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Abstract
: Mosquito behaviours including the degree to which they biteBackground

inside houses or outside is a crucial determinant of human exposure to malaria.
Whilst seasonality in mosquito vector abundance is well documented, much
less is known about the impact of climate on mosquito behaviour. We
investigated how variations in household microclimate affect outdoor-biting by
malaria vectors,  and  .Anopheles arabiensis Anopheles funestus

: Mosquitoes were sampled indoors and outdoors weekly usingMethods
human landing catches at eight households in four villages in south-eastern
Tanzania, resulting in 616 trap-nights over 12 months. Daily temperature,
relative humidity and rainfall were recorded. Generalized additive mixed
models (GAMMs) were used to test associations between mosquito
abundance and the microclimatic conditions. Generalized linear mixed models
(GLMMs) were used to investigate the influence of microclimatic conditions on
the tendency of vectors to bite outdoors (proportion of outdoor biting).

:   abundance peaked during high rainfall monthsResults An. arabiensis
(February-May), whilst  density remained stable into the dryAn. funestus 
season (May-August)  Across the range of observed household temperatures,.
a rise of 1 C marginally increased nightly   abundance (~11%),An. arabiensis
but more prominently increased  abundance (~66%). TheAn. funestus 
abundance of  and   showed strong positiveAn. arabiensis An. funestus
associations with time-lagged rainfall (2-3 and 3-4 weeks before sampling). The
degree of outdoor biting in   was significantly associated with theAn. arabiensis
relative temperature difference between indoor and outdoor environments, with
exophily increasing as temperature inside houses became relatively warmer.
The exophily of   did not vary with temperature differences.  An. funestus

: This study demonstrates that malaria vector  shiftsConclusions An. arabiensis 
the location of its biting from indoors to outdoors in association with relative
differences in microclimatic conditions. These environmental impacts could
give rise to seasonal variation in mosquito biting behaviour and degree of
protection provided by indoor-based vector control strategies.
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Introduction
Malaria control is entering a crucial stage in sub-Saharan Africa, 
with significant investments and gains being made1. While the  
disease still kills 429,000 people annually1, the scale-up of key 
interventions such as Long-Lasting Insecticide Nets (LLINs), 
indoor residual spraying (IRS) and treatment with artemisinin  
combination drugs are estimated to have reduced malaria inci-
dence and mortality by 21% and 29% respectively between 2010  
and 20151,2. Despite their considerable impact, LLINs and IRS  
cannot provide complete malaria suppression on their own3,4,  
partly because they target mainly indoor biting and indoor resting 
mosquitoes4,5. In many persistent malaria transmission settings, a 
considerable amount of transmission is potentially maintained by 
malaria vectors that predominantly bite outdoors6, or are physi-
ologically resistant to the insecticides used for LLINs and IRS7. 
For example Anopheles arabiensis and Anopheles funestus have 
been observed to bite early in the evening or early morning when  
people are outdoors and thus unprotected by LLINs or IRS8–11.  
Targeting these vectors of persistent transmission is one of the  
next steps towards malaria elimination.

While vector species are often described as having relatively  
fixed patterns of behaviour, there are indications that vectors 
may shift their biting behaviour in response to environmental  
conditions12,13 and to avoid contact with insecticides used  
indoors9,14. Although there is recognition that mosquitoes are  
capable of adapting their host choice and resting behaviours15–17,  
there is limited understanding of the role of the fine-scale  
household-level climatic conditions in determining the timing and  
location of vector biting. For example, it has been widely dem-
onstrated that mosquito vector abundance varies significantly 
in response to seasonal changes in climate and rainfall18–21, but 
much less is known about whether there are corresponding sea-
sonal changes in the specific timing and location of their biting, 
or even choice of resting habitats. Given the crucial importance of  
outdoor biting as a determinant of the degree of protection that 
can be provided by LLINs, it is crucial to understand if and how 
this vector behaviour may vary in response to microclimatic  
variation. Such information is critical for predicting and quantify-
ing human exposure to mosquito bites throughout the year, and  
assessment of the degree of biological coverage that can be  
achieved with particular interventions.

Environmental conditions influence mosquito vector life-history 
and demography in several ways. Firstly as mosquitoes are ecto-
therms, their development and survival is dependent on the  
temperature of surrounding environments22,23. Temperature and 
humidity have strong impacts on the rate of mosquito and para-
site development, larval development rates and mosquito biting 
rates which in turn determines malaria transmission intensity22–28. 
In tropical areas, malaria vectors are exposed to extensive environ-
mental variation throughout the annual seasonal cycle of rainfall,  
which is characterized by periods of high rainfall and cooler tem-
peratures, followed by dry periods where temperatures are hotter. 
This variability causes high amplitude fluctuations in mosquito 
abundance29,30 and corresponding malaria transmission31,32. In  
addition to the impacts of temperature and humidity described 
above, rainfall has a significant independent impact on mosquito 

abundance through its role in creating aquatic habitats for larval 
development21,33–36.

In addition to rainfall, seasonal variation in temperature can 
have numerous impacts on mosquito demography and trans-
mission potential. For example, the time required for An. gam-
biae s.l. to develop from egg to pupa is highly dependent on 
temperature, lasting from 9.3 days at 35°C, and increasing to 
12.6 days at 25°C37. The duration of the mosquito gonotrophic  
period (time between blood-feeding and egg-laying) is also  
temperature-dependent27. High ambient temperature (e.g.> 32°C) 
results in a faster rate of blood meal digestion, thus shorter period 
between feeding cycles, and higher overall biting frequencies35. 
These increases in mosquito development and life history are 
expected to increase with temperature up to a maximum threshold, 
above which temperature becomes lethal for mosquitoes. Also, the  
extrinsic incubation period (EIP) of malaria parasites developing 
within mosquitoes depends on temperature28. The sporogonic cycle 
of Plasmodium falciparum requires a minimum temperature of 
16°C, below which parasite development will not be completed. 
The duration of EIP is reduced with increasing temperature38 until a 
certain threshold, beyond which mosquito and parasites die before 
the cycle is complete26,39.

Whilst the effects of seasonal climatic variation on mosquito and 
parasite development are relatively well known, much less is  
understood about its impact on mosquito biting behaviour and asso-
ciated human exposure. For example, the tendency of vectors to 
bite and rest indoors versus outside is a key determinant of how 
much protection can be obtained through use of LLINs or IRS40. 
The relative degree of preference for biting indoors (endophily) is 
often assumed to be fixed within a vector species, with African vec-
tors such as An. gambiae and An. funestus often described as being 
near exclusively endophilic41–43. However, other more behaviourally 
plastic species such as An. arabiensis can bite both indoors and 
outdoors9.

The relative contribution of genetic versus environmental factors 
to the observed heterogeneity in these and other mosquito behav-
iours is poorly understood44,45. It is possible that the degree of  
endophily in a vector population is influenced by relative dif-
ferences in temperatures and humidity of indoor and outdoor  
locations. For example, vectors may switch their activity between 
an indoor and outdoor environment depending on which is  
most optimal for their fitness46. Some studies have investigated 
the effect of indoor temperature and humidity on mosquito  
abundance23,46,47, but to our knowledge none have tested for  
association with indoor vs. outdoor biting activity. In rural Africa, 
indoor microclimates vary greatly due to variables such as house 
density, building design, construction materials and seasonal  
variation in climate48.

Although vectors are known to be capable of adjusting their  
biting and resting habitats in response to climate under both  
laboratory49 and field settings50,51, little is known about whether 
seasonal variation in microclimatic conditions (temperature and 
humidity) is sufficient to alter their biting behaviour around human 
dwellings. If so, this could give rise to seasonal variation in the 
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degree of coverage provided by vector control measures such as 
LLINs. The main aim of this study was therefore to quantify the 
fine-scale effects of microclimate on abundance and biting behav-
iours of two major malaria vectors, An. arabiensis and An. funestus 
in rural Tanzania.

Methods
Study area and period
Data on mosquito abundance and biting behaviour was collected 
from February 2015 to January 2016 in four villages covering 
two districts in the Kilombero river valley, south-eastern Tanzania  
(Figure 1). The Kilombero valley ecosystem is dominated by a 
low-lying flood plain interspersed with villages and rice farms.  
There are two main seasons in the valley, a cool rainy season  
(February to June) and a hot dry season (July to October). There 
is also a short period of rains covers between November and  
January. The valley receives approximately 1200–1600 mm of  
rainfall annually and the mean daily relative humidity range from 
54% to 71% while mean temperature ranges from 20°C to 32.6°C.

The dominant malaria vectors in the study area are An. funestus 
and An. arabiensis, but there are also other species such as An. 
rivulorum, that can carry malaria parasites, albeit in much lower  
rates52. In combination, An. funestus and An. arabiensis popu-
lations in this area are predicted to generate an Entomological  

Inoculation Rate (EIR) of 18.45 infectious bites per person per 
year for unprotected individuals, with most of these infectious  
bites (86.2%) contributed by An. funestus52. The main malaria  
intervention used in the area is LLINs53.

Mosquito sampling
Host seeking mosquitos were collected in four villages within 
the valley: Mavimba (8.3124°S, 36.6771°E), Minepa (8.2710°S, 
36.6771°E), Kivukoni (8.2135°S, 36.6879°E) and Lipangalala 
(8.1539°S, 36.6870°E) (Figure 1). Two houses were selected 
in each village, one in the middle of the village, and another 
towards the edge of the village. Working with trained, adult male  
volunteers, human landing catches (HLC)54 were used for  
sampling mosquitoes hourly from 6pm to 6am for three or four 
consecutive nights each week (three nights/week in the wet season, 
four nights/week in the dry season), resulting in 12-16 sampling  
days per house per month, over a 12 month sampling period. On 
each night of sampling, one trained volunteer collected mosqui-
toes inside the house, and another collected within a 4-5m zone 
outside the house. Collected mosquitoes were put into separate 
cups, labelled by collection night and location. The volunteers 
rotated between indoor and outdoor positions after every hour to 
account for any biases due to variability in attractiveness of indi-
viduals to mosquitoes55,56. All Anopheles mosquitoes were identi-
fied to species group (An. funestus s.l vs. An. gambiae s.l) based on  

Figure 1. Map of the Kilombero and Ulanga districts showing the four study villages where entomological and environmental data 
were collected. (Kindly prepared by Doreen Siria)
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morphology, and also their physiological status, as defined by  
being recently blood fed, unfed (without blood-meal) or gravid,  
was also recorded42. A sub-sample of An. funestus s.l and An.  
gambiae s.l were subjected to molecular analysis at Ifakara Health 
Institute (details below).

Environmental variables
Data on temperature and relative humidity were simultaneously 
recorded inside and outside of the houses, where mosquito col-
lections were being conducted. The mean nightly temperature 
and humidity at each household was estimated from hourly val-
ues collected over the 12-hour sampling period (6pm to 6am) using 
Tinytag® data loggers (Gemini, UK). One logger was positioned 
inside in the middle of the room where sampling was conducted 
and the other was located outside near to the outdoor sampling 
point. Data on the total daily rainfall for the Kilombero valley was 
obtained from an electronic weather station maintained by Ifakara 
Health Institute (IHI), just outside Ifakara town, approximately 5km 
from the northernmost study village of Lipangalala.

Laboratory analysis
A sub-sample of 2910 (25% of the total) female An. gambiae s.l. 
and 463 (61% of the total) female An. funestus s.l. mosquitoes 
were analysed using multiplex polymerase chain reaction (PCR) 
to identify their species57,58. Enzyme Linked Immunosorbent  
Assays (ELISA) were used to test for presence of Plasmodium  
parasites59. The ELISA were done in pools of 10 mosquitoes or  
less. To prevent false positive results, the ELISA lysate was 
boiled for 10 minutes at 100°C, so as to eliminate heat-labile non  
P. falciparum protozoan antigens, which may constitute false  
positives in standard ELISA assays60.

Ethical statement
Ethical approval was obtained from the Ifakara Health Insti-
tute’s Institutional Review Board (IHI/IRB/No: 06-2016), and the  
Medical Research Coordination Committee of the National Insti-
tute for Medical Research in Tanzania (MRCC) (NIMR/HQ/
R.8a/Vol.IX/2218). Approval for publishing this manuscript was  
obtained from the National Institute for Medical Research (NIMR), 
Ref: NIMR/HQ/P.12 Vol.XXII/30. Printed copies and web links 
to the publication will later be provided to NIMR after publica-
tion. Written informed consent was obtained prior to the start 
of each data collection from all volunteer mosquito collectors 
and household owners who agreed to participate in the study.  
Malaria tests were provided to all volunteers before, during and 
after the study, with the intention that only malaria-free indi-
viduals would be allowed to participate. All volunteers involved  
in HLCs were provided with prophylaxis (250 mg Mefloquine 
taken orally) once every week to prevent malaria infections during 
the course of the experiments. In addition, treatment (Coartem®, 
80 mg artemether and 480 mg lumefantrine for 3 days) was made 
available in case any of the participants became ill. However, none 
of the volunteers contracted malaria during the study.

Statistical analysis of intra-annual (seasonal) patterns
Statistical analyses were conducted using R software version  
3.3.261. Generalized Additive Mixed Models (GAMM) was con-
structed to test the association between the nightly abundance of 
each vector species group (total number of female mosquitoes  
captured per person per night) and a set of environmental variables. 
The GAMM was fitted using the gamm4 function implemented 
within the mgcv package62. The use of GAMM is recommended 
in cases when the data (here mosquito counts) are not expected to  
have a linear relationship with some predictor variables (in our  
case, calendar days). This was certainly the case in our study  
where mosquitoes were trapped over a year-long period, during 
which their populations underwent large seasonal expansions and 
declines.

Initial models used Poisson likelihood, but over-dispersion  
(overdispersion statistic>2.0) necessitated the use of a negative 
binomial likelihood for modelling the abundance of An. arabien-
sis and An. funestus. The explanatory variables were: mean nightly 
temperature, mean nightly humidity, total daily rainfall, cumu-
lative rainfall over a series of time lags, and sampling location  
(indoors or outdoors). The impact of both concurrent and time-
lagged cumulative rainfall was investigated because both are 
known to have important, distinct impacts on mosquito abundance. 
For example, the amount of rain falling on the day of sampling 
may influence the “trap-ability” of mosquitoes, as they may refrain 
from flying during heavy rain63. In addition, the size of the adult 
mosquito population is determined by the number of individu-
als emerging from aquatic larval habitats. As it takes ~2-3 weeks 
for mosquitoes to complete larval development in aquatic habi-
tats, the cumulative amount of rain following in the weeks before  
sampling are probably a good indicator of the size of the adult 
population63. Cumulative rainfall values over different time lags  
before each sampling day were calculated and used as separate 
explanatory variables to identify which time period was most 
informative of adult density. Rainfall variables used in the GAMM 
model included both rainfall on the day of sampling (0), and 
amount of rainfall accumulating 0, 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4 
weeks before each sampling day. These variables share common  
information, so cross correlations were a concern. To detect multi-
collinearity, we used Variance Inflation Factors (VIF) to select a 
combination of uncorrelated covariates. Variables with VIFs>3 
were not included in the model. Consequently, only cumulative 
rainfall at 0, 1-2, 2-3, and 3-4 weeks before the sampling day were 
included in the model together with other microclimatic variables 
measured on the sampling day.

Since mosquito catches are expected to be partially density  
dependent64,65, an auto-covariate was also included in the model 
as the number of mosquito collected two weeks before the sam-
pling day. Days of the calendar year were included in the model 
as a smooth spline term to test whether there was a significant  
effect of season, with random effects included for household of  
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collection, nested within village. The random effects aimed to cap-
ture unexplained variation that is consistent within households and 
to account for pseudo-replication within household and village. All 
the independent variables were centred and re-scaled to improve 
mixed model convergence.

A maximal model, with all explanatory variables and possible  
interactions, was constructed and sequentially compared with  
models containing fewer terms. These model comparisons were 
done using the Akaike Information Criterion (AIC) following  
existing procedures62,66. Deviance Explained (ED) by each model 
was obtained from the null deviance of an intercept-only model  
and the residual deviance of the candidate model.

Statistical analysis of the relationship between exophilic 
and climatic condition
A second model was constructed to test for associations between 
the relative difference in microclimatic conditions (temperature 
and humidity) between indoor and outdoor sampling points and 
the degree of outdoor biting (exophily) in each Anopheles vector  
species. Generalized linear mixed models (GLMMs) fitted with 
a binomial likelihood for proportional data in lme4 package were 
used67. Exophily was calculated as number of mosquitoes caught 
outdoor (O) as a proportion of the sum of the total caught indoors 
(I) and outdoors (O) between 6pm and 6am i.e. (O

6pm–6am
)/(I

6pm–6am
 

+ O
6pm–6am

). Main predictor variables were the differences between 
indoor and outdoor temperature (ΔT), relative humidity (ΔRH), 
Indoor temperature and indoor humidity were also included as  
covariates in the model following exclusions of multicollinear  
candidate covariates by use of VIF. Model selection was done  
based on AIC (i.e. the lower the AIC value, the better the model)68.

Results
Species composition and Plasmodium infection of 
Anopheles in study area
A total of 61,093 mosquitoes were collected inside and outside 
houses within the study area over the entire sampling period. Four 
mosquito genera were identified: Culex (72.74%), Anopheles  

(20.94%), Mansonia (5.94%) and Aedes (0.38%). A total of 
12,795 Anopheles were collected, of which the major species 
group was An. gambiae s.l. (92.05%, Table 1) followed by  
An. funestus (5.98%), An. pharoensis (1.27%) and An. coustani 
(0.70%). Overall, 66.3% of Anopheles species were collected  
outdoors and 33.7% indoors (Table 1). Most of the Anopheles 
species were captured in Minepa (71.4%, n=9,131, Table 1),  
followed by Kivukoni (13.8%, n=1,766), Mavimba (11.0%, 
n=1,403) and Lipangalala village (3.7%, n=495). Of the An.  
gambiae s.l. samples tested by PCR, the majority were confirmed 
as An. arabiensis (99.9%), and only one mosquito was found  
to be An. quadriannulatus (0.1%). The An. funestus group  
consisted of 77.2% An. funestus s.s, 20.3% An. rivulorum and 2.5% 
An. leesoni. The overall Anopheles PCR amplification rate was 
83.2%. From all samples subjected to ELISA testing for malaria 
infection, only 5 (1.1%) sporozoite-positive individuals were 
detected in the An. funestus group, and none in An. arabiensis.

During the study period, heavy rainfall occurred between March 
and May (Figure 2), with precipitation ceasing in August,  
followed by a very dry 3-month period (~<5mm rainfall/week, 
August-October 2015). Mean temperatures were highest (> 28°C) 
in November and December (average rainfall of 27.6mm/week), 
and lowest (< 24°C) in July and August of 2015 (Figure 2). On  
average, the microclimate inside houses was warmer and more 
humid than outdoors (Table 2).

Effects of microclimatic conditions on Anopheles species 
abundance
GAMM models fitted with a negative binomial distribution  
provided a better representation of An. arabiensis and An. funestus 
abundance than those fitted with a Poisson distribution. For  
An. funestus the final model explained 39% of the null deviance. 
The smooth term (calendar days) indicated there was significant 
variation in abundance of An. arabiensis within a year both indoors 
(F = 42.31, effective degree of freedom (edf) =5.3, Figure 3) and 
outdoors (F = 16.68, edf=2.5, Figure 3). There was also signifi-
cant variation in the abundance of An. funestus over the year both  

Table 1. Total number of Anopheles mosquitoes collected between February 2015 and January 2016 within the four 
localities.

Species

Village

Kivukoni Lipangalala Mavimba Minepa Total 
Overall

%

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

Anopheles arabiensis.*+ 555 1,015 87 331 397 850 2,734 5,810 11,779 92.0

Anopheles funestus* 48 53 8 25 51 80 353 147 765 6.0

Anopheles pharoensis 14 52 0 5 4 10 20 57 162 1.3

Anopheles coustani 10 19 17 22 6 5 2 8 89 0.7

Total 627 1,139 112 383 458 945 3,109 6,022 12,795 100.0 

*+Only 1 specimen from the An. gambiae s.l. was identified as a species other than An. arabiensis (in this case, it was Anopheles quadriannulatus). 
All the An. gambiae s.l. are therefore assumed to be An. arabiensis in this article.
*Included in the final analysis.
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Table 2. Mean and range of temperature and relative 
humidity for both indoor and outdoor locations.

Indoor Outdoor

Temperature (°C)
Mean 26.30 26.00

Range 19.35 – 31.55 19.83 – 30.65

RH. Humidity (%)
Mean 62.70 62.18

Range 34.14 – 98.36 0 – 100

Figure 2. Total monthly rainfall (grey bars) and mean nightly temperature (red dashed-line) pattern in Kilombero valley.

indoors (F = 12.26, edf=2.5, Figure 3) and outdoors (F = 18.48, 
edf=2.9, Figure 3). Preliminary analysis showed that the abun-
dance of An. arabiensis varied significantly between indoor and  
outdoor locations, with approximately two times more being col-
lected outdoors than inside after controlling for environmen-
tal variables (Table 3). In contrast An. funestus abundance was  
similar between indoor and outdoor sampling locations (Table 1 
and Figure 5).

Parameter estimates derived from the best models of mos-
quito abundance indicated that rainfall on the sampling day was 
positively associated with vector abundance. The abundance of  
An. arabiensis increased by ~16% while that of An. funestus 

increased by 26% for every 1mm increase in the amount of rain 
falling during the sampling day (Table 4). The final model for 
An. arabiensis did not include the 1-2 weeks aggregated rainfall. 
Aggregated rainfall (2-3 weeks before sampling) was also posi-
tively related to An. arabiensis abundance (Table 4). Aggregated 
rainfall (3-4 weeks before sampling) was also positively related 
to An. arabiensis and An. funestus abundance, with 31% and 
43% increases in density predicted respectively for every 1mm 
increase in cumulative rain over this period. The final model for  
An. funestus did not include the 2-3 weeks aggregated rainfall. 
Anopheles funestus abundance was negatively associated with 
aggregated rainfall 1-2 weeks before sampling day.

Over the range of temperatures measured (19.4 – 31.6°C), an 
increase in the mean nightly temperature of 1°C was predicted 
to increase the overall abundance of An. arabiensis by ~11%, 
and that of An. funestus by ~66% (Table 2). Lastly, an increase 
of one percentage point in the mean nightly humidity was asso-
ciated with a reduction in the abundance of An. arabiensis by 
~42% and increased An. funestus abundance by 55% (Table 4).The 
mean daily abundance of both An. arabiensis and An. funestus was  
significantly associated with their density as measured two 
weeks prior to sampling, confirming temporal autocorrelation in  
population size. The density dependent terms was found to improve 
the model fitness and convergence of both An. arabiensis and  
An. funestus.

Page 7 of 18

Wellcome Open Research 2017, 2:102 Last updated: 18 DEC 2017



Figure 3. Anopheles vector abundance over time: Four panels showing cyclic cubic splines of seasonal variation in abundance as 
predicted by a Generalized Additive Mixed Model (GAMM) model.

Table 3. Mean number of malaria vector species collected per person/
night and absolute relative risks estimated GLMMs.

Species
Arithmetic Mean 

(b/p/n)
Absolute Relative Risk  

(95% CI)

Indoor Outdoor Indoor Outdoor

Anopheles 
arabiensis 12.25 25.99 2.80 (0.58–13.51) 6.45 (1.34–31.08)

Anopheles 
funestus 1.49 0.99 0.30 (0.12–0.80) 0.32 (0.12–0.84)
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Table 4. Results from the final GAMM model describing the predicted impacts of the climatic 
variables on the nightly abundance of Anopheles species.

Response variable Independent Variable Relative Risk* (95%CI) ΔDev p-value

Anopheles arabiensis Mean night temperature 1.11 (0.92 – 1.34) 18.4 0.272

Mean night humidity 0.58 (0.37 – 0.90) 103.2 0.016

Rainfall on the capture day 1.16 (1.04 – 1.30) 78.5 0.007

Aggregated rainfall 2 to 3 weeks 1.13 (1.00 – 1.28) 58.9 0.049

Aggregated rainfall 3 to 4 weeks 1.31 (1.16 – 1.48) 141.2 <0.001

Density dependence covariates 1.31 (1.10 – 1.56) 28.5 0.003

Anopheles funestus Mean night temperature 1.66 (1.24 – 2.23) 2.95 <0.001

Mean night humidity 1.55 (1.17 – 2.07) 1.6 0.003

Rainfall on the capture day 1.26 (1.06 – 1.50) 24.7 <0.001

Aggregated rainfall 1 to 2 weeks 0.81 (0.67 – 1.01) 1.3 0.059

Aggregated rainfall 3 to 4 weeks 1.43 (1.18 – 1.74) 6.7 <0.001

Density dependence variable 2.76 (1.88 – 4.03) 21.6 <0.001

*Relative Risk of greater than 1 indicated a positive association whereas less than 1 indicates a negative association.

Effects of temperature and relative humidity variation on 
the exophilic behaviour of Anopheles species
The GLMM with a binomial response variable (representing 
the proportion of mosquitoes caught outside) indicated that the  
relative difference in microclimatic conditions between indoor 
and outdoor environments had an impact on the degree of exoph-
ily in An. arabiensis. When temperatures were higher indoors 
compared to outdoors, the odds of exophily increased by ~26% in  
An. arabiensis for every one unit increase in temperature  
differential (Table 5 and Figure 4). In contrast, for a one 
unit increase in the differential between indoor and outdoor 
humidity, the odds of exophily decreased by 6% (Table 5 and  
Figure 4), within the limits of our microclimate measurements. 
There was an interaction between temperature differences (ΔT) 
and humidity differences (ΔRH). This interaction had the impact 
of increasing the degree to which exophily was enhanced by the 
indoor vs. outdoor temperature differential, when there was also 
a bigger difference in humidity between these habitats (Table 5). 
In contrast, the proportion of An. funestus biting outdoors was not  
significantly related to temperature (ΔT) or humidity (ΔRH)  
difference between indoors and outside (Table 5 and Figure 4).

Predictions for the seasonal abundance and biting 
behaviour of Anopheles mosquitoes
The best models for prediction of malaria vector abundance and 
biting behaviour as described above were used to investigate 
the degree to which human exposure to mosquito bites may be  
expected to vary seasonally in response to microclimatic con-
ditions. Here, model predictions were obtained under a range of 
environmental conditions most typical of the wet and dry seasons.  
On the basis of these assumed typical values, the indoor biting  
rates of An. arabiensis were predicted to change from  
~25 bites per person per night (b/p/n) during a typical wet season 

(March-May) to ~2 b/p/n during the dry season (August-Octo-
ber). While that of An. funestus would shift from ~1.5 b/p/n to  
below 0.5 b/p/n. The degree to which mosquito vectors attempt 
to feed outdoors is significantly dependent on indoor tempera-
ture relative to outdoor temperature, but this is not the case for  
An. funestus. Specifically, our model (GLMM) predicted that the 
proportion of An. arabiensis bites outside can shift from 72.9% 
when there is no temperature differences between locations, to 
a high up to 91.5% when indoor mean temperature is higher by  
6ºC (maximum difference observed) (Figure 4). We have also 
observed that, the exophily of An. funestus and An. arabiensis  
did not vary seasonally (wet vs. dry seasons) (Figure 5).

Discussion
We investigated associations between daily microclimatic varia-
tion in and around households, and also the abundance and biting  
behaviour of two major African malaria vectors over one year  
period in south-eastern Tanzania. Whilst previous studies have 
investigated seasonally-varying environmental drivers of vector 
abundance, few have explicitly investigated the role of microcli-
matic variation on preference of mosquitoes biting outdoors rather 
than inside of houses. Consistent with previous work63, the present 
study detected strong seasonality in malaria vector abundance. 
Cumulative total rainfall occurring in the two weeks before sam-
pling was a significant positive determinant of the densities of both 
An. arabiensis and An. funestus. The aggregated rainfall occurring 
2–3 weeks, and 3–4 weeks before sampling day was positively 
related to An. arabiensis abundance, the latter having high impact 
on the abundance.

This 2 to 4 week lag period between rainfall and increased  
mosquito abundance is likely reflective of the period of time 
required by mosquitoes to lay their eggs (triggered by rainfall), 
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Figure 4. Relationships between microclimatic conditions and exophily behaviour of Anopheles mosquitoes. Black circles (observed) 
and red dotted (predicted values).

Table 5. Results obtained from the final GLMM testing for associations of exophily 
(proportion of bites taken outdoors) and household-level microclimatic variables for two 
main Anopheles vector species.

Response variable Independent Variable Odds Ratio* (95%CI) p-value

Anopheles arabiensis Mean temperature difference (δT) 1.25 (1.14 – 1.39) <0.001

Mean humidity differences (δRH) 0.94 (0.89 – 1.00) 0.057

δT ∗ δRH 1.12 (1.02 – 1.22) 0.016

Anopheles funestus Mean temperature difference (δT) 1.01 (0.76 – 1.32) 0.944

Mean humidity differences (δRH) 1.02 (0.55 – 1.88) 0.160

Mean indoor temperature 1.39 (0.91 – 2.00) 0.124

Mean indoor humidity 0.89 (0.58 – 1.37) 0.593

InTemp*InHumid 0.63 (0.38 – 1.03) 0.066

*Odds ratio of greater than 1 indicated a positive association whereas less than 1 indicates a negative 
association.
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Figure 5. Seasonally predicted mean distribution of Anopheles mosquitoes captured per person per night pooled across study 
villages.

have eggs hatch and complete larval development (1–2 weeks), 
then emerge as host seeking adult females (~4–5 days). A similar 
pattern has been observed in another study conducted in Kenya30, 
which showed that rainfall lags of two weeks before sampling 
day, were positively correlated with abundance of Anopheles  
mosquitoes. One exception to the general finding of a positive 
effect of rainfall on vector abundance was the detection of a moder-
ate, negative association between the amount of rainfall occurring 
1-2 weeks before each sampling day and An. funestus nightly abun-
dance. This finding contrasted with a positive association between 
An. funestus and cumulative rainfall over a longer time lag (e.g. 3-4 
weeks before sampling). These differences in the effect of rainfall 
between vector species likely reflect differences in their larval ecol-
ogy. Unlike An. arabiensis which often breeds in small, ephemeral 
aquatic habitats42, An. funestus larvae can be found in larger, more 
permanent water bodies42,69.

The presence of large swamp areas in addition to other large 
ponds within the study area likely provide a stable year-round  
breeding site for An. funestus, which can be expected to decou-
ple their dependency on seasonal rainfall29,34. Our GAMMs 
model predicted that both An. funestus and An. arabiensis could  
still be detected even after 2 to 3 months of very little/no rainfall, 
and that An. funestus densities peaked late into August (Figure 2 
and Figure 5). High rainfall during the sampling night tends to 
flush away immature mosquitoes from breeding habitat and also 
reduces catch-ability, though studies still consider high rainfall 
as ideal conditions for malaria transmission27,63,70. Thus, the rela-
tionship between rainfall and vector population dynamics may be  

more complex than usually thought. Careful considerations of the 
interplay between longer-term and short-term effects are required to 
more accurately predict vector abundance.

In our study, the mean nightly abundance of both An. arabiensis  
and An. funestus was predicted to increase with temperature across 
the range of those measured indoors and outdoors. For every 
1°C increase in temperature, An. arabiensis abundance was pre-
dicted to increase by about 11% and An. funestus by about 66%. 
This relationship should be used with caution because there is  
maximum temperature threshold at which Anopheles mosqui-
toes can survive24. The minimum and maximum temperatures  
recorded in this study were 19.4°C and 31.6°C respectively. This 
range falls just below the maximum threshold of 32°C reported 
for Anopheles survival24 and above the minimum temperature  
threshold of 18°C required for larval development37. Previous  
studies have shown that a marginal increases in temperature  
above the minimum threshold (18°C) are associated with high  
mosquito densities, biting rates and the development of malaria 
parasites within mosquitoes27,71,72. Such associations between  
mosquito and parasite life history and temperature are not 
expected to be linear, with temperatures above 32°C reported to  
reduce survival of some African Anopheles mortality24,27. When  
the temperature rises above this threshold, mosquito digestion  
rates also increase which later increases vector-host contact38,39.  
A study conducted in western Kenya on the duration of gono-
trophic cycles using wild mosquitoes found that, an increase in  
average temperature reduces the first and second gonotrophic  
cycle length38. Therefore, female Anopheles will need multiple 
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blood meals to complete ovary development, hence high biting 
rates.

This study also generated some new insights on the potential for 
microclimatic variation to impact mosquito behaviour as well as 
their abundance. Previous laboratory work has shown that malaria 
vectors are able to sense temperature, and modify their choice of 
resting habitats in a pattern consistent with optimizing their sur-
vival13,49,73. However, the role of temperature and other microcli-
matic conditions in determining the time and place of mosquito 
biting is less well understood. Though malaria vector species 
are known to have specific, distinct patterns of exophily14,74,75,  
we hypothesized that there is some degree of flexibility within 
species to modify whether they bite in or outside of houses in  
response to fine-scale microclimatic variations. This was con-
firmed here by our finding that the proportion of outdoor biting  
by An. arabiensis is associated with relative difference in  
temperature and humidity between indoor and outdoor envi-
ronments. Specifically, An. arabiensis were more likely to bite  
outdoors when conditions indoors were hotter and drier compared 
to outside. In contrast, the An. funestus remained generally endo-
philic (60.1%) regardless of fine-scale variation in temperature,  
humidity, and the relative difference in microclimate between 
indoor and outdoor settings. This indicates that at least this one 
major African vector species, An. arabiensis, tends to move toward 
cooler and more humid places, which are important in maintaining 
their survival.

Under controlled laboratory conditions An. arabiensis and  
An. gambiae s.s. are capable of detecting and responding to an 
increase in temperature of a few degrees by moving away from 
heat sources13,76. Mosquitoes use thermohygroreceptor cells to 
detect temperature changes47, which is likely the primary mecha-
nism through which they can assess conditions and modify their 
behaviour. Our findings reveal that An. arabiensis prefers biting 
in relatively cooler, humid places. This matches with laboratory 
observations where An. gambiae s.l., An. stephensi, and Cx. pipiens 
moved toward the more humid and cooler parts of a cage (the roof), 
in comparison to other parts47.

Conclusions
Here we have shown that household-level microclimatic condi-
tions strongly influence both the abundance and relative prefer-
ence of malaria vectors for biting inside versus outside houses.  
Whilst previous work has also uncovered strong effects of tem-
perature, humidity and, our study is unique in demonstrating an  
additional impact of microclimatic variation on vector biting 
behaviour. Exophily was related to the relative difference between 

indoors and outdoors temperature and in An. arabiensis, but not 
An. funestus. We have demonstrated that malaria vector An. ara-
biensis shifts the location of its biting from indoors to outdoors 
in association with relative differences in microclimatic con-
ditions. Also, overall increments of household temperature as 
small as 1°C resulted in significant increases in the abundance of  
An. funestus. In order to improve on protection from LLINs, we 
will need to think more strategically not only about optimizing 
the type but timing of intervention deployment, to exploit vulner-
abilities in their seasonal cycle of abundance and behaviour. These  
findings have implications for the fine-scale mapping of biting  
risk in households, and potential improvements in control meas-
ures by modulating household microclimates. This may also  
warrant consideration of seasonally targeted interventions as  
complementary strategies.
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Minor comments
 
Figures: Include relevant temperature data (now only one line for temperature is presented in Figure 2)
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