation (von Essen et al., 2010).
Genetically blocking TCR internalization inhibits T cell
expansion, demonstrating that TCR signaling is required for
T cell proliferation. TCR internalization was also required for
sustained signaling and activation of key metabolic

pathways, including the mechanistic target of rapamycin
(mTOR) (Willinger et al., 2015). Acting to control T cell acti-
vation, T cell anergy is a tolerance mechanism in which
lymphocytes are intrinsically functionally-inactivated follow-
ing antigen encounter. This phenomenon is often observed
in the tumor microenvironment. Zheng et al. found that early
growth response protein 2 (Egr2) was necessary for in vivo
anergy induction when using antigen-induced and tumor-in-
duced anergy models. Egr2 is therefore considered an
essential transcriptional regulator of T cell anergy (Zheng
et al., 2012). The activation status of T cells and the level of
immune response are further controlled by various co-stim-
ulatory (CD28, inducible T cell co-stimulator (ICOS), and
OX40) and co-inhibitory (cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4), programmed death 1 (PD-1)) molecules
(Keir et al., 2008; Chen and Flies, 2013). For example, in the
absence of the immune checkpoint protein PD-1, the fusion
antibody B7H1-Ig can augment T cell proliferation and
immune response. This demonstrates that it is possible to
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Figure 2. Schematic demonstration of TCR signaling. T cells recognize pMHC complexes through the TCR-CD3 cluster. Several

classes of proteins are then recruited to the plasma membrane by the activated receptors and participate in signal propagation.

Phospholipase C-γ1 (PLC-γ1) cleaves molecules of the membrane phospholipid phosphatidylinositol bisphosphate (PIP2) into

inositol triphosphate (IP3) and diacylglycerol (DAG). The interaction of IP3 with its receptors in the endoplasmic reticulum up-

regulates the level of Ca2+ in the cytosol, further activating the Ca2+-binding protein calmodulin. NFAT, as a nuclear factor of activated

T cells, is regulated by the calcium pathway. DAG is primarily involved in the activation of the Ras/Erk pathway. T cells are activated

though these signaling pathways, releasing IFN-γ, Granzyme B, IL-2, and so on.
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intervene and augment or down-regulate immune response
based on B7H1-mediated pathways (Deng et al., 2014).

APPLICATION OF TCR-ENGINEERED T
LYMPHOCYTES

A great deal of scientific studies have shown that TCR-
engineered Tcells can target and kill cancer cells expressing
appropriate antigens (Parkhurst et al., 2011; Cohen et al.,
2015; Kageyama et al., 2015; Rapoport et al., 2015; Stronen
et al., 2016). However, for treatment to be feasible, it is
necessary to first enrich TCR-gene modified antigen specific
T cells in vitro. Adoptive cell therapy with these engineered
cells would be a precise therapy as it targets antigens
expressed on cancer cells present in the patient. We will
next examine the application of this therapy for the treatment
of cancer.

Selection of an appropriate antigen

Cancer cells can express proteins during development that
are different from those found in untransformed cells. Certain
antigens that are more frequently expressed by similar
tumors are appealing candidates for therapies utilizing
immune recognition. These antigens can be unique or
shared. Shared antigens are divided into tumor differentia-
tion antigens, over-expressed antigens, and shared tumor-
specific antigens (http://cancerimmunity.org/peptide/). Many
shared tumor-specific antigens, encoded by cancer-germline
genes, have been identified. These antigens can induce an
immune responses and are promising candidate targets for
use in vaccination or T cell therapy, such as melanoma-as-
sociated antigen (MAGE)-A3 (Zhang et al., 2003), MAGE-A4
(Zhang et al., 2002), and New York esophageal squamous
cell carcinoma (NY-ESO)-1 (van der Bruggen et al., 1994;
Valmori et al., 2000; Van Der Bruggen et al., 2002). Many
studies have also reported that tumor differentiation antigens
and overexpressed antigens can evoke T cell responses,
including MART-1, gp100, carcino-embryonicantigen (CEA),
and p53 (Kawakami et al., 1995; Kawashima et al., 1998;
Barfoed et al., 2000). In addition to shared antigens, unique
antigens also have potential to be used as a targeted
treatment. Unique antigens are abnormal proteins that are
only expressed by tumor cells. Viral associated antigens
found in some cancers can be used to produce antigen-
specific T cells, human papilloma virus for example (Draper
et al., 2015).

In the past 3 years, neoantigen has garnered much
attention as a potential precision immunotherapy. Neoanti-
gens are generated from somatic point mutations in tumor
tissues that are absent in normal tissue. Whole genome or
exome sequencing can be applied to identify optimal
neoantigen candidates for personalized cancer treatment.
RNA sequencing can be performed to examine expression
and predict whether a neoepitope will be presented by the
MHC to be recognized by T cells (Robbins et al., 2013; van

Rooij et al., 2013; Brown et al., 2014). In 2016, a study found
that mutation-reactive T cells could be enriched from donor-
derived T cells and used as an effective therapy for the
treatment of patients with metastatic cancer (Prickett et al.,
2016; Stronen et al., 2016). CD4+ and CD8+ T lymphocytes
have been shown to target epitopes arising from epigenetic,
transcriptional, translational, and post-translational alter-
ations of tumor cells (Coulie et al., 2014). More recently,
technological breakthroughs have shown that numerous
endogenous mutant cancer proteins are unique to tumor
cells. These can be processed into peptides and presented
on the surface of tumor cells leading to these cells being
recognized in vivo as “non-self” or foreign by the immune
system. Targeting highly specific neoantigens would enable
immune cells to distinguish cancer cells from normal cells
and avoid the risk of autoimmunity (Bobisse et al., 2016).
Neoantigens therefore represent ideal targets for successful
immunotherapy.

Recent exciting results have demonstrated that TILs
responding to patient neoantigens can be detected at much
higher frequencies than other types (Robbins et al., 2013;
van Rooij et al., 2013; Linnemann et al., 2015). Several
studies have also found that monoclonal antibodies directed
against CTLA-4 are particularly effective at treating cancers
with a high burden of somatic mutation (Snyder et al., 2014;
Van Allen et al., 2015). In lung and bladder cancer patients
treated with pembrolizumab, an antibody targeting PD-1, the
non-synonymous mutation burden strongly associates with
clinical efficacy (Powles et al., 2014; Rizvi et al., 2015).
Isolation and reinfusion of neoantigen-specific Tcells may be
required to mediate tumor regression without inducing on-
target but off-tumor toxicities (Klebanoff et al., 2016). The
best currently available technology to obtain large amounts
of neoantigen specific T cells is to insert TCR sequences
targeting identified neoantigens into T cells in vitro. For
example, transgenic CD4+ lymphocytes that recognize a
mutant tumor-specific neoantigen ERBB2 protein induced
sustained tumor regression in a patient with cholangiocar-
cinoma (Tran et al., 2014). These findings indicated that it
may be feasible to develop treatments based on the adoptive
transfer of TCR-engineered T cells sorted with tetramers
bearing mutated epitopes that recognize autologous
peripheral T cells (Cohen et al., 2015; Gros et al., 2016).
Further interesting results revealed that CD8+PD-1+ cell
populations from PBMCs and TILs had lymphocytes target-
ing patient specific neoantigens (Gros et al., 2016; Pasetto
et al., 2016). However, another study found that the lack of a
defined neoantigen resulted in tumor cell resistance in a
transplantable tumor model (Matsushita et al., 2012). Whe-
ther the neoantigen repertoire in human tumors is stable and
therefore consistently targetable is currently unclear.
Verdegaal et al. designed a study to observe the landscape
of neoantigen dynamics and reveal any detectable stability.
Their data demonstrated that specific T cell-recognized
neoantigens could be lost by either reduced transcript
expression or complete loss of the mutant allele (Verdegaal
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et al., 2016). Cancer immunotherapy with neoantigen
specific T cells should therefore aim to exploit the adaptive
capacity of the immune system. Based on these promising
results, it may be possible that, in the near future, neoantigen
specific T cells could be used as a novel strategy to develop
personalized therapies to treat cancer.

Candidate target antigens that are used for TCR-
engineered T cell treatment require three features if they
are to be utilized: (1) they must be selectively expressed
in tumors and not in normal tissues (tumor specificity);
(2) they are related to oncogenesis (tumor addiction); (3)
they are able to evoke a T-cell response (immuno-
genicity) (Debets et al., 2016). Broadly speaking,
choosing an appropriate antigen is the first and most
important step to determine the effectiveness of TCR-
engineered T cells.

Identification of TCR sequences

Identifying TCR sequences is inherently difficult because
each T cell contains its own unique TCR that recognizes a
distinct set of pMHC molecules. Several methods have been
developed to identify TCR sequences from single T cells
(Fig. 3). Culturing of T cell clones is the canonical method to
identify TCR sequence. Briefly, CD8+ or CD4+ T cells are
purified from peripheral blood mononuclear cells (PBMCs).
Serial dilutions allow single T cells being seeded into

individual wells of 96-well plates. Finally, these single cells
are propagated, generating T-cell clones. The TCR α chain
and β chain from these T cell clones are identified and
sequenced (Nishimura et al., 1994; Zhang et al., 2010).
Using this method, several antigen-specific T cells have
been identified that effectively recognize relevant antigens,
including tumor antigens. The efficacies of these tumor-
specific TCRs to treat cancer have been tested in clinical
trials using engineered TCRs (Morgan et al., 2006; Robbins
et al., 2015). NY-ESO-1 specific TCR-T cells are the most
thoroughly examined and their therapeutic potential has
been tested in synovial cell sarcoma, melanoma, and mye-
loma (Robbins et al., 2011; Rapoport et al., 2015; Robbins
et al., 2015).

Recently, single cell RT-PCR and pairSEQ methods have
been developed to more rapidly identify TCR sequences.
Single cell RT-PCR allows the transcriptomes of thousands
of cells to be processed simultaneously (Wu et al., 2014;
Redmond et al., 2016). This method can identify the unique
TCR and the paired α and β heterodimer of each T cell and
has been successfully used to identify paired α and β chains
from 91 naïve CD4+ T helper cells in mice (Mahata et al.,
2014). PairSEQ technology can leverage the diversity of
TCR sequences to accurately identify many TCR α and β
chain sequences in a single high throughput experiment.
Howie et al. used this technology to pair hundreds of thou-
sands of TCR α and β chain sequences from PBMCs

Single T cell + feeder cells + cytokines

Single T cell in 96-well plate

T cells 

T cells from blood
or tumor tissue

PairSEQ

I

II

III

Single cell RT-PCR

Culturing single T cell clone

PCR (5′RACE)

TCR α chain

TCR β chain

Figure 3. Three typical procedures to obtain TCR sequence. Antigen responsive T cells are isolated, specific TCR genes are

identified by single clone derived-cDNA sequencing (I), single cell sequencing (II) or paired sequencing of bulk DNA (III).
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isolated from two healthy donors, as well as thousands of
sequences from TILs in nine pairs of matched tumor and
blood samples (Howie et al., 2015). Pasetto et al. applied
PairSEQ technology to identify TCR sequences of T cells
derived from 12 fresh metastatic melanomas TIL. This study
successfully identified several sequences that showed
reactivity against tumor antigens (Pasetto et al., 2016). In
summary, PairSEQ is an exciting high throughout technology
that can be used to identify the TCR sequences of TILs. This
information can then be used to engineer Tcells that express
antigen specific TCRs. These new technologies have great
potential to boost development of TCR-engineered T cell
therapy.

Preclinical studies

Following the identification of tumor antigen-targeting TCRs
and their introduction into T cells, it is necessary to perform
functional assessment to analyze the sensitivity of T cell
responses towards the cognate peptides or autologous tumor
cells (Dembic et al., 1986; Kessels et al., 2001). Targeting
shared tissue differentiation antigens, such as MART-1,
gp100 and CEA, will likely come with the price of toxicity to
normal cells in critical organs. It is therefore also necessary to
evaluate off-tumor toxicities of TCR-engineered T cells.
Although some antigens are not widely expressed, such as
the cancer-testis NY-ESO-1 and MAGE families that are
expressed on tumor tissue, fetal tissue, and adult testes but
not on other normal adult tissues, the safety and affinity of
these TCR-engineered T cells should still be assessed. Par-
khurst et al. developed a mouse model to isolate CEA-reac-
tive TCRs from splenocytes and perform functional
assessment. In this study, they proved that the modified CEA-
reactive TCRs were good candidates for future gene therapy
and also showed the power of selected amino acid substitu-
tions in the antigen-binding regions of TCR to enhance TCR
reactive affinity (Parkhurst et al., 2009). Kunert et al. isolated
10 TCR sequences against four MAGE-C2 epitopes from
melanoma patients and designed a set of experiments to
evaluate TCR-transgenic T cell function (Kunert et al., 2016).
Two MAGE-A3 specific TCRs were isolated from PBMCs of
two melanoma patients after MAGE-A3 vaccination. These
TCRs recognized MAGE-A3 peptides presented by HLA-
DPB1*04:01. The specificity and affinity of these two TCRs
were compared and it was found that 6F9 TCR specifically
recognizedMAGE-A3, but not other members of the MAGE-A
family in the context of HLA-DPB1*04:01. The 6F9 TCR was
selected for potential TCR gene therapy targeting MHC class
II-restricted MAGE-A3 (Yao et al., 2016). An additional issue
is that manymodified Tcells circulating in patients do not have
any therapeutic effect because they possess decreased
retroviral transgene expression (Kohn et al., 1998). Some
studies have reported possible methods to improve TCR
gene transfer and to provide a stable system for
immunotherapy. Fujio et al. used two independent

monocistronic retrovirus vectors to generate ovalbumin
(OVA)-specific TCR-Tcells. These cells showed a remarkable
response to antigen (Fujio et al., 2000). Additionally, a len-
tiviral vector carrying a bidirectional promoter was used in the
Bobisse et al. study. This gene delivery system demonstrated
increased transfer efficiency, suggesting lentiviral vectors
may be a valid tool for TCR expression in immunotherapy
(Bobisse et al., 2009). These preclinical experiments can help
guide the application of TCR-T cells in clinical trials but it is
essential that new TCRs targeting tumor antigens are tested
for their affinity, toxicity, and safety.

Clinical trials

Adoptive immunotherapy using TCR-engineered T cells has
become an important strategy for cancer therapy (Rosenberg
and Restifo, 2015) and recent clinical trials have provided
encouraging results (Table 1). It was first reported that MART-
1 TCRmodified lymphocytes could mediate tumor regression
in humans in 2006 (Morgan et al., 2006). Clinical trials of
MART-1 TCR-engineered T cells in 2009 and 2014 also
demonstrated this phenomenon (Johnson et al., 2009; Cho-
don et al., 2014). Johnson et al. showed that 19% patients
treated with gp100 TCR-engineered T cells experience an
objective antitumor response (Johnson et al., 2009). In addi-
tion to differentiation antigens, clinical trials have also exam-
ined cancer-testis antigens, such as MAGE-A3 and NY-ESO-
1. In clinical trials using a TCR targeting HLA-A*0201-re-
stricted NY-ESO-1 antigen, objective responses were
observed in more than 50% of patients with synovial cell
sarcoma, melanoma, and myeloma (Robbins et al., 2011;
Rapoport et al., 2015; Robbins et al., 2015). Kageyama et al.
conducted a clinical trial examining TCR-modified Tcells with
a HLA-A*2402-restricted MAGE-A4 in the treatment of eso-
phageal cancer. These TCR-modified T cells could be
detected in vivo for a prolonged period of time and three
patients present minimal tumor lesions for more than 27
months (Kageyama et al., 2015). These clinical trials
demonstrate that there can be dramatic tumor regression
using TCR-engineered T cells therapy. This has elicited con-
siderable enthusiasm, although it must be noted that most of
these clinical trials used only a small number of cancer
patients. Additionally, although there has been great progress
in adoptive cell therapy with TCR-engineered T cells, some
unexpected toxicities have occurred. In a clinic trial using
TCR-engineered Tcells targetingmetastatic colorectal cancer
and a high avidity CEA-reactive TCR, all three patients
developed severe transient inflammatory colitis due to the
TCR reacting to CEA-expressing normal colon epithelium
cells (Although one patient had an objective regression of
cancermetastatic to the lung and liver) (Parkhurst et al., 2011).
In another study, two patients died of cardiogenic shock after
infusionwith Tcells engineeredwith a TCRagainst HLA-A*01-
restricted MAGE-A3. The artificially modified MAGE-A3 TCR
had 4 substitutions in the alpha chain of the CDR2 region and
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retained the wild type sequences in the beta chain to increase
the TCR affinity. This affinity-enhanced TCR may have rec-
ognized an epitope derived from an unrelated protein
expressed by normal cardiac tissue, but the parental MAGE-
A3-specific TCR may also have expanded in the patient
without cardiac toxicity through natural thymic selection pro-
cesses (Linette et al., 2013). A further study also resulted in
two patients lapsing into comas and subsequently dying after
treatment with autologousMAGE-A3 TCRengineered-Tcells.
In this study, the modified T cells also recognized an MAGE-
A12-derived epitope that was detected in human brain (Mor-
gan et al., 2013). Potential cross-reactivity makes it essential
to carefully evaluate the affinity of TCRs and select the
appropriate antigens for safe clinical application of TCR-
engineered Tcells.

IMPROVING THE FUNCTION OF TCR-ENGINEERED
T CELLS IN TUMOR MICROENVIRONMENT

Improving the function of TCR-engineered T cells is crit-
ical to overcome inhibitory factors within the tumor
microenvironment and elicit tumor regression. Many
efforts to enhance antigen reactivity and circumvent T cell
tolerance have focused on increasing TCR signal
strength and generating highly functional T cells. Immune
checkpoint proteins, such as PD-1 and CTLA-4, can

prevent the activation of T cells in immune system.
Blocking the PD-1 pathway has been shown to improve
the function of TILs and enhance antitumor immunity
(Herbst et al., 2014; Tumeh et al., 2014). It is therefore
likely that the PD-1/PD-L1 signaling pathway is a major
negative feedback regulator of antigen responsiveness
(Okazaki et al., 2013; Honda et al., 2014). Other evidence
has implicated PD-1 signaling in modulating the phos-
phoinositide3-kinase (PI3K), AKT and RAS pathways and
cell cycle control (Parry et al., 2005; Patsoukis et al.,
2012a; Patsoukis et al., 2012b). TCR-engineered T cells
expressing a high level of the inhibitory receptor PD-1
reduced their functional activity (Perez et al., 2015). The
efficacy of NY-ESO-1 TCR-engineered T cells was aug-
mented when used in combination with anti-PD-1 anti-
body (Moon et al., 2016). In addition, cancer cells can
influence the local microenvironment by releasing extra-
cellular signals, promoting tumor angiogenesis, and
inducing peripheral immune tolerance. Conversely,
immune cells in the microenvironment can affect the
growth and evolution of cancer cells. Several recombi-
nant cytokines are routinely used in the treatment of
cancer, especially IL-2. This cytokine stimulates the
growth, differentiation, and survival of antigen-specific T
cells and has been used as monotherapy for several

Table 1. Clinical trials of TCR-engirneering T cells

Antigen Amino acid
sequence
of peptide

MHC
molecule

Cancer Number of
patients

Year References

MART-1 AAGIGILTV HLA-A*0201 Melanoma 17 2006 Morgan et al. (2006)

MART-1 AAGIGILTV HLA-A*0201 Melanoma 20 2009 Johnson et al. (2009)

gp100 KTWGQYWQV HLA-A*0201 Melanoma 16 2009 Johnson et al. (2009)

NY-ESO-1 SLLMWITQC HLA-A*0201 Melanoma 11 2011 Robbins et al. (2011)

Synovial sarcoma 6

CEA IMIGVLVGV HLA-A*0201 Metastatic colorectal
cancer

3 2011 Parkhurst et al. (2011)

MAGE-A3 KVAELVHFL HLA-A*0201 Metastatic
melanoma

7 2013 Morgan et al. (2013)

Synovial sarcoma 1

Esophageal cancer 1

MAGE-A3 EVDPIGHLY HLA-A*01 Ulcerated melanoma 1 2013 Linette et al. (2013)

Myeloma 1

MART-1 EAAGIGILTV HLA-A*0201 Metastatic
melanoma

14 2014 Chodon et al. (2014)

MAGE-A4 NYKRCFPVI HLA-A*2402 Esophageal cancer 10 2015 Kageyama et al. (2015)

NY-ESO-1 SLLMWITQC HLA-A*0201 Multiple myeloma 20 2015 Rapoport et al. (2015)

NY-ESO-1 SLLMWITQC HLA-A*0201 Synovial cell
sarcoma

18 2015 Robbins et al. (2015)

Melanoma 20
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different cancer types, including melanoma (Dillman
et al., 2012; Vacchelli et al., 2013).

In contrast to the immune checkpoint proteins and
immunosuppressive cytokines described above, the number
of antigen specific T cells can be affected by chemokines in
the tumor microenvironment. Blocking CXCR3, the receptor
for the chemokine ligand CXCL9/10, impairs the accumula-
tion of STAT3 deficient CD8+ Tcells in tumor sites (Yue et al.,
2015). Another study demonstrated that the chemokine
CXCL10 maintains the effector T cell population (Harris
et al., 2012). The chemokine CCL17 produced by CD8α+

dendritic cells attracted naïve cytotoxic Tcells expressing the
chemokine receptor CCR4 (Semmling et al., 2010).
Research using chimeric antigen receptor (CAR) transgenic
Tcells suggests that chemokines enhance the trafficking of T
cells to the tumors. CAR-T cells have shown great suc-
cesses in clinical trials treating leukemia and lymphoma,
although there are still issues when using them with solid
tumors, such as the low numbers of T cells present at the
tumor site. However, the number of GD2-CAR transgenic T
cells increased in tumors after co-modification with CCR2b
(Craddock et al., 2010). Migration of CAR-T lymphocytes
also improved by forced expression of CCR4. The func-
tionality of these cells was not impeded by transgenic
expression of CCR4 (Di Stasi et al., 2009). Considering that
chemokine receptor-armed CAR-T cells exhibit enhanced
tumor infiltration, improving other transgenic TCR-T cell lines
with the addition of chemokine receptors may bring better
clinical outcomes. In addition, TCR-T cells only recognize
intracellular tumor antigens present on the cell surface by
MHC molecules, while CAR-T cells can recognize tumor
antigens expressed on the tumor-cell surface independent of
MHC restriction and antigen processing. A recent study
demonstrating the benefits of this approach created CD8+ T
cells expressing two additional receptors; a gp100 antigen-
specific TCR and a melanoma-associated chondroitin sul-
fate proteoglycan specific CAR (Uslu et al., 2016). These T
cells using combined recognition pathways showed greater
efficacy by by-passing the mechanisms by which tumor cells
escape immune recognition. In conclusion, TCR-engineered
T cells therapy, in combination with drugs targeting
chemokines, cytokines, and immune checkpoint proteins,
may obtain better clinical responses in future treatments.

FUTURE PROSPECTIVE

There has been considerable progress in adoptive cell
therapies using TCR-engineered T cells, a highly personal-
ized cancer therapy. There are still some questions that
remain to be answered: (1) How can the inhibitory factors
present in the tumor microenvironment be overcome; (2) Is it
possible to improve TCR-engineered T cell longevity at the
tumor site in vivo; (3) Can an effective cocktail of TCR-
engineered T cells, including different types of antigen-
specific T cells targeting different antigenic epitopes, be
identified.

Although some antibodies or recombinant cytokines can
be used with TCR-engineered T cells, other currently
unidentified factors still exist in tumor microenvironment that
may also affect outcome. Another issue is that, once being
activated, naïve T cells rapidly proliferate and differentiate
into effector T cells and memory T cells after TCR-pMHC
interaction. Although these differentiated effector T cells can
produce a variety of effector molecules, these cells show
high expression of exhaustion markers and rapid progres-
sion to cell death. To solve the problem of T cell exhaustion
and prolong an effective immune response, some options
may be feasible. One such approach is to alter metabolic
pathways to enhance engineered T cells persistence. It has
been shown that mTOR signals, AMPK-α1 signals, and IL-7
signals support the development of memory CD8+ T cells
(Rolf et al., 2013; Cui et al., 2015). Based on these obser-
vations, it may be necessary to produce long-lived memory-
like TCR-engineered T cells expressing metabolic associ-
ated molecules.

Verdegaal et al. observed dynamic changes in neoanti-
gens from two patients with stage IV melanoma and found
that expression of T cell recognized neoantigens reduced or
even lost at the tumor site. This suggests that patients have
an improved clinical response if infused with multiple T cell
lines with engineered TCRs that recognize different
neoantigens (Verdegaal et al., 2016). For example, a recent
study demonstrated that T cells engineered with TCRs of the
ten most abundant CD8+PD-1+ clonotypes from a TIL had
reactivity against cancer germline antigens and neoantigens
(Pasetto et al., 2016). In the future, different types of TCRs
may be obtained by culturing CD8+PD-1+ T cells isolated
from patient and could be a novel strategy to develop per-
sonalized cancer therapies. T cells co-expressing TCR and
CAR also open a new avenue for the design of multifunc-
tional tumor-specific T cells to be used in adoptive transfer
(Uslu et al., 2016). For the potential of these therapies to be
met, new and accurate approaches will need to be
developed.
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