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Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described
for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal
is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on
cluster analysis for selecting similar repetitions or pulses from a periodic single.Thismethod selects individual pulses without noise,
returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received.The algorithm is designed
to be sufficiently compact to be implemented on amicrocontroller embeddedwithin amedical device. It has been validated through
the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination
of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.

1. Introduction

Signal quality or signal-to-noise ratio requires consideration
in almost all signal measurements. This is especially true
in physiological measurements where the signals tend to be
small and prone to measurement artefacts and the noise
is often difficult to control. In this paper, a novel cluster
analysis method is described to reduce the influence of noise
on photoplethysmography (PPG) signals. PPG is an optical
measurement technique that can be used to detect blood
volume changes in the microvascular bed of tissue [1]. The
peripheral pulse, as measured by PPG, is often used in the
assessment of health and disease and can provide important
valuable information about the cardiovascular system [2–5].
Our research group is evaluating PPG for the diagnosis of
peripheral arterial disease in a primary care situation using
a fully automated diagnostic device [6]. The clinical utility
of such a device relies on its ability to identify and eliminate
noise from PPG signals.

Noise minimisation starts with removing the source of
the noise; this can be through electrical isolation or, for

example, by keeping the subject relaxed and still during mea-
surements to eliminate muscle andmovement artefact.There
is also inherent noise produced through the amplification of
small signals; however modern physiological amplifiers and
analogue-to-digital converters tend to minimise this for all
but the smallest input signals. When the sources of the noise
have been reduced as far as possible, various active noise
reduction techniques can be used. The most common kind
of noise minimisation is filtering [7, 8] that can be used to
reduce any noise frequencies that do not overlap the signal
frequencies. More sophisticated methods such as wavelet
denoising [9] can be employed where filtering is insufficient.
Physiological signals, in particular ECG and PPG, have been
the focus of noise reduction using a signal quality index,
whereby each pulse has attributed a signal quality, which is
then used to assess the validity of that pulse [10–13].

Cluster analysis is a method of arranging features into
groups such that those with similar characteristics lie within a
single group. Cluster analysis is common in data analysis and
there are many algorithms [14]. In this paper, we have applied
a simple cluster analysis to remove noise from a physiological
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PPG signal. This signal is periodic and the disease diagnosis
is performed from a representative sample pulse. Therefore,
characteristics of individual pulses are not needed but rather
characteristics from a representative single pulse (be this
a selected good pulse or an average of pulses). In order
to output a representative pulse, a trace with many pulses
is recorded and the average pulse from these calculated.
This method performs well when noise contamination is
low, for example, when recorded in established physiological
measurement settings and by trained researchers studying
PPG. However, moving diagnostic devices into real-world
clinical settings to provide a robust and automated assess-
ment can be challenging. For example, patients may not stay
still during the recording and the device must be designed
to return a valid clinical result with any reasonable expected
clinical setting and level of staff training. When significant
measurement noise is present, this noise can dominate the
average pulse such that this is no longer a true representation
of the subject’s PPG pulse. This paper describes an algorithm
using cluster analysis to select a subset of pulses to return a
representative pulse returned for subsequent diagnosis.

2. Method

The algorithm was developed using Matlab� version 2016b;
the photoplethysmography and electrocardiogram signals
were measured using a multichannel PPG and ECG recorder
as used in a clinical study [15]. Prerecorded signals from
normal subjects were used as an input to the algorithm.
A variety of finger and/or toe pulse signals with noise
implemented through on-purpose patient movement were
used to train the algorithm. The algorithm was developed
to run in real time such that the signal capture could be
terminated when sufficient signal has been received. For a
high-quality signal, this can result in a shorter recording
time. For signals with a small signal-to-noise ratio, this allows
the device to collect sufficient data such that a diagnosis is
possible, up to a time-out limit.

2.1. AlgorithmDevelopment. The design requirements for the
algorithm were as follows:

(i) Compute on a continuous digital data stream, with a
minimal signal delay (pseudo-real-time).

(ii) Remove low-frequency noise (DC drift).
(iii) Remove high-frequency noise.
(iv) Remove sporadic mixed-frequency noise.
(v) Terminate when sufficient “good” pulses are record-

ed.

The algorithmwas developed to reduce noise from a PPG
signal. This signal has a periodic frequency equal to the heart
rate of the subject. The signal structure mainly exists in the
low-frequency domain, with the desirable frequencies for
analysis lying between 0.15Hz and 20Hz.

The algorithm’s steps are shown in Figure 2.The algorithm
can be divided into three sections: initial filtering and slicing
of the data, pulse clustering, and termination.
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Figure 1: Three recorded photoplethysmography (PPG) traces
measured from the great toe site. Upper: a clean PPG signal; middle:
a signal dominated by low-frequency noise, usually caused bymove-
ment of the subject’s limb; lower: a PPG trace contaminated with
high-frequency noise, typical of electrical interference. Typically,
these noise features can appear intermittently within a recording
made over a measurement period of 1-2 minutes.

2.2. Initial Filtering and Slicing Stage. The incoming PPG
signal is subject to a digital bandpass filter to remove
unwanted noise and signal drift.This is implemented through
a low-pass filter and a high-pass filter, designed to minimise
both the signal distortion and the signal phase delay. A
minimal delay is imperative for any device where a live trace
is shown, especially where operator feedback is a possibility
(e.g., adjustment of the sensor at the measurement site).
Any substantial delay can render such operator feedback
confusing and nonintuitive. The options for digital filters fall
into two main categories: FIR (Finite Impulse Response) and
IIR (Infinite Impulse Response) [17]. Although symmetric
FIR filters have the advantage that they have linear phase and
are always stable, they have substantial delays when designed
with low cut-off frequencies. IIR filters generally have a non-
linear phase response and therefore cause a frequency-related
signal delay; however, they can be faster than an FIR filter.

The information in the PPG signal lies in the low-
frequency range (below ∼20Hz); however, the signal is often
contaminated by high-frequency noise (Figure 1). This is
often due to measurements in an electrically noisy environ-
ment or optical pick-up from external lighting sources.

The high frequencies are removed by a low-pass filter
with a cut-off frequency close to 22Hz.This is achieved using
a moving average filter, which is a simple implementation
of an FIR filter. This filter has a linear phase so as not to
distort the waveforms and a low roll-off rate. With careful
implementation of the filter taps, this can also be designed
to minimise multiples of 50Hz noise (Figure 3) [18].
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Figure 2: Algorithm’s steps represented as a flow diagram, utilising BPMN Notation [16].
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Figure 3: The (a) high-pass and (b) low-pass filters. The phase response for the high-pass filter is shown as a dashed red line, showing an
increasing nonlinear effect at very low frequencies.The phase for the low pass is linear, such that all frequencies are delayed by the same time.

The high-pass filter is more complicated to design due
to the very low (0.15Hz) cut-off frequency. The primary
purpose of this filter is to block the dominantDCbackground
on which the PPG signal is superimposed. For speed of
processing and response, we have adopted a first-order digital
high-pass IIR filter with a cut-off of 0.15Hz, and the transfer
function is as follows:

𝐻(𝑧) =
1 − 𝑧

−1

1 − 𝛼 ⋅ 𝑧−1
where 𝛼 < 1. (1)

Although this filter is an IIR filter and has a nonlinear
phase response, this nonlinearity is concentrated at very
low frequencies below the filter cut-off frequency. The filter
responses are shown in Figure 3 and combined give a
bandpass with the required attributes.

The filtered signal is then sliced into individual pulses.
This could be done with the PPG traces, finding the troughs
between the pulses; however, this can be problematic either
with a weak signal or when there is substantial noise. A
more reliable method is using the R-wave gating from an
ECG signal. In this study, the R-waves from the ECG signal
have been extracted using the method developed by Pan and
Tompkins [19] and the troughs between the pulses found
from the subsequent minima following each R-wave. Each
resulting pulse then has a constant background removed and
is normalised in amplitude and duration. As the clustering
method is processor-intensive, there is a “sanity check” on the
pulse to check that it is pulse-like in form. This is designed
to be computationally fast and is used to discard obvious
nonpulses. This check averages the amplitude of the samples
in the first 5%, middle 90%, and last 5% of the pulse. The
average of the middle section must be 1.5x larger than the
biggest of the average of the first and the average of the last
sections.This ensures that the pulse amplitude starts low, goes

up, and then returns low, giving confidence that a periodic
pulse-like feature is present for subsequent analysis.

2.3. Pulse Clustering. The algorithm saves the pulse into an
array. This pulse is then compared to all previous pulses by
comparing the amplitude of each sample within the pulse.
In order to compare the pulses, distance metrics were tested,
including calculating the Pearson correlation coefficient, the
Kendall rank correlation coefficient, the Spearman rank cor-
relation coefficient, and the root mean square error (RMSE).
Each of these distance metrics is optimised differently; by
using a subset of data and visual comparisons of the clusters,
RMSE produced the most appropriate clustering. RMSE
also has the advantage of being computationally simple and
therefore fast.

Each pulse forms a new cluster and is the centre of that
cluster. In addition, each pulse is placed into any other cluster,
where the RMSE between this pulse and the pulse at the
centre of that cluster is below a threshold value. In this way, N
pulses create N clusters, each populated with pulses with an
RMSE from the centre pulse less than a preset threshold.

2.4. Termination. After each pulse has been clustered, the
number of pulses in each cluster is calculated. If any cluster
has sufficient pulses for the algorithm requirements, then the
loop is terminated, and an averaged (normalised) pulse is
returned. As the pulses are normalised in time, the median
pulse is calculated by finding the median of each point on
the pulse. If there is no cluster with sufficient pulses, then the
algorithm accepts more data, or if a predefined time-limit has
been reached, then the algorithm terminates with a time-out
error.This protects the algorithm from running continuously
with no output.
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Figure 4: (a) PPG trace with artificial “movement” noise added. (b) and (c) show full pulse set and clustered pulses. (d) shows full trace with
cluster pulses highlighted.

2.5. Algorithm Validation. To validate the algorithm, a clean
PPG signal was analysed using the filtering described above,
however with the clustering turned off. This returned an
averaged representative pulse shape. The signal was then
digitally contaminated with noise, and the analysis was
repeated with andwithout clustering.The output of these two
methods of analysis was compared to the representative pulse
from the clean signal.

3. Results and Discussion

Figure 4(a) shows an extract from a PPG trace with artificial
noise added to approximately 30% of the signal. The noise
has been designed to replicate movement noise as seen
in the middle trace in Figure 1. Figure 4(b) shows all of
the pulses (without clustering), and Figure 4(c) shows just
those pulses within the largest cluster. The duration of the
input PPG signal is 150 seconds; however, the algorithm
with clustering self-terminates when any cluster contains 20
pulses. Figure 4(d) shows the full trace of the PPG with the
20 pulses contributing to the largest cluster highlighted in
yellow. Note that there are no pulses selected from the end
of the trace as the algorithm is analysing the trace as if in real
time and therefore terminates when there are sufficient (in
this case 20) pulses.

It is clear from Figure 4 that the clustering successfully
selects pulses of a similar shape and these visually appear to
be a physiologically representative set. Figure 5 shows the
median of all the pulses and the median from the cluster
pulses together with the median of all the pulses from the
original clean data. It can be seen in Figure 5 that the cluster
set produces a median pulse much closer to the clean data
median pulse than the median from all pulses.

Clean data
Noisy, all pulses
Noisy, clustering

Figure 5: Median peaks from the clean data pulses, all pulses after
noise is added, and the median from using clustering on the noisy
data.

In order to validate the algorithm, we have quantified
the difference between the clean, cluster, and noncluster
median pulses using the same RMSE comparison. We have
simulated movement noise, constant electrical noise (similar
to the lower trace in Figure 1), a combination of movement
and electrical noise, no noise, and white noise with no PPG
signal, all shown in Figure 6. The right-hand panels show
a comparison between the median of the clean data, the
median of the data with noise added, and the median of
the cluster. In Figure 6(c), a combination of movement and
electrical noise prevented a cluster formingwithin the defined
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Figure 6: Comparison between clustering and nonclustering for a variety of inputs. (a) Simulatedmovement artefacts, (b) simulated electrical
noise, (c) simulated electrical artefact and movement noise, (d) no noise, and (e) white noise as an input. Note that in (c) and (e) a cluster of
sufficient size was not formed; therefore the algorithm reported no result.
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Table 1: RMSE comparisons between noncluster and cluster algorithms for different noise situations. Note that where there is significant
noise the cluster method returns a time-out error.

Panel in
Figure 6 Simulated noise

RMSE between clean median pulse
and median of all noisy pulses (153

pulses)

RMSE between clean median pulse
and median of cluster (20 pulses)

Movement artefact (10% noise) 0.03 0.14
Movement artefact (20% noise) 0.12 0.14
Movement artefact (30% noise) 0.23 0.11
Movement artefact (40% noise) 0.27 0.07

(a) Movement artefact (50% noise) 0.43 0.12
Movement artefact (60% noise) 0.64 —

(b) Electrical noise 0.12 0.09
(c) Movement (30%) and electrical noise 0.66 —

thresholds, and the median of all of the noisy pulses is
deviating significantly from the clean signal. In Figure 6(e),
we used white noise as the input. Again, there was no cluster
formed; however, the data was still gated by the ECGR-waves
and therefore a median of pulses of noise is produced. The
ability of the cluster algorithm to not produce a median pulse
is extremely important as it prevents returning a false signal
for disease diagnosis.

Table 1 shows the RMSE values for each of these cases,
showing in all situations where a cluster was formed that this
produced a median pulse closer to the median pulse from
the original clean data. No RMSE values can be calculated
for a white noise input as seen in Figure 6(e), as there is no
original “clean” data signal. The biggest improvement of the
cluster algorithm is seen with a high proportion ofmovement
noise on the signal.Themovement noise is sporadic and only
affects individual pulses; removing these pulses can result
in a dramatic improvement. By contrast, electric noise is
applied to all pulses, and therefore it is more difficult for a
cluster based algorithm to select individual pulses without
noise. Despite this, with simulated electrical noise, the cluster
analysis produced an RMSE almost half the size of the RMSE
from a median of all the pulses.

The performance of the cluster algorithm increased as
the proportion of the signal contaminated by movement
noise was set from 10% to 50%. The comparison between the
RMSE of the cluster algorithm and a median of all pulses
is shown in Figure 7. This shows that the cluster result
returns broadly consistent results independent of the noise
added to the signal, until it is no longer able to produce
a result. By comparison, the median of all pulses becomes
increasingly poor at representing the original signal. At very
low noise levels, a better result can be achieved through
averaging over more pulses; therefore the cluster algorithm
limiting the number of pulses averaged to 20 performs worse.
However, as the noise level increases, the clustering algorithm
is superior. Note also that the time for the algorithm to
return a result increases with the cluster method as the
noise content increases, and indeed noise contamination
greater than 50% could be achieved by increasing the time-
out limit. By comparison, a median of all pulses will take
a fixed duration of time independent of the signal quality
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Figure 7: Comparison between the cluster and noncluster algo-
rithms with increasing noise.

and will therefore take significantly longer than the cluster
method where there is low noise contamination. For real-
world clinical application, the algorithm has the scope to
indicate when a probe has become unattached from the
measurement site or has failed.

Further work linked to photoplethysmography can
include assessments of our method approach across a wide
range of recordings from healthy subjects and vascular
patients and also for different peripheral measurement sites
such as the ear lobe and finger pads.

4. Conclusions

We have shown that clustering can be used within a real-
time algorithm to minimise the effects of noise on a periodic
physiological signal, with an algorithm that can be tailored
to individual signal type. For this paper, we have explored
its value for photoplethysmography waveforms as the input
signal, where a dramatic reduction in the effect of noise on the
output result has been demonstrated. Furthermore, if there is
insufficient quality of data, the algorithm returns a null result
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rather than an incorrect median pulse.The algorithm returns
a consistent result as the noise on the signal is increased and
at low noise levels can produce a result quickly and efficiently.
This algorithm was developed to be computationally fast,
such that it could be run in real time on an embedded
microcontroller within a portable medical device.
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